code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class UpperCAmelCase : def __init__( self :Optional[int] )-> None: A__ = [] A__ = 0 A__ = 0 def UpperCAmelCase_ ( self :List[str] )-> bool: return self.head == self.tail def UpperCAmelCase_ ( self :Union[str, Any] , lowercase_ :Any )-> None: self.data.append(UpperCAmelCase_ ) A__ = self.tail + 1 def UpperCAmelCase_ ( self :Optional[int] )-> Any: A__ = self.data[self.head] A__ = self.head + 1 return ret def UpperCAmelCase_ ( self :int )-> int: return self.tail - self.head def UpperCAmelCase_ ( self :str )-> None: print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class UpperCAmelCase : def __init__( self :Tuple , lowercase_ :Any )-> None: A__ = data A__ = None A__ = None A__ = 1 def UpperCAmelCase_ ( self :List[str] )-> Any: return self.data def UpperCAmelCase_ ( self :Tuple )-> MyNode | None: return self.left def UpperCAmelCase_ ( self :List[Any] )-> MyNode | None: return self.right def UpperCAmelCase_ ( self :Union[str, Any] )-> int: return self.height def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Any )-> None: A__ = data def UpperCAmelCase_ ( self :Tuple , lowercase_ :MyNode | None )-> None: A__ = node def UpperCAmelCase_ ( self :str , lowercase_ :MyNode | None )-> None: A__ = node def UpperCAmelCase_ ( self :Dict , lowercase_ :int )-> None: A__ = height def UpperCamelCase ( _lowerCamelCase : int ): if node is None: return 0 return node.get_height() def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple ): if a > b: return a return b def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): print("left rotation node:" , node.get_data() ) A__ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): print("right rotation node:" , node.get_data() ) A__ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCamelCase ( _lowerCamelCase : List[Any] ): A__ = node.get_left() assert left_child is not None node.set_left(left_rotation(_SCREAMING_SNAKE_CASE ) ) return right_rotation(_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( _lowerCamelCase : Any ): A__ = node.get_right() assert right_child is not None node.set_right(right_rotation(_SCREAMING_SNAKE_CASE ) ) return left_rotation(_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ): if node is None: return MyNode(_SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A__ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A__ = right_rotation(_SCREAMING_SNAKE_CASE ) else: A__ = lr_rotation(_SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , _SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A__ = node.get_right() assert right_child is not None if data < right_child.get_data(): A__ = rl_rotation(_SCREAMING_SNAKE_CASE ) else: A__ = left_rotation(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) return node def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): while True: A__ = root.get_right() if right_child is None: break A__ = right_child return root.get_data() def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): while True: A__ = root.get_left() if left_child is None: break A__ = left_child return root.get_data() def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): A__ = root.get_left() A__ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A__ = get_left_most(_SCREAMING_SNAKE_CASE ) root.set_data(_SCREAMING_SNAKE_CASE ) root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) elif left_child is not None: A__ = left_child elif right_child is not None: A__ = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A__ = left_rotation(_SCREAMING_SNAKE_CASE ) else: A__ = rl_rotation(_SCREAMING_SNAKE_CASE ) elif get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A__ = right_rotation(_SCREAMING_SNAKE_CASE ) else: A__ = lr_rotation(_SCREAMING_SNAKE_CASE ) A__ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_SCREAMING_SNAKE_CASE ) return root class UpperCAmelCase : def __init__( self :Dict )-> None: A__ = None def UpperCAmelCase_ ( self :List[str] )-> int: return get_height(self.root ) def UpperCAmelCase_ ( self :str , lowercase_ :Any )-> None: print("insert:" + str(UpperCAmelCase_ ) ) A__ = insert_node(self.root , UpperCAmelCase_ ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Any )-> None: print("delete:" + str(UpperCAmelCase_ ) ) if self.root is None: print("Tree is empty!" ) return A__ = del_node(self.root , UpperCAmelCase_ ) def __str__( self :Dict , )-> str: # a level traversale, gives a more intuitive look on the tree A__ = "" A__ = MyQueue() q.push(self.root ) A__ = self.get_height() if layer == 0: return output A__ = 0 while not q.is_empty(): A__ = q.pop() A__ = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCAmelCase_ ) q.push(UpperCAmelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A__ = cnt + 1 for i in range(1_00 ): if cnt == math.pow(2 , UpperCAmelCase_ ) - 1: A__ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCamelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCAmelCase : Any =AVLtree() __lowerCAmelCase : Any =list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
237
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> bool: if num < 0: return False snake_case_ = num snake_case_ = 0 while num > 0: snake_case_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
347
0
'''simple docstring''' import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py A_ = 'src/diffusers' # Matches is_xxx_available() A_ = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla A_ = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") A_ = '\n{0} = None\n' A_ = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' A_ = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Tuple = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def A_ ( ): with open(os.path.join(_SCREAMING_SNAKE_CASE , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.readlines() # Get to the point we do the actual imports for type checking SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE:str = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block SCREAMING_SNAKE_CASE:Union[str, Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: SCREAMING_SNAKE_CASE:Union[str, Any] = lines[line_index] SCREAMING_SNAKE_CASE:Optional[Any] = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: SCREAMING_SNAKE_CASE:Optional[Any] = objects else: line_index += 1 return backend_specific_objects def A_ ( snake_case , snake_case ): if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A_ ( snake_case=None ): if backend_specific_objects is None: SCREAMING_SNAKE_CASE:str = read_init() # For special correspondence backend to module name as used in the function requires_modulename SCREAMING_SNAKE_CASE:Tuple = {} for backend, objects in backend_specific_objects.items(): SCREAMING_SNAKE_CASE:Optional[int] = "[" + ", ".join(F'''\"{b}\"''' for b in backend.split("_and_" ) ) + "]" SCREAMING_SNAKE_CASE:Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) SCREAMING_SNAKE_CASE:Dict = dummy_file return dummy_files def A_ ( snake_case=False ): SCREAMING_SNAKE_CASE:Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py SCREAMING_SNAKE_CASE:Dict = {"torch": "pt"} # Locate actual dummy modules and read their content. SCREAMING_SNAKE_CASE:Dict = os.path.join(_SCREAMING_SNAKE_CASE , "utils" ) SCREAMING_SNAKE_CASE:Union[str, Any] = { backend: os.path.join(_SCREAMING_SNAKE_CASE , F'''dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py''' ) for backend in dummy_files.keys() } SCREAMING_SNAKE_CASE:str = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE:List[Any] = f.read() else: SCREAMING_SNAKE_CASE:List[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") A_ = parser.parse_args() check_dummies(args.fix_and_overwrite)
139
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Tuple = SpeechTaTokenizer __lowercase: int = False __lowercase: List[str] = True def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing snake_case_ = SpeechTaTokenizer(UpperCAmelCase_ ) snake_case_ = AddedToken("""<mask>""" , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) snake_case_ = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = """this is a test""" snake_case_ = """this is a test""" return input_text, output_text def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=20 , UpperCAmelCase_ : Dict=5 ) ->List[Any]: """simple docstring""" snake_case_ , snake_case_ = self.get_input_output_texts(UpperCAmelCase_ ) snake_case_ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCAmelCase_ ) , 81 ) def lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) snake_case_ = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] snake_case_ = tokenizer.add_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) snake_case_ = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} snake_case_ = tokenizer.add_special_tokens(UpperCAmelCase_ ) snake_case_ = tokenizer.vocab_size snake_case_ = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_ , 0 ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_ , all_size_a + len(UpperCAmelCase_ ) ) snake_case_ = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) ->List[str]: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) snake_case_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) snake_case_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # fmt: off self.assertListEqual(UpperCAmelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on snake_case_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off snake_case_ = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCAmelCase_ , )
347
0
class __A: def __init__( self ) -> Tuple: '''simple docstring''' __a = 0 __a = 0 __a = {} def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]: '''simple docstring''' if vertex not in self.adjacency: __a = {} self.num_vertices += 1 def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.add_vertex(UpperCAmelCase_ ) self.add_vertex(UpperCAmelCase_ ) if head == tail: return __a = weight __a = weight def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.get_edges() for edge in edges: __a , __a , __a = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCAmelCase_ ) ): __a = list(edges[i] ) edges.sort(key=lambda _snake_case : e[2] ) for i in range(len(UpperCAmelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __a = edges[i][2] + 1 for edge in edges: __a , __a , __a = edge __a = weight __a = weight def __str__( self ) -> str: '''simple docstring''' __a = '''''' for tail in self.adjacency: for head in self.adjacency[tail]: __a = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip('''\n''' ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' return self.adjacency.keys() @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case=None , _snake_case=None ) -> List[str]: '''simple docstring''' __a = Graph() if vertices is None: __a = [] if edges is None: __a = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_ ) for edge in edges: g.add_edge(*UpperCAmelCase_ ) return g class __A: def __init__( self ) -> Dict: '''simple docstring''' __a = {} __a = {} def __len__( self ) -> Any: '''simple docstring''' return len(self.parent ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' if item in self.parent: return self.find(UpperCAmelCase_ ) __a = item __a = 0 return item def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Tuple: '''simple docstring''' if item not in self.parent: return self.make_set(UpperCAmelCase_ ) if item != self.parent[item]: __a = self.find(self.parent[item] ) return self.parent[item] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> Any: '''simple docstring''' __a = self.find(UpperCAmelCase_ ) __a = self.find(UpperCAmelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __a = roota return roota if self.rank[roota] < self.rank[roota]: __a = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __a = roota return roota return None @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case ) -> List[str]: '''simple docstring''' __a = graph.num_vertices __a = Graph.UnionFind() __a = [] while num_components > 1: __a = {} for vertex in graph.get_vertices(): __a = -1 __a = graph.get_edges() for edge in edges: __a , __a , __a = edge edges.remove((tail, head, weight) ) for edge in edges: __a , __a , __a = edge __a = union_find.find(UpperCAmelCase_ ) __a = union_find.find(UpperCAmelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __a = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __a , __a , __a = cheap_edge[vertex] if union_find.find(UpperCAmelCase_ ) != union_find.find(UpperCAmelCase_ ): union_find.union(UpperCAmelCase_ , UpperCAmelCase_ ) mst_edges.append(cheap_edge[vertex] ) __a = num_components - 1 __a = Graph.build(edges=UpperCAmelCase_ ) return mst
6
"""simple docstring""" import datasets __SCREAMING_SNAKE_CASE : Tuple = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' __SCREAMING_SNAKE_CASE : Dict = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' __SCREAMING_SNAKE_CASE : List[str] = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __A (datasets.Metric): '''simple docstring''' def lowerCAmelCase ( self : str ) ->Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) ->int: """simple docstring""" return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )}
347
0
"""simple docstring""" def lowercase ( _snake_case : Tuple ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_SCREAMING_SNAKE_CASE ) __snake_case : int = sum(_SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Dict = True for i in range(1 , s + 1 ): __snake_case : Tuple = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : List[Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : Any = s - 2 * j break return diff
102
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
0
'''simple docstring''' from __future__ import annotations a : List[str] = '#' class UpperCamelCase_ : def __init__( self ) -> None: UpperCAmelCase : Tuple = {} def _lowercase( self , A ) -> None: UpperCAmelCase : Tuple = self._trie for char in text: if char not in trie: UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = trie[char] UpperCAmelCase : Tuple = True def _lowercase( self , A ) -> tuple | list: UpperCAmelCase : List[Any] = self._trie for char in prefix: if char in trie: UpperCAmelCase : Union[str, Any] = trie[char] else: return [] return self._elements(UpperCAmelCase_ ) def _lowercase( self , A ) -> tuple: UpperCAmelCase : int = [] for c, v in d.items(): UpperCAmelCase : Any = [""" """] if c == END else [(c + s) for s in self._elements(UpperCAmelCase_ )] result.extend(UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) a : Dict = Trie() a : Dict = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def __lowerCamelCase ( _lowercase ) -> tuple: UpperCAmelCase : int = trie.find_word(_SCREAMING_SNAKE_CASE ) return tuple(string + word for word in suffixes ) def __lowerCamelCase ( ) -> None: print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
265
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
347
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger() def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : str = True ) -> Dict: print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCamelCase : int = timm.create_model('levit_128s' , pretrained=_SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[int] = timm.create_model('levit_128' , pretrained=_SCREAMING_SNAKE_CASE ) if hidden_sizes == 192: UpperCamelCase : List[str] = timm.create_model('levit_192' , pretrained=_SCREAMING_SNAKE_CASE ) if hidden_sizes == 256: UpperCamelCase : Optional[int] = timm.create_model('levit_256' , pretrained=_SCREAMING_SNAKE_CASE ) if hidden_sizes == 384: UpperCamelCase : str = timm.create_model('levit_384' , pretrained=_SCREAMING_SNAKE_CASE ) from_model.eval() UpperCamelCase : List[Any] = LevitForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ).eval() UpperCamelCase : Any = OrderedDict() UpperCamelCase : str = from_model.state_dict() UpperCamelCase : Optional[int] = list(from_model.state_dict().keys() ) UpperCamelCase : Optional[int] = list(our_model.state_dict().keys() ) print(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase : List[Any] = weights[og_keys[i]] our_model.load_state_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = torch.randn((2, 3, 224, 224) ) UpperCamelCase : int = from_model(_SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = our_model(_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." UpperCamelCase : Optional[int] = name print(_SCREAMING_SNAKE_CASE ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase : Optional[int] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Optional[int] = None , snake_case__ : str = True ) -> Optional[int]: UpperCamelCase : Tuple = 'imagenet-1k-id2label.json' UpperCamelCase : Any = 1000 UpperCamelCase : Optional[int] = (1, num_labels) UpperCamelCase : Any = 'huggingface/label-files' UpperCamelCase : str = num_labels UpperCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Optional[int] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCamelCase : List[str] = idalabel UpperCamelCase : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase : int = partial(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE ) UpperCamelCase : str = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } UpperCamelCase : Union[str, Any] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , _SCREAMING_SNAKE_CASE , names_to_config[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, expected_shape if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
119
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: snake_case_ = """""" else: snake_case_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ = dct.pop(_SCREAMING_SNAKE_CASE ) snake_case_ = val def _a ( ) -> Any: snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = ViTConfig() snake_case_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case_ = True snake_case_ = int(vit_name[-12:-10] ) snake_case_ = int(vit_name[-9:-6] ) else: snake_case_ = 1_000 snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = int(vit_name[-6:-4] ) snake_case_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): snake_case_ = 192 snake_case_ = 768 snake_case_ = 12 snake_case_ = 3 elif vit_name[9:].startswith("""small""" ): snake_case_ = 384 snake_case_ = 1_536 snake_case_ = 12 snake_case_ = 6 else: pass else: if vit_name[4:].startswith("""small""" ): snake_case_ = 768 snake_case_ = 2_304 snake_case_ = 8 snake_case_ = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): snake_case_ = 1_024 snake_case_ = 4_096 snake_case_ = 24 snake_case_ = 16 elif vit_name[4:].startswith("""huge""" ): snake_case_ = 1_280 snake_case_ = 5_120 snake_case_ = 32 snake_case_ = 16 # load original model from timm snake_case_ = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = timm_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) snake_case_ = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ = ViTModel(_SCREAMING_SNAKE_CASE ).eval() else: snake_case_ = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case_ = DeiTImageProcessor(size=config.image_size ) else: snake_case_ = ViTImageProcessor(size=config.image_size ) snake_case_ = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case_ = encoding["""pixel_values"""] snake_case_ = model(_SCREAMING_SNAKE_CASE ) if base_model: snake_case_ = timm_model.forward_features(_SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: snake_case_ = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
347
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a__ : int = sys.version_info >= (3, 1_0) def _lowercase ( __A=None ,__A=None ): '''simple docstring''' return field(default_factory=lambda: default ,metadata=_SCREAMING_SNAKE_CASE ) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 4_2 __SCREAMING_SNAKE_CASE = field(default='''toto''' , metadata={'''help''': '''help message'''}) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None class UpperCAmelCase__ ( snake_case__): __SCREAMING_SNAKE_CASE = """titi""" __SCREAMING_SNAKE_CASE = """toto""" class UpperCAmelCase__ ( snake_case__): __SCREAMING_SNAKE_CASE = """titi""" __SCREAMING_SNAKE_CASE = """toto""" __SCREAMING_SNAKE_CASE = 4_2 @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = "toto" def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = BasicEnum(self.foo ) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = "toto" def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default=snake_case__ , metadata={'''help''': '''help message'''}) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = list_field(default=[]) __SCREAMING_SNAKE_CASE = list_field(default=[]) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = list_field(default=[]) __SCREAMING_SNAKE_CASE = list_field(default=[1, 2, 3]) __SCREAMING_SNAKE_CASE = list_field(default=['''Hallo''', '''Bonjour''', '''Hello''']) __SCREAMING_SNAKE_CASE = list_field(default=[0.1, 0.2, 0.3]) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = field() def __lowerCamelCase ( self ) -> str: __UpperCamelCase = BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = field() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default='''toto''' , metadata={'''help''': '''help message'''}) __SCREAMING_SNAKE_CASE = list_field(default=['''Hallo''', '''Bonjour''', '''Hello''']) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = field(default=snake_case__ , metadata={'''help''': '''help message'''}) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = list_field(default=[]) __SCREAMING_SNAKE_CASE = list_field(default=[]) class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[int]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCamelCase = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} __UpperCamelCase = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , UpperCAmelCase_ ) and yy.get("""choices""" , UpperCAmelCase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](UpperCAmelCase_ ) , yy["""type"""](UpperCAmelCase_ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--bar""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--flag""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((__UpperCamelCase ) , ) = parser.parse_args_into_dataclasses(UpperCAmelCase_ , look_for_args_file=UpperCAmelCase_ ) self.assertFalse(example.flag ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=4_2 , type=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=UpperCAmelCase_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) __UpperCamelCase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) __UpperCamelCase = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) __UpperCamelCase = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) __UpperCamelCase = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) __UpperCamelCase = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 4_2] , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __UpperCamelCase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCamelCase = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __UpperCamelCase = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCamelCase = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) __UpperCamelCase = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __lowerCamelCase ( self ) -> str: @dataclass class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = "toto" __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 4_2) , type=make_choice_type_function(["""titi""", """toto""", 4_2] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __UpperCamelCase = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __UpperCamelCase = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 4_2 ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_args([] ) self.assertEqual( UpperCAmelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCamelCase = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--bar""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--baz""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) __UpperCamelCase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , bar=UpperCAmelCase_ , baz=UpperCAmelCase_ , ces=[] , des=[] ) ) __UpperCamelCase = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=1_2 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--required_str""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } __UpperCamelCase = parser.parse_dict(UpperCAmelCase_ )[0] __UpperCamelCase = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 4_2, } self.assertRaises(UpperCAmelCase_ , parser.parse_dict , UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(UpperCAmelCase_ , """temp_json""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __UpperCamelCase = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) __UpperCamelCase = { """foo""": 1_2, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase = os.path.join(UpperCAmelCase_ , """temp_yaml""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCamelCase = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __UpperCamelCase = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = HfArgumentParser(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
349
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __A (unittest.TestCase): '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=13 , UpperCAmelCase_ : List[Any]=7 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : Tuple=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=4 , ) ->Tuple: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_attention_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_choices def lowerCAmelCase ( self : Optional[int] ) ->str: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_attention_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self : List[str] ) ->Dict: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Union[str, Any] = True __lowercase: int = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = FlaxRoFormerModelTester(self ) @slow def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=UpperCAmelCase_ ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ ) @require_flax class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" snake_case_ = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(UpperCAmelCase_ )[0] snake_case_ = 50_000 snake_case_ = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = jnp.array( [[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
347
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=19 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Optional[Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCAmelCase_ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = EsmForProteinFolding(config=UpperCAmelCase_ ).float() model.to(UpperCAmelCase_ ) model.eval() A_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) A_ = model(UpperCAmelCase_ ) A_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( snake_case__ , snake_case__ , unittest.TestCase ): lowercase = False lowercase = (EsmForProteinFolding,) if is_torch_available() else () lowercase = () lowercase = {} if is_torch_available() else {} lowercase = False def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = EsmFoldModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip("""Does not support attention outputs""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @require_torch class A__ ( snake_case__ ): @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() A_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A_ = model(UpperCAmelCase_ )["""positions"""] A_ = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCAmelCase_ , atol=1e-4 ) )
162
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern snake_case_ , snake_case_ = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ = failure[j - 1] continue i += 1 return False def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0] snake_case_ = 0 snake_case_ = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : int = 'ABABX' __SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : Any = 'AAAB' __SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy' __SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Any = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
347
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ = """ylacombe/bark-small""" lowercase__ = tempfile.mkdtemp() lowercase__ = """en_speaker_1""" lowercase__ = """This is a test string""" lowercase__ = """speaker_embeddings_path.json""" lowercase__ = """speaker_embeddings""" def lowerCamelCase__ (self : List[str] , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ (self : List[Any] ) -> Dict: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) lowercase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" lowercase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__ = 35 lowercase__ = 2 lowercase__ = 8 lowercase__ = { """semantic_prompt""": np.ones(UpperCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) lowercase__ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) lowercase__ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase__ (self : Tuple ) -> Dict: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = BarkProcessor(tokenizer=UpperCAmelCase_ ) lowercase__ = processor(text=self.input_string ) lowercase__ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
305
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __A (snake_case__): '''simple docstring''' @slow @require_torch def lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" snake_case_ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) snake_case_ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case_ = bertabert.config.encoder.vocab_size snake_case_ = tokenizer.sep_token_id snake_case_ = tokenizer.cls_token_id snake_case_ = 128 snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) snake_case_ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) snake_case_ = train_dataset.select(range(32 ) ) snake_case_ = val_dataset.select(range(16 ) ) snake_case_ = 4 def _map_to_encoder_decoder_inputs(UpperCAmelCase_ : int ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case_ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=512 ) snake_case_ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=UpperCAmelCase_ , max_length=128 ) snake_case_ = inputs.input_ids snake_case_ = inputs.attention_mask snake_case_ = outputs.input_ids snake_case_ = outputs.input_ids.copy() snake_case_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] snake_case_ = outputs.attention_mask assert all(len(UpperCAmelCase_ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCAmelCase_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCAmelCase_ : Union[str, Any] ): snake_case_ = pred.label_ids snake_case_ = pred.predictions # all unnecessary tokens are removed snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCAmelCase_ ) )] ) / len(UpperCAmelCase_ ) return {"accuracy": accuracy} # map train dataset snake_case_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset snake_case_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) snake_case_ = self.get_auto_remove_tmp_dir() snake_case_ = SeqaSeqTrainingArguments( output_dir=UpperCAmelCase_ , per_device_train_batch_size=UpperCAmelCase_ , per_device_eval_batch_size=UpperCAmelCase_ , predict_with_generate=UpperCAmelCase_ , evaluation_strategy="""steps""" , do_train=UpperCAmelCase_ , do_eval=UpperCAmelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case_ = SeqaSeqTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , ) # start training trainer.train()
347
0
import argparse from collections import defaultdict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: __UpperCamelCase =f.readlines() __UpperCamelCase =F'class {class_name}(' __UpperCamelCase =F'{4 * " "}def {test_name}(' __UpperCamelCase =F'{8 * " "}{correct_line.split()[0]}' __UpperCamelCase =F'{16 * " "}{correct_line.split()[0]}' __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =[] for line in lines: if line.startswith(_SCREAMING_SNAKE_CASE ): __UpperCamelCase =True elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ): __UpperCamelCase =True elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )): __UpperCamelCase =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __UpperCamelCase =True if in_class and in_func and in_line: if ")" not in line: continue else: __UpperCamelCase =True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) __UpperCamelCase =__UpperCamelCase =__UpperCamelCase =__UpperCamelCase =False else: new_lines.append(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: for line in new_lines: f.write(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ): if fail is not None: with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: __UpperCamelCase ={l.strip() for l in f.readlines()} else: __UpperCamelCase =None with open(_SCREAMING_SNAKE_CASE , 'r' ) as f: __UpperCamelCase =f.readlines() __UpperCamelCase =defaultdict(_SCREAMING_SNAKE_CASE ) for line in correct_lines: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) _A = parser.parse_args() main(args.correct_filename, args.fail_filename)
62
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __SCREAMING_SNAKE_CASE : Any = '|'.join(sys.argv[1:]) __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") __SCREAMING_SNAKE_CASE : List[str] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
347
0
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __lowerCamelCase ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __SCREAMING_SNAKE_CASE : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _a ( _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ = {} with open(_SCREAMING_SNAKE_CASE , """r""" ) as file: for line_number, line in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = line.strip() if line: snake_case_ = line.split() snake_case_ = line_number snake_case_ = words[0] snake_case_ = value return result def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for attribute in key.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": snake_case_ = hf_pointer for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = shape_pointer.shape # let's reduce dimension snake_case_ = value[0] else: snake_case_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = value else: snake_case_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ = PARAM_MAPPING[full_name.split(""".""" )[-1]] snake_case_ = """param""" if weight_type is not None and weight_type != "param": snake_case_ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case_ = """.""".join([key, hf_param_name] ) else: snake_case_ = key snake_case_ = value if """lm_head""" in full_key else value[0] __SCREAMING_SNAKE_CASE : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[str]: snake_case_ = False for key, mapped_key in MAPPING.items(): snake_case_ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(_SCREAMING_SNAKE_CASE )[0].split(""".""" )[-2] snake_case_ = mapped_key.replace("""*""" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: snake_case_ = """weight_g""" elif "weight_v" in name: snake_case_ = """weight_v""" elif "bias" in name: snake_case_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = """weight""" else: snake_case_ = None if hf_dict is not None: rename_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return is_used return is_used def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ = True else: snake_case_ = load_wavaveca_layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = full_name.split("""conv_layers.""" )[-1] snake_case_ = name.split(""".""" ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> int: if config_path is not None: snake_case_ = WavaVecaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaConfig() if is_seq_class: snake_case_ = read_txt_into_dict(_SCREAMING_SNAKE_CASE ) snake_case_ = idalabel snake_case_ = WavaVecaForSequenceClassification(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: snake_case_ = Dictionary.load(_SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case_ = target_dict.pad_index snake_case_ = target_dict.bos_index snake_case_ = target_dict.eos_index snake_case_ = len(target_dict.symbols ) snake_case_ = os.path.join(_SCREAMING_SNAKE_CASE , """vocab.json""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) snake_case_ = target_dict.indices # fairseq has the <pad> and <s> switched snake_case_ = 0 snake_case_ = 1 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaCTCTokenizer( _SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_SCREAMING_SNAKE_CASE , ) snake_case_ = True if config.feat_extract_norm == """layer""" else False snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , ) snake_case_ = WavaVecaProcessor(feature_extractor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = WavaVecaForCTC(_SCREAMING_SNAKE_CASE ) else: snake_case_ = WavaVecaForPreTraining(_SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case_ = argparse.Namespace(task="""audio_pretraining""" ) snake_case_ = fairseq.tasks.setup_task(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ , snake_case_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_SCREAMING_SNAKE_CASE ) snake_case_ = model[0].eval() recursively_load_weights(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
347
0
'''simple docstring''' __lowerCAmelCase : List[Any] =range(2, 20 + 1) __lowerCAmelCase : Optional[Any] =[10**k for k in range(ks[-1] + 1)] __lowerCAmelCase : dict[int, dict[int, list[list[int]]]] ={} def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): A__ = sum(a_i[j] for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ) A__ = sum(a_i[j] * base[j] for j in range(min(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) ) A__, A__ = 0, 0 A__ = n - i A__ = memo.get(_SCREAMING_SNAKE_CASE ) if sub_memo is not None: A__ = sub_memo.get(_SCREAMING_SNAKE_CASE ) if jumps is not None and len(_SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over A__ = -1 for _k in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ = _k break if max_jump >= 0: A__, A__, A__ = jumps[max_jump] # since the difference between jumps is cached, add c A__ = diff + c for j in range(min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): A__, A__ = divmod(_SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: A__ = [] else: A__ = {c: []} A__ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__, A__ = next_term(_SCREAMING_SNAKE_CASE , k - 1 , i + dn , _SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__, A__ = compute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + dn , _SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped A__ = sub_memo[c] # keep jumps sorted by # of terms skipped A__ = 0 while j < len(_SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): if i >= n: return 0, i if k > len(_SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(_SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ = i A__, A__, A__ = 0, 0, 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ = ds_c + ds_b diff += addend A__ = 0 for j in range(_SCREAMING_SNAKE_CASE ): A__ = a_i[j] + addend A__, A__ = divmod(_SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return diff, i - start_i def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Any ): for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): A__ = digits[j] + addend if s >= 10: A__, A__ = divmod(_SCREAMING_SNAKE_CASE , 10 ) A__ = addend // 10 + quotient else: A__ = s A__ = addend // 10 if addend == 0: break while addend > 0: A__, A__ = divmod(_SCREAMING_SNAKE_CASE , 10 ) digits.append(_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( _lowerCamelCase : int = 10**15 ): A__ = [1] A__ = 1 A__ = 0 while True: A__, A__ = next_term(_SCREAMING_SNAKE_CASE , 20 , i + dn , _SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break A__ = 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
237
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Tuple=0.02 , ) ->List[str]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) snake_case_ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) snake_case_ = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
347
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def A_ ( snake_case ): return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) class _snake_case : def __init__( self : List[Any] ,*, SCREAMING_SNAKE_CASE__ : float = np.inf ,SCREAMING_SNAKE_CASE__ : str = "linear" ,SCREAMING_SNAKE_CASE__ : float = 0.0 ,): SCREAMING_SNAKE_CASE:Any = regularization SCREAMING_SNAKE_CASE:Union[str, Any] = gamma if kernel == "linear": SCREAMING_SNAKE_CASE:Union[str, Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma ,(float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) SCREAMING_SNAKE_CASE:Dict = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: SCREAMING_SNAKE_CASE:str = F'''Unknown kernel: {kernel}''' raise ValueError(UpperCAmelCase_ ) def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : ndarray ,SCREAMING_SNAKE_CASE__ : ndarray ): return np.dot(UpperCAmelCase_ ,UpperCAmelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : ndarray ,SCREAMING_SNAKE_CASE__ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __UpperCamelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : list[ndarray] ,SCREAMING_SNAKE_CASE__ : ndarray ): SCREAMING_SNAKE_CASE:List[Any] = observations SCREAMING_SNAKE_CASE:Dict = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((SCREAMING_SNAKE_CASE ) , ):List[Any] = np.shape(UpperCAmelCase_ ) def to_minimize(SCREAMING_SNAKE_CASE__ : ndarray ) -> float: SCREAMING_SNAKE_CASE:List[Any] = 0 ((SCREAMING_SNAKE_CASE ) , ):Union[str, Any] = np.shape(UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] ,observations[j] ) ) return 1 / 2 * s - sum(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE:List[Any] = LinearConstraint(UpperCAmelCase_ ,0 ,0 ) SCREAMING_SNAKE_CASE:Dict = Bounds(0 ,self.regularization ) SCREAMING_SNAKE_CASE:str = minimize( UpperCAmelCase_ ,np.ones(UpperCAmelCase_ ) ,bounds=UpperCAmelCase_ ,constraints=[ly_contraint] ).x SCREAMING_SNAKE_CASE:Optional[Any] = l_star # calculating mean offset of separation plane to points SCREAMING_SNAKE_CASE:Optional[int] = 0 for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] ,observations[j] ) SCREAMING_SNAKE_CASE:Tuple = s / n def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : ndarray ): SCREAMING_SNAKE_CASE:int = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] ,UpperCAmelCase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
139
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' __lowercase: int = """upernet""" def __init__( self : str , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Tuple=0.4 , UpperCAmelCase_ : Tuple=384 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : Dict , ) ->Union[str, Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = backbone_config.get("""model_type""" ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(UpperCAmelCase_ ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
347
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A: def __init__( self , _snake_case , _snake_case=14 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=4 , _snake_case=4 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=0.02 , ) -> List[str]: '''simple docstring''' __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_input_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = rotary_dim __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = None __a = vocab_size - 1 __a = vocab_size - 1 __a = vocab_size - 1 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Tuple: '''simple docstring''' __a = 20 __a = model_class_name(UpperCAmelCase_ ) __a = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) __a = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __a = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __a = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) __a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) __a = model(UpperCAmelCase_ ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> Dict: '''simple docstring''' __a = 20 __a = model_class_name(UpperCAmelCase_ ) __a = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __a = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) __a = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __a = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) __a = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) __a = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A( snake_case__ , snake_case__ , unittest.TestCase ): snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: __a , __a , __a = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: __a , __a , __a = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) __a = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) __a = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) __a = False __a = model.config.eos_token_id __a = jax.jit(model.generate ) __a = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences __a = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) __a = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __a = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) __a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __a = model_class.__name__[4:] # Skip the "Flax" at the beginning __a = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) __a , __a = pt_inputs['''input_ids'''].shape __a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): __a = 0 __a = 1 __a = 0 __a = 1 __a = pt_model_class(UpperCAmelCase_ ).eval() __a = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) __a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) __a = fx_state with torch.no_grad(): __a = pt_model(**UpperCAmelCase_ ).to_tuple() __a = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) __a = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) __a = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __a = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) __a = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __a = model_class.__name__[4:] # Skip the "Flax" at the beginning __a = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) __a = pt_model_class(UpperCAmelCase_ ).eval() __a = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) __a = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) __a , __a = pt_inputs['''input_ids'''].shape __a = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): __a = 0 __a = 1 __a = 0 __a = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __a = pt_model(**UpperCAmelCase_ ).to_tuple() __a = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) __a = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): __a = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
6
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = """ylacombe/bark-small""" snake_case_ = tempfile.mkdtemp() snake_case_ = """en_speaker_1""" snake_case_ = """This is a test string""" snake_case_ = """speaker_embeddings_path.json""" snake_case_ = """speaker_embeddings""" def lowerCAmelCase ( self : List[str] , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) snake_case_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" snake_case_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) snake_case_ = 35 snake_case_ = 2 snake_case_ = 8 snake_case_ = { """semantic_prompt""": np.ones(UpperCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case_ = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) snake_case_ = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = BarkProcessor(tokenizer=UpperCAmelCase_ ) snake_case_ = processor(text=self.input_string ) snake_case_ = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
347
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCAmelCase ( snake_case__ ): '''simple docstring''' lowerCamelCase__ ="""roformer""" def __init__(self , a_=5_00_00 , a_=None , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=15_36 , a_=2 , a_=0.02 , a_=1E-12 , a_=0 , a_=False , a_=True , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) __snake_case : Optional[int] = vocab_size __snake_case : List[Any] = hidden_size if embedding_size is None else embedding_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Dict = hidden_act __snake_case : Tuple = intermediate_size __snake_case : List[Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Optional[Any] = rotary_value __snake_case : List[Any] = use_cache class _UpperCAmelCase ( snake_case__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.task == "multiple-choice": __snake_case : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __snake_case : Optional[int] = {0: '''batch''', 1: '''sequence'''} __snake_case : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
102
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __SCREAMING_SNAKE_CASE : int = sys.version_info >= (3, 10) def _a ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: return field(default_factory=lambda: default , metadata=_SCREAMING_SNAKE_CASE ) @dataclass class __A : '''simple docstring''' __lowercase: int __lowercase: float __lowercase: str __lowercase: bool @dataclass class __A : '''simple docstring''' __lowercase: int = 42 __lowercase: str = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class __A : '''simple docstring''' __lowercase: bool = False __lowercase: bool = True __lowercase: Optional[bool] = None class __A (snake_case__): '''simple docstring''' __lowercase: str = """titi""" __lowercase: Any = """toto""" class __A (snake_case__): '''simple docstring''' __lowercase: int = """titi""" __lowercase: Optional[Any] = """toto""" __lowercase: List[Any] = 42 @dataclass class __A : '''simple docstring''' __lowercase: BasicEnum = "toto" def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" snake_case_ = BasicEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowercase: MixedTypeEnum = "toto" def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = MixedTypeEnum(self.foo ) @dataclass class __A : '''simple docstring''' __lowercase: Optional[int] = None __lowercase: Optional[float] = field(default=snake_case__ , metadata={"""help""": """help message"""}) __lowercase: Optional[str] = None __lowercase: Optional[List[str]] = list_field(default=[]) __lowercase: Optional[List[int]] = list_field(default=[]) @dataclass class __A : '''simple docstring''' __lowercase: List[int] = list_field(default=[]) __lowercase: List[int] = list_field(default=[1, 2, 3]) __lowercase: List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) __lowercase: List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __A : '''simple docstring''' __lowercase: List[int] = field() __lowercase: str = field() __lowercase: BasicEnum = field() def lowerCAmelCase ( self : Any ) ->str: """simple docstring""" snake_case_ = BasicEnum(self.required_enum ) @dataclass class __A : '''simple docstring''' __lowercase: int __lowercase: "BasicEnum" = field() __lowercase: "Optional[bool]" = None __lowercase: "str" = field(default="""toto""" , metadata={"""help""": """help message"""}) __lowercase: "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class __A : '''simple docstring''' __lowercase: bool = False __lowercase: bool = True __lowercase: bool | None = None @dataclass class __A : '''simple docstring''' __lowercase: int | None = None __lowercase: float | None = field(default=snake_case__ , metadata={"""help""": """help message"""}) __lowercase: str | None = None __lowercase: list[str] | None = list_field(default=[]) __lowercase: list[int] | None = list_field(default=[]) class __A (unittest.TestCase): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : argparse.ArgumentParser , UpperCAmelCase_ : argparse.ArgumentParser ) ->Optional[int]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} snake_case_ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , UpperCAmelCase_ ) and yy.get("""choices""" , UpperCAmelCase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](UpperCAmelCase_ ) , yy["""type"""](UpperCAmelCase_ ) ) del xx["type"], yy["type"] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : int ) ->Any: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--bar""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--flag""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((snake_case_) , ) = parser.parse_args_into_dataclasses(UpperCAmelCase_ , look_for_args_file=UpperCAmelCase_ ) self.assertFalse(example.flag ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) expected.add_argument("""--baz""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , const=UpperCAmelCase_ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=UpperCAmelCase_ , dest="""baz""" ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) snake_case_ = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , baz=UpperCAmelCase_ , opt=UpperCAmelCase_ ) ) def lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) snake_case_ = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" @dataclass class __A : '''simple docstring''' __lowercase: Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual( UpperCAmelCase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--bar""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--baz""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=UpperCAmelCase_ ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(UpperCAmelCase_ ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_args([] ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=UpperCAmelCase_ , bar=UpperCAmelCase_ , baz=UpperCAmelCase_ , ces=[] , des=[] ) ) snake_case_ = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(UpperCAmelCase_ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument("""--required_str""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=UpperCAmelCase_ , required=UpperCAmelCase_ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=UpperCAmelCase_ , ) expected.add_argument("""--opt""" , type=UpperCAmelCase_ , default=UpperCAmelCase_ ) expected.add_argument("""--baz""" , default="""toto""" , type=UpperCAmelCase_ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=UpperCAmelCase_ ) self.argparsersEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case_ = parser.parse_dict(UpperCAmelCase_ )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(UpperCAmelCase_ , parser.parse_dict , UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) def lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(UpperCAmelCase_ , """temp_json""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) snake_case_ = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(UpperCAmelCase_ , """temp_yaml""" ) os.mkdir(UpperCAmelCase_ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case_ = BasicExample(**UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict ) ->Any: """simple docstring""" snake_case_ = HfArgumentParser(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ )
347
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase_ ( tf.keras.layers.Layer ): def __init__( self , A , A , A = None , A = None ) -> Union[str, Any]: super().__init__() UpperCAmelCase : Union[str, Any] = pad_token_id UpperCAmelCase : Optional[Any] = max_length UpperCAmelCase : str = vocab UpperCAmelCase : Optional[int] = merges UpperCAmelCase : Optional[Any] = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ ) @classmethod def _lowercase( cls , A , *A , **A ) -> List[Any]: UpperCAmelCase : List[Any] = [""" """.join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase : str = tokenizer.get_vocab() return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _lowercase( cls , A , *A , **A ) -> Any: UpperCAmelCase : List[Any] = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _lowercase( cls , A ) -> str: return cls(**UpperCAmelCase_ ) def _lowercase( self ) -> Dict: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _lowercase( self , A , A = None ) -> Tuple: UpperCAmelCase : Optional[int] = self.tf_tokenizer(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = tf.ones_like(UpperCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase : int = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase , UpperCAmelCase : Any = pad_model_inputs( UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
265
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) snake_case_ = [] # custom device map if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(_SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_SCREAMING_SNAKE_CASE ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_SCREAMING_SNAKE_CASE ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(_SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) snake_case_ = replace_with_bnb_layers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_SCREAMING_SNAKE_CASE ): param.to(_SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , modules_to_not_convert=_SCREAMING_SNAKE_CASE ) snake_case_ = get_quantized_model_device_map( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_memory=_SCREAMING_SNAKE_CASE , no_split_module_classes=_SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=_SCREAMING_SNAKE_CASE , offload_state_dict=_SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_SCREAMING_SNAKE_CASE , device_map=_SCREAMING_SNAKE_CASE , offload_dir=_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if device_map is None: if torch.cuda.is_available(): snake_case_ = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( _SCREAMING_SNAKE_CASE , low_zero=(device_map == """balanced_low_0""") , max_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> List[Any]: snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = """.""".join(_SCREAMING_SNAKE_CASE ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(_SCREAMING_SNAKE_CASE ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( _SCREAMING_SNAKE_CASE ) -> Any: # Create a copy of the model with init_empty_weights(): snake_case_ = deepcopy(_SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(_SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(_SCREAMING_SNAKE_CASE , [] ) snake_case_ = len(_SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model snake_case_ = False if hasattr(_SCREAMING_SNAKE_CASE , """base_model_prefix""" ): snake_case_ = not hasattr(_SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) snake_case_ = list(set(_SCREAMING_SNAKE_CASE ) ) + list(_SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys snake_case_ = [""".weight""", """.bias"""] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(_SCREAMING_SNAKE_CASE , """""" ) filtered_module_names.append(_SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: for m in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: return next(parameter.parameters() ).device def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , dtype=_SCREAMING_SNAKE_CASE , value=_SCREAMING_SNAKE_CASE ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE , ) else: offload_weight(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) offload_weight(_SCREAMING_SNAKE_CASE , param_name.replace("""weight""" , """SCB""" ) , _SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """meta""" , dtype=_SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
347
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( snake_case__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = SpeechTaTokenizer UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = True def snake_case_ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : int = SpeechTaTokenizer(UpperCAmelCase_ ) UpperCamelCase : List[str] = AddedToken('<mask>', lstrip=UpperCAmelCase_, rstrip=UpperCAmelCase_ ) UpperCamelCase : Optional[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : int = 'this is a test' UpperCamelCase : Dict = 'this is a test' return input_text, output_text def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=20, SCREAMING_SNAKE_CASE_=5 ) -> List[Any]: UpperCamelCase , UpperCamelCase : List[Any] = self.get_input_output_texts(UpperCAmelCase_ ) UpperCamelCase : List[Any] = tokenizer.encode(UpperCAmelCase_, add_special_tokens=UpperCAmelCase_ ) UpperCamelCase : List[str] = tokenizer.decode(UpperCAmelCase_, clean_up_tokenization_spaces=UpperCAmelCase_ ) return text, ids def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Tuple = '<pad>' UpperCamelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ), UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ), UpperCAmelCase_ ) def snake_case_ ( self ) -> str: UpperCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<s>' ) self.assertEqual(vocab_keys[1], '<pad>' ) self.assertEqual(vocab_keys[-4], 'œ' ) self.assertEqual(vocab_keys[-2], '<mask>' ) self.assertEqual(vocab_keys[-1], '<ctc_blank>' ) self.assertEqual(len(UpperCAmelCase_ ), 81 ) def snake_case_ ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size, 79 ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : int = self.get_tokenizers(do_lower_case=UpperCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCamelCase : str = tokenizer.vocab_size UpperCamelCase : str = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) UpperCamelCase : Optional[Any] = ['aaaaa bbbbbb', 'cccccccccdddddddd'] UpperCamelCase : Optional[int] = tokenizer.add_tokens(UpperCAmelCase_ ) UpperCamelCase : Union[str, Any] = tokenizer.vocab_size UpperCamelCase : Optional[int] = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_, 0 ) self.assertEqual(UpperCAmelCase_, UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_, len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_, all_size + len(UpperCAmelCase_ ) ) UpperCamelCase : Tuple = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l', add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) UpperCamelCase : str = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} UpperCamelCase : str = tokenizer.add_special_tokens(UpperCAmelCase_ ) UpperCamelCase : str = tokenizer.vocab_size UpperCamelCase : Union[str, Any] = len(UpperCAmelCase_ ) self.assertNotEqual(UpperCAmelCase_, 0 ) self.assertEqual(UpperCAmelCase_, UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_, len(UpperCAmelCase_ ) ) self.assertEqual(UpperCAmelCase_, all_size_a + len(UpperCAmelCase_ ) ) UpperCamelCase : Dict = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l', add_special_tokens=UpperCAmelCase_ ) self.assertGreaterEqual(len(UpperCAmelCase_ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) def snake_case_ ( self ) -> Tuple: pass def snake_case_ ( self ) -> Optional[Any]: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Tuple = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(UpperCAmelCase_, [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ), [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6], ) UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_, [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) UpperCamelCase : List[str] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) # fmt: off self.assertListEqual(UpperCAmelCase_, [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_, [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off UpperCamelCase : Tuple = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_, model_name='microsoft/speecht5_asr', revision='c5ef64c71905caeccde0e4462ef3f9077224c524', sequences=UpperCAmelCase_, )
119
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = { 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = """beit""" def __init__( self : List[str] , UpperCAmelCase_ : List[Any]=8_192 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Optional[Any]=1E-12 , UpperCAmelCase_ : int=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=False , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=[3, 5, 7, 11] , UpperCAmelCase_ : Tuple=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple=255 , **UpperCAmelCase_ : List[str] , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class __A (snake_case__): '''simple docstring''' __lowercase: List[Any] = version.parse("""1.11""") @property def lowerCAmelCase ( self : Dict ) ->Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : Any ) ->float: """simple docstring""" return 1E-4
347
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : str = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = {'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : int = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 __SCREAMING_SNAKE_CASE : Dict = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } __SCREAMING_SNAKE_CASE : Optional[int] = '▁' class __A (snake_case__): '''simple docstring''' __lowercase: Optional[int] = VOCAB_FILES_NAMES __lowercase: Any = PRETRAINED_VOCAB_FILES_MAP __lowercase: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase: List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Optional[Any]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Tuple=100 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , UpperCAmelCase_ : Optional[int]=True , **UpperCAmelCase_ : Dict , ) ->None: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: snake_case_ = [F"""<extra_id_{i}>""" for i in range(UpperCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case_ = len(set(filter(lambda UpperCAmelCase_ : bool("""extra_id""" in str(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) snake_case_ = legacy snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , extra_ids=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCAmelCase_ , **UpperCAmelCase_ , ) snake_case_ = vocab_file snake_case_ = extra_ids snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase_ ) @staticmethod def lowerCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case_ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCAmelCase_ , ) return max_model_length @property def lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ) ->List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCAmelCase_ )) + [1] return ([0] * len(UpperCAmelCase_ )) + [1] + ([0] * len(UpperCAmelCase_ )) + [1] def lowerCAmelCase ( self : Any ) ->List[str]: """simple docstring""" return list( set(filter(lambda UpperCAmelCase_ : bool(re.search(R"""<extra_id_\d+>""" , UpperCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" return [self._convert_token_to_id(UpperCAmelCase_ ) for token in self.get_sentinel_tokens()] def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : List[int] ) ->List[int]: """simple docstring""" if len(UpperCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ) ->List[int]: """simple docstring""" snake_case_ = self._add_eos_if_not_present(UpperCAmelCase_ ) if token_ids_a is None: return token_ids_a else: snake_case_ = self._add_eos_if_not_present(UpperCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self : Optional[Any] ) ->Tuple: """simple docstring""" snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" snake_case_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : "TextInput" , **UpperCAmelCase_ : Tuple ) ->List[str]: """simple docstring""" if not self.legacy: snake_case_ = SPIECE_UNDERLINE + text.replace(UpperCAmelCase_ , """ """ ) return super().tokenize(UpperCAmelCase_ , **UpperCAmelCase_ ) def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ) ->Tuple: """simple docstring""" if not self.legacy: snake_case_ = text.startswith(UpperCAmelCase_ ) if is_first: snake_case_ = text[1:] snake_case_ = self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(UpperCAmelCase_ ): snake_case_ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" if token.startswith("""<extra_id_""" ): snake_case_ = re.match(R"""<extra_id_(\d+)>""" , UpperCAmelCase_ ) snake_case_ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any] ) ->List[Any]: """simple docstring""" if index < self.sp_model.get_piece_size(): snake_case_ = self.sp_model.IdToPiece(UpperCAmelCase_ ) else: snake_case_ = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = [] snake_case_ = """""" snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(UpperCAmelCase_ ) snake_case_ = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def lowerCAmelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case_ = os.path.join( UpperCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , """wb""" ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
347
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): lowercase = StableDiffusionInstructPixaPixPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A_ = CLIPTextModel(UpperCAmelCase_ ) A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ) if str(UpperCAmelCase_ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCAmelCase_ ) else: A_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) A_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = """french fries""" A_ = sd_pipe(**UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ ) A_ = output.images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = [inputs["""prompt"""]] * 2 A_ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A_ = torch.from_numpy(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) A_ = image / 2 + 0.5 A_ = image.permute(0 , 3 , 1 , 2 ) A_ = image.repeat(2 , 1 , 1 , 1 ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = """cpu""" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = self.get_dummy_inputs(UpperCAmelCase_ ) A_ = sd_pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1] A_ = [round(UpperCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def snake_case_ ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_dummy_components() A_ = StableDiffusionInstructPixaPixPipeline(**UpperCAmelCase_ ) A_ = VaeImageProcessor(do_resize=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) A_ = pipe(**self.get_dummy_inputs_by_type(UpperCAmelCase_ , input_image_type="""pt""" ) )[0] A_ = components["""vae"""] A_ = self.get_dummy_inputs_by_type(UpperCAmelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A_ = vae.encode(inputs[image_param] ).latent_dist.mode() A_ = pipe(**UpperCAmelCase_ )[0] A_ = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCAmelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self , UpperCamelCase__=0 ) -> List[Any]: '''simple docstring''' A_ = torch.manual_seed(UpperCAmelCase_ ) A_ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) A_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ ) A_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ).images A_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) A_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def snake_case_ ( self ) -> str: '''simple docstring''' A_ = 0 def callback_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: A_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A_ = latents[0, -3:, -3:, -1] A_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A_ = False A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = self.get_inputs() pipe(**UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCAmelCase_ , torch_dtype=torch.floataa ) A_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A_ = self.get_inputs() A_ = pipe(**UpperCAmelCase_ ) A_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A_ = inputs["""image"""].resize((504, 504) ) A_ = """timbrooks/instruct-pix2pix""" A_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , ) pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) pipe.enable_attention_slicing() A_ = pipe(**UpperCAmelCase_ ) A_ = output.images[0] A_ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) A_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
162
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 1_000_000 ) -> int: snake_case_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
347
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> str: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Dict = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Any = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Optional[int] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> int: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : List[Any] = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : str = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : int = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Any: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class __snake_case ( metaclass=lowerCamelCase__ ): __lowerCamelCase : Tuple = ["""sentencepiece"""] def __init__( self , *snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''sentencepiece'''] )
348
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> float: '''simple docstring''' UpperCAmelCase : Union[str, Any] =np.array([[1, item, train_mtch[i]] for i, item in enumerate(__lowerCAmelCase )] ) UpperCAmelCase : Any =np.array(__lowerCAmelCase ) UpperCAmelCase : Dict =np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __lowerCAmelCase ) ) , x.transpose() ) , __lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> float: '''simple docstring''' UpperCAmelCase : Optional[Any] =(1, 2, 1) UpperCAmelCase : Optional[int] =(1, 1, 0, 7) UpperCAmelCase : int =SARIMAX( __lowerCAmelCase , exog=__lowerCAmelCase , order=__lowerCAmelCase , seasonal_order=__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =model.fit(disp=__lowerCAmelCase , maxiter=6_00 , method='''nm''' ) UpperCAmelCase : Any =model_fit.predict(1 , len(__lowerCAmelCase ) , exog=[test_match] ) return result[0] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> float: '''simple docstring''' UpperCAmelCase : Union[str, Any] =SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =regressor.predict(__lowerCAmelCase ) return y_pred[0] def lowerCAmelCase_ ( __lowerCAmelCase )-> float: '''simple docstring''' train_user.sort() UpperCAmelCase : Any =np.percentile(__lowerCAmelCase , 25 ) UpperCAmelCase : Union[str, Any] =np.percentile(__lowerCAmelCase , 75 ) UpperCAmelCase : Dict =qa - qa UpperCAmelCase : Union[str, Any] =qa - (iqr * 0.1) return low_lim def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' UpperCAmelCase : Union[str, Any] =0 UpperCAmelCase : Dict =0 for i in list_vote: if i > actual_result: UpperCAmelCase : Dict =not_safe + 1 else: if abs(abs(__lowerCAmelCase ) - abs(__lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __snake_case = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] __snake_case = pd.DataFrame( data_input, columns=['''total_user''', '''total_even''', '''days'''] ) __snake_case = Normalizer().fit_transform(data_input_df.values) # split data __snake_case = normalize_df[:, 2].tolist() __snake_case = normalize_df[:, 0].tolist() __snake_case = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __snake_case = normalize_df[:, [1, 2]].tolist() __snake_case = x[: len(x) - 1] __snake_case = x[len(x) - 1 :] # for linear regression & sarimax __snake_case = total_date[: len(total_date) - 1] __snake_case = total_user[: len(total_user) - 1] __snake_case = total_match[: len(total_match) - 1] __snake_case = total_date[len(total_date) - 1 :] __snake_case = total_user[len(total_user) - 1 :] __snake_case = total_match[len(total_match) - 1 :] # voting system with forecasting __snake_case = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __snake_case = '''''' if data_safety_checker(res_vote, tst_user) else '''not ''' print('''Today\'s data is {not_str}safe.''')
348
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = XGLMTokenizer __lowerCamelCase : Dict = XGLMTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : List[Any] = True def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str =XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict ='''<pad>''' UpperCAmelCase : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(snake_case__ ) , 1008 ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : int =XGLMTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase : Optional[Any] =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(snake_case__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Dict =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase : Dict =tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase : int =tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) UpperCAmelCase : str =XGLMTokenizer(f.name , keep_accents=snake_case__ ) UpperCAmelCase : Any =pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : Dict =self.get_tokenizer() UpperCAmelCase : Optional[Any] =self.get_rust_tokenizer() UpperCAmelCase : Any ='''I was born in 92000, and this is falsé.''' UpperCAmelCase : Optional[int] =tokenizer.tokenize(snake_case__ ) UpperCAmelCase : Optional[int] =rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase : Tuple =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) UpperCAmelCase : int =rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase : Any =self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] =tokenizer.encode(snake_case__ ) UpperCAmelCase : Optional[Any] =rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] ='''Hello World!''' UpperCAmelCase : Tuple =[2, 3_1227, 4447, 35] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase : Optional[Any] =[2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any ={ '''input_ids''': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='''facebook/xglm-564M''' , padding=snake_case__ , )
348
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """nllb-moe""" __lowerCamelCase : Tuple = ["""past_key_values"""] __lowerCamelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case__=12_8112 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.05 , snake_case__=0.05 , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=2 , snake_case__=True , snake_case__=False , snake_case__="float32" , snake_case__=False , snake_case__=128 , snake_case__=64 , snake_case__=4 , snake_case__=4 , snake_case__=0.001 , snake_case__=0.001 , snake_case__="all" , snake_case__=False , snake_case__=False , snake_case__=1.0 , snake_case__=0.2 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=False , **snake_case__ , ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : str =d_model UpperCAmelCase : Tuple =encoder_ffn_dim UpperCAmelCase : Tuple =encoder_layers UpperCAmelCase : Dict =encoder_attention_heads UpperCAmelCase : Dict =decoder_ffn_dim UpperCAmelCase : Any =decoder_layers UpperCAmelCase : Optional[Any] =decoder_attention_heads UpperCAmelCase : List[str] =dropout UpperCAmelCase : List[str] =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : Any =activation_function UpperCAmelCase : Tuple =init_std UpperCAmelCase : Tuple =encoder_layerdrop UpperCAmelCase : Union[str, Any] =decoder_layerdrop UpperCAmelCase : Any =use_cache UpperCAmelCase : Optional[int] =encoder_layers UpperCAmelCase : Optional[Any] =scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : str =router_z_loss_coef UpperCAmelCase : str =router_aux_loss_coef UpperCAmelCase : Tuple =decoder_sparse_step UpperCAmelCase : str =encoder_sparse_step UpperCAmelCase : Optional[Any] =num_experts UpperCAmelCase : Optional[int] =expert_capacity UpperCAmelCase : Optional[int] =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) UpperCAmelCase : Dict =router_dtype UpperCAmelCase : Optional[Any] =router_ignore_padding_tokens UpperCAmelCase : str =batch_prioritized_routing UpperCAmelCase : Tuple =second_expert_policy UpperCAmelCase : Any =normalize_router_prob_before_dropping UpperCAmelCase : Union[str, Any] =moe_eval_capacity_token_fraction UpperCAmelCase : Union[str, Any] =moe_token_dropout UpperCAmelCase : int =output_router_logits super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , **snake_case__ , )
348
import qiskit def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
348
1
import math def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__lowerCAmelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __snake_case = '''Enter the base and the power separated by a comma: ''' __snake_case , __snake_case = map(int, input(prompt).split(''',''')) __snake_case , __snake_case = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. __snake_case = res(xa, ya) __snake_case = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
348
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Any =tau * frequency / samplerate UpperCAmelCase : List[Any] =sin(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =cos(__lowerCAmelCase ) UpperCAmelCase : str =_sin / (2 * q_factor) UpperCAmelCase : Tuple =(1 - _cos) / 2 UpperCAmelCase : Union[str, Any] =1 - _cos UpperCAmelCase : Optional[Any] =1 + alpha UpperCAmelCase : Union[str, Any] =-2 * _cos UpperCAmelCase : Optional[Any] =1 - alpha UpperCAmelCase : Union[str, Any] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : str =tau * frequency / samplerate UpperCAmelCase : Any =sin(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =cos(__lowerCAmelCase ) UpperCAmelCase : Tuple =_sin / (2 * q_factor) UpperCAmelCase : List[str] =(1 + _cos) / 2 UpperCAmelCase : Union[str, Any] =-1 - _cos UpperCAmelCase : List[Any] =1 + alpha UpperCAmelCase : List[str] =-2 * _cos UpperCAmelCase : List[Any] =1 - alpha UpperCAmelCase : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : List[Any] =tau * frequency / samplerate UpperCAmelCase : Optional[int] =sin(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =cos(__lowerCAmelCase ) UpperCAmelCase : List[str] =_sin / (2 * q_factor) UpperCAmelCase : int =_sin / 2 UpperCAmelCase : Any =0 UpperCAmelCase : str =-ba UpperCAmelCase : int =1 + alpha UpperCAmelCase : str =-2 * _cos UpperCAmelCase : Tuple =1 - alpha UpperCAmelCase : Union[str, Any] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) )-> IIRFilter: '''simple docstring''' UpperCAmelCase : List[str] =tau * frequency / samplerate UpperCAmelCase : List[str] =sin(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =cos(__lowerCAmelCase ) UpperCAmelCase : int =_sin / (2 * q_factor) UpperCAmelCase : List[Any] =1 - alpha UpperCAmelCase : List[Any] =-2 * _cos UpperCAmelCase : int =1 + alpha UpperCAmelCase : Optional[int] =IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Dict =tau * frequency / samplerate UpperCAmelCase : Any =sin(__lowerCAmelCase ) UpperCAmelCase : Dict =cos(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =_sin / (2 * q_factor) UpperCAmelCase : List[str] =10 ** (gain_db / 40) UpperCAmelCase : List[Any] =1 + alpha * big_a UpperCAmelCase : Union[str, Any] =-2 * _cos UpperCAmelCase : Dict =1 - alpha * big_a UpperCAmelCase : List[Any] =1 + alpha / big_a UpperCAmelCase : Optional[Any] =-2 * _cos UpperCAmelCase : Any =1 - alpha / big_a UpperCAmelCase : Union[str, Any] =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Optional[Any] =tau * frequency / samplerate UpperCAmelCase : Optional[int] =sin(__lowerCAmelCase ) UpperCAmelCase : List[str] =cos(__lowerCAmelCase ) UpperCAmelCase : int =_sin / (2 * q_factor) UpperCAmelCase : Optional[Any] =10 ** (gain_db / 40) UpperCAmelCase : str =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : List[Any] =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : str =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Dict =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : Optional[int] =2 * sqrt(__lowerCAmelCase ) * alpha UpperCAmelCase : Optional[Any] =big_a * (pmc + aaa) UpperCAmelCase : int =2 * big_a * mpc UpperCAmelCase : Optional[int] =big_a * (pmc - aaa) UpperCAmelCase : List[str] =ppmc + aaa UpperCAmelCase : Optional[int] =-2 * pmpc UpperCAmelCase : Optional[int] =ppmc - aaa UpperCAmelCase : Any =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1 / sqrt(2 ) , )-> IIRFilter: '''simple docstring''' UpperCAmelCase : Any =tau * frequency / samplerate UpperCAmelCase : Any =sin(__lowerCAmelCase ) UpperCAmelCase : Any =cos(__lowerCAmelCase ) UpperCAmelCase : List[str] =_sin / (2 * q_factor) UpperCAmelCase : Any =10 ** (gain_db / 40) UpperCAmelCase : List[str] =(big_a + 1) - (big_a - 1) * _cos UpperCAmelCase : Any =(big_a + 1) + (big_a - 1) * _cos UpperCAmelCase : List[Any] =(big_a - 1) - (big_a + 1) * _cos UpperCAmelCase : Optional[Any] =(big_a - 1) + (big_a + 1) * _cos UpperCAmelCase : List[Any] =2 * sqrt(__lowerCAmelCase ) * alpha UpperCAmelCase : List[Any] =big_a * (ppmc + aaa) UpperCAmelCase : Tuple =-2 * big_a * pmpc UpperCAmelCase : Optional[Any] =big_a * (ppmc - aaa) UpperCAmelCase : Optional[int] =pmc + aaa UpperCAmelCase : List[str] =2 * mpc UpperCAmelCase : Dict =pmc - aaa UpperCAmelCase : str =IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : Union[str, Any] =hidden_size UpperCAmelCase : Union[str, Any] =feat_extract_norm UpperCAmelCase : Optional[Any] =feat_extract_activation UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =conv_bias UpperCAmelCase : Tuple =num_conv_pos_embeddings UpperCAmelCase : Dict =num_conv_pos_embedding_groups UpperCAmelCase : str =len(self.conv_dim ) UpperCAmelCase : Dict =num_hidden_layers UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : List[Any] =squeeze_factor UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : int =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[int] =relative_attention UpperCAmelCase : Tuple =norm_rel_ebd UpperCAmelCase : List[Any] =list(snake_case__ ) UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =num_attention_heads UpperCAmelCase : Any =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : str =feat_proj_dropout UpperCAmelCase : Union[str, Any] =final_dropout UpperCAmelCase : Optional[int] =layer_norm_eps UpperCAmelCase : str =feature_layer_norm_eps UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Union[str, Any] =apply_spec_augment UpperCAmelCase : Optional[Any] =mask_time_prob UpperCAmelCase : Tuple =mask_time_length UpperCAmelCase : str =mask_time_min_masks UpperCAmelCase : Optional[int] =mask_feature_prob UpperCAmelCase : Optional[Any] =mask_feature_length UpperCAmelCase : List[Any] =mask_feature_min_masks # ctc loss UpperCAmelCase : str =ctc_loss_reduction UpperCAmelCase : Optional[int] =ctc_zero_infinity # sequence classification UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum UpperCAmelCase : int =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import os import jsonlines import numpy as np from tqdm import tqdm __snake_case = 20_48 __snake_case = 40_96 __snake_case = 42 __snake_case = os.environ.pop('''PROCESS_TRAIN''', '''false''') __snake_case = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' def choose_first(__lowerCAmelCase , __lowerCAmelCase=False ): assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: UpperCAmelCase : List[Any] =answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase : List[Any] ={k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a UpperCAmelCase : Optional[Any] ={'''id''': example['''id''']} UpperCAmelCase : Union[str, Any] =example['''annotations'''] UpperCAmelCase : List[Any] =annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase : Optional[Any] =['''yes'''] if 1 in yes_no_answer else ['''no'''] UpperCAmelCase : Tuple =[] UpperCAmelCase : List[str] =[] UpperCAmelCase : Dict =['''<cls>'''] else: UpperCAmelCase : List[str] =['''short'''] UpperCAmelCase : Tuple =choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available UpperCAmelCase : Dict =['''long'''] UpperCAmelCase : List[str] =choose_first(annotation['''long_answer'''] , is_long_answer=__lowerCAmelCase ) UpperCAmelCase : Dict =[] answer.update(__lowerCAmelCase ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase : Any =True else: UpperCAmelCase : Tuple =False UpperCAmelCase : int =['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , __lowerCAmelCase ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =_get_single_answer(__lowerCAmelCase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase : str =example['''document''']['''tokens'''] UpperCAmelCase : int =[] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(__lowerCAmelCase ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase : Optional[int] =['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase : Optional[int] =example['''document''']['''tokens'''] UpperCAmelCase : Tuple =answer['''start_token'''] UpperCAmelCase : List[str] =answer['''end_token'''] UpperCAmelCase : Any =[] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase : Dict =''' '''.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase : str =doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase : str =doc['''token'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase : Optional[Any] =''' '''.join([old[i] for i in range(len(__lowerCAmelCase ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , __lowerCAmelCase , end='''\n''' ) print('''Old:''' , __lowerCAmelCase , end='''\n\n''' ) return { "context": " ".join(__lowerCAmelCase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=20_48 , __lowerCAmelCase=40_96 , __lowerCAmelCase=True )-> str: '''simple docstring''' UpperCAmelCase : str =get_context_and_ans(__lowerCAmelCase , assertion=__lowerCAmelCase ) UpperCAmelCase : Dict =out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase : Tuple =tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids UpperCAmelCase : List[str] =input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase : Tuple =[] UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : str =input_ids[:q_len] UpperCAmelCase : int =range(__lowerCAmelCase , len(__lowerCAmelCase ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase : str =i + max_length - q_len UpperCAmelCase : Any =input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(__lowerCAmelCase ), "end_token": [-1_00] * len(__lowerCAmelCase ), "category": category, }, } UpperCAmelCase : List[str] =out['''context'''].split() UpperCAmelCase : Optional[Any] =splitted_context[answer['''end_token''']] UpperCAmelCase : Optional[int] =len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=__lowerCAmelCase , ).input_ids ) UpperCAmelCase : Optional[int] =len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=__lowerCAmelCase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase : Optional[int] =len(tokenizer(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase : List[Any] =input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive UpperCAmelCase : Any =answer['''start_token'''] UpperCAmelCase : int =answer['''end_token'''] if assertion: UpperCAmelCase : List[str] =tokenizer.decode(__lowerCAmelCase ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , __lowerCAmelCase , end='''\n\n''' ) if len(__lowerCAmelCase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase : List[Any] =input_ids[:q_len] UpperCAmelCase : List[Any] =range(__lowerCAmelCase , len(__lowerCAmelCase ) , max_length - doc_stride ) UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : Optional[int] =[] UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : List[Any] =[] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase : Optional[Any] =i + max_length - q_len UpperCAmelCase : Any =input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase : Union[str, Any] =start_token - i + q_len UpperCAmelCase : List[str] =end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: UpperCAmelCase : int =-1_00 UpperCAmelCase : List[Any] =-1_00 answers_category.append('''null''' ) UpperCAmelCase : Any =inputs[-1][start_token : end_token + 1] answers_start_token.append(__lowerCAmelCase ) answers_end_token.append(__lowerCAmelCase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(__lowerCAmelCase ) ) print('''Old:''' , tokenizer.decode(__lowerCAmelCase ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=20_48 , __lowerCAmelCase=40_96 , __lowerCAmelCase=False )-> int: '''simple docstring''' UpperCAmelCase : int =get_strided_contexts_and_ans( __lowerCAmelCase , __lowerCAmelCase , doc_stride=__lowerCAmelCase , max_length=__lowerCAmelCase , assertion=__lowerCAmelCase , ) return example def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' with jsonlines.open(__lowerCAmelCase , '''a''' ) as writer: for example in tqdm(__lowerCAmelCase , total=len(__lowerCAmelCase ) , desc='''Saving samples ... ''' ): UpperCAmelCase : Dict =example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __snake_case = load_dataset('''natural_questions''') __snake_case = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') __snake_case = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] __snake_case = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } __snake_case = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __snake_case = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) __snake_case = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
348
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __snake_case = 4 __snake_case = 3 class __snake_case ( lowerCamelCase__ ): pass def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for shard in shards: for i in range(__lowerCAmelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =int(os.environ['''RANK'''] ) UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase : List[Any] =ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCAmelCase ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase ) parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 ) UpperCAmelCase : Any =parser.parse_args() UpperCAmelCase : List[str] =args.streaming UpperCAmelCase : Tuple =args.num_workers UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]} UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase ) if not streaming: UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) ) UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase ) UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase ) UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : str =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : List[Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
348
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = """gptsan-japanese""" __lowerCamelCase : Union[str, Any] = [ """past_key_values""", ] __lowerCamelCase : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case__=3_6000 , snake_case__=1280 , snake_case__=1024 , snake_case__=8192 , snake_case__=4096 , snake_case__=128 , snake_case__=10 , snake_case__=0 , snake_case__=16 , snake_case__=16 , snake_case__=128 , snake_case__=0.0 , snake_case__=1e-5 , snake_case__=False , snake_case__=0.0 , snake_case__="float32" , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.002 , snake_case__=False , snake_case__=True , snake_case__=3_5998 , snake_case__=3_5995 , snake_case__=3_5999 , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =vocab_size UpperCAmelCase : int =max_position_embeddings UpperCAmelCase : Optional[int] =d_model UpperCAmelCase : Optional[Any] =d_ff UpperCAmelCase : Union[str, Any] =d_ext UpperCAmelCase : List[Any] =d_spout UpperCAmelCase : Optional[Any] =num_switch_layers UpperCAmelCase : Optional[Any] =num_ext_layers UpperCAmelCase : Dict =num_switch_layers + num_ext_layers UpperCAmelCase : List[str] =num_heads UpperCAmelCase : Optional[Any] =num_experts UpperCAmelCase : Any =expert_capacity UpperCAmelCase : List[str] =dropout_rate UpperCAmelCase : Tuple =layer_norm_epsilon UpperCAmelCase : Any =router_bias UpperCAmelCase : Optional[int] =router_jitter_noise UpperCAmelCase : Optional[int] =router_dtype UpperCAmelCase : Union[str, Any] =router_ignore_padding_tokens UpperCAmelCase : str =output_hidden_states UpperCAmelCase : Optional[Any] =output_attentions UpperCAmelCase : Any =initializer_factor UpperCAmelCase : List[str] =output_router_logits UpperCAmelCase : Union[str, Any] =use_cache super().__init__( separator_token_id=snake_case__ , pad_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , )
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self , snake_case__ , snake_case__=2 , snake_case__=True , snake_case__=False , snake_case__=10 , snake_case__=3 , snake_case__=32 * 8 , snake_case__=32 * 8 , snake_case__=4 , snake_case__=64 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =parent UpperCAmelCase : Any =batch_size UpperCAmelCase : List[Any] =is_training UpperCAmelCase : Optional[int] =use_auxiliary_loss UpperCAmelCase : List[str] =num_queries UpperCAmelCase : Dict =num_channels UpperCAmelCase : int =min_size UpperCAmelCase : int =max_size UpperCAmelCase : str =num_labels UpperCAmelCase : int =hidden_dim UpperCAmelCase : List[str] =hidden_dim def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) UpperCAmelCase : Tuple =torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) UpperCAmelCase : int =( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() UpperCAmelCase : Optional[int] =(torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() UpperCAmelCase : Optional[int] =self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCAmelCase : List[Any] =self.num_queries UpperCAmelCase : Dict =self.num_labels UpperCAmelCase : Optional[int] =[1, 1, 1, 1] UpperCAmelCase : List[str] =self.num_channels UpperCAmelCase : Tuple =64 UpperCAmelCase : Any =128 UpperCAmelCase : str =self.hidden_dim UpperCAmelCase : Optional[int] =self.hidden_dim UpperCAmelCase : Union[str, Any] =self.hidden_dim return config def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase : Tuple ={'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : str =output.encoder_hidden_states UpperCAmelCase : int =output.pixel_decoder_hidden_states UpperCAmelCase : Optional[Any] =output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_layers ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=False ) -> str: '''simple docstring''' with torch.no_grad(): UpperCAmelCase : Any =MaskaFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Union[str, Any] =model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , output_hidden_states=snake_case__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : int =MaskaFormerForUniversalSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[int] =model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) UpperCAmelCase : Optional[int] =model(snake_case__ ) comm_check_on_output(snake_case__ ) UpperCAmelCase : List[str] =model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowerCamelCase : int = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __lowerCamelCase : Dict = False __lowerCamelCase : Any = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : str = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =MaskaFormerModelTester(self ) UpperCAmelCase : str =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple =model_class(snake_case__ ) UpperCAmelCase : str =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[Any] =[*signature.parameters.keys()] UpperCAmelCase : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase : List[str] =MaskaFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : str =(self.model_tester.min_size,) * 2 UpperCAmelCase : Optional[Any] ={ '''pixel_values''': torch.randn((2, 3, *size) , device=snake_case__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=snake_case__ ), '''class_labels''': torch.zeros(2 , 10 , device=snake_case__ ).long(), } UpperCAmelCase : List[Any] =self.model_tester.get_config() UpperCAmelCase : Dict =MaskaFormerForUniversalSegmentation(snake_case__ ).to(snake_case__ ) UpperCAmelCase : str =model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] =model_class(snake_case__ ).to(snake_case__ ) UpperCAmelCase : str =model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase : Union[str, Any] =self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] =model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase : Tuple =model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =self.model_tester.prepare_config_and_inputs() UpperCAmelCase : str =True UpperCAmelCase : Union[str, Any] =True UpperCAmelCase : Union[str, Any] =model_class(snake_case__ ).to(snake_case__ ) model.train() UpperCAmelCase : Optional[int] =model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) UpperCAmelCase : Union[str, Any] =outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : List[str] =outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase : str =outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Any =outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case = 1e-4 def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : str =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case__ ) UpperCAmelCase : str =self.default_image_processor UpperCAmelCase : Dict =prepare_img() UpperCAmelCase : List[str] =image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) UpperCAmelCase : int =inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase : List[str] =model(**snake_case__ ) UpperCAmelCase : List[str] =torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) UpperCAmelCase : List[str] =torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() UpperCAmelCase : Union[str, Any] =self.default_image_processor UpperCAmelCase : List[str] =prepare_img() UpperCAmelCase : Optional[int] =image_processor(snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) UpperCAmelCase : Optional[Any] =inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase : List[str] =model(**snake_case__ ) # masks_queries_logits UpperCAmelCase : str =outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase : int =[ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] UpperCAmelCase : str =torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits UpperCAmelCase : Optional[int] =outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : List[str] =torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() UpperCAmelCase : List[Any] =self.default_image_processor UpperCAmelCase : List[Any] =image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCAmelCase : Optional[int] =inputs['''pixel_values'''].to(snake_case__ ) UpperCAmelCase : str =[el.to(snake_case__ ) for el in inputs['''mask_labels''']] UpperCAmelCase : Union[str, Any] =[el.to(snake_case__ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCAmelCase : Optional[int] =model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor __lowerCamelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0.999 , __lowerCAmelCase="cosine" , )-> str: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase : Optional[int] =[] for i in range(__lowerCAmelCase ): UpperCAmelCase : Tuple =i / num_diffusion_timesteps UpperCAmelCase : List[Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ = 1000 , snake_case__ = "fixed_small_log" , snake_case__ = True , snake_case__ = 1.0 , snake_case__ = "epsilon" , snake_case__ = "squaredcos_cap_v2" , ) -> Optional[int]: '''simple docstring''' if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) UpperCAmelCase : Any =betas_for_alpha_bar(snake_case__ ) UpperCAmelCase : Optional[int] =1.0 - self.betas UpperCAmelCase : Optional[int] =torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase : Optional[int] =torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase : Optional[Any] =1.0 # setable values UpperCAmelCase : Any =None UpperCAmelCase : Union[str, Any] =torch.from_numpy(np.arange(0 , snake_case__ )[::-1].copy() ) UpperCAmelCase : List[str] =variance_type def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =num_inference_steps UpperCAmelCase : Any =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase : List[Any] =(np.arange(0 , snake_case__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase : Tuple =torch.from_numpy(snake_case__ ).to(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None ) -> Tuple: '''simple docstring''' if prev_timestep is None: UpperCAmelCase : str =t - 1 UpperCAmelCase : Optional[int] =self.alphas_cumprod[t] UpperCAmelCase : Dict =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Dict =1 - alpha_prod_t UpperCAmelCase : int =1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[str] =self.betas[t] else: UpperCAmelCase : Dict =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : Dict =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase : int =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase : Union[str, Any] =torch.log(torch.clamp(snake_case__ , min=1e-20 ) ) UpperCAmelCase : Optional[Any] =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase : Any =variance.log() UpperCAmelCase : Dict =beta.log() UpperCAmelCase : Dict =(predicted_variance + 1) / 2 UpperCAmelCase : List[Any] =frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=None , snake_case__ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: '''simple docstring''' UpperCAmelCase : str =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase , UpperCAmelCase : Union[str, Any] =torch.split(snake_case__ , sample.shape[1] , dim=1 ) else: UpperCAmelCase : int =None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase : List[str] =t - 1 UpperCAmelCase : Optional[Any] =self.alphas_cumprod[t] UpperCAmelCase : List[Any] =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase : Union[str, Any] =1 - alpha_prod_t UpperCAmelCase : int =1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase : List[Any] =self.betas[t] UpperCAmelCase : Tuple =self.alphas[t] else: UpperCAmelCase : str =1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase : Optional[int] =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Tuple =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : Union[str, Any] =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Dict =torch.clamp( snake_case__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[Any] =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase : List[str] =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : List[Any] =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase : List[Any] =0 if t > 0: UpperCAmelCase : str =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=snake_case__ , device=model_output.device ) UpperCAmelCase : Optional[int] =self._get_variance( snake_case__ , predicted_variance=snake_case__ , prev_timestep=snake_case__ , ) if self.variance_type == "fixed_small_log": UpperCAmelCase : Optional[Any] =variance elif self.variance_type == "learned_range": UpperCAmelCase : Tuple =(0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) UpperCAmelCase : List[Any] =variance * variance_noise UpperCAmelCase : int =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=snake_case__ , pred_original_sample=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase : str =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase : int =timesteps.to(original_samples.device ) UpperCAmelCase : Union[str, Any] =alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase : Any =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : List[str] =sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any =(1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase : Optional[int] =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase : int =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase : Any =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __snake_case : def __init__( self , snake_case__ , snake_case__=100 , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=[0, 1, 2, 3] , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =parent UpperCAmelCase : Tuple =100 UpperCAmelCase : Tuple =batch_size UpperCAmelCase : List[str] =image_size UpperCAmelCase : List[Any] =patch_size UpperCAmelCase : Any =num_channels UpperCAmelCase : Dict =is_training UpperCAmelCase : int =use_labels UpperCAmelCase : str =hidden_size UpperCAmelCase : int =num_hidden_layers UpperCAmelCase : Tuple =num_attention_heads UpperCAmelCase : Optional[Any] =intermediate_size UpperCAmelCase : List[str] =hidden_act UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : List[Any] =attention_probs_dropout_prob UpperCAmelCase : Optional[Any] =type_sequence_label_size UpperCAmelCase : str =initializer_range UpperCAmelCase : Union[str, Any] =scope UpperCAmelCase : Optional[Any] =out_indices UpperCAmelCase : Dict =num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : int =(image_size // patch_size) ** 2 UpperCAmelCase : Tuple =num_patches + 1 def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : str =None UpperCAmelCase : int =None if self.use_labels: UpperCAmelCase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase : Any =self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Tuple =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict =BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : List[str] =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.type_sequence_label_size UpperCAmelCase : Optional[int] =BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Optional[int] =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : Any =1 UpperCAmelCase : Union[str, Any] =BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Union[str, Any] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : Optional[Any] =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : int =self.num_labels UpperCAmelCase : int =BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : List[Any] =model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase : str =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] =config_and_inputs UpperCAmelCase : Any ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : int = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Any = False def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =BeitModelTester(self ) UpperCAmelCase : Tuple =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] =model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] =model_class(snake_case__ ) UpperCAmelCase : Dict =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Union[str, Any] =[*signature.parameters.keys()] UpperCAmelCase : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase : List[Any] =model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase : Optional[int] =self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase : str =model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase : int =False UpperCAmelCase : Any =True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : List[str] =model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase : Optional[int] =self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase : List[Any] =model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple =_config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase : Dict =model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(snake_case__ ) UpperCAmelCase : Optional[Any] =self.default_image_processor UpperCAmelCase : str =prepare_img() UpperCAmelCase : List[Any] =image_processor(images=snake_case__ , return_tensors='''pt''' ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase : Tuple =torch.ones((1, 196) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase : Any =model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase : Dict =outputs.logits # verify the logits UpperCAmelCase : str =torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase : str =torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(snake_case__ ) UpperCAmelCase : List[Any] =self.default_image_processor UpperCAmelCase : Optional[int] =prepare_img() UpperCAmelCase : Dict =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] =model(**snake_case__ ) UpperCAmelCase : Optional[Any] =outputs.logits # verify the logits UpperCAmelCase : Optional[int] =torch.Size((1, 1000) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase : List[Any] =281 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( snake_case__ ) UpperCAmelCase : Union[str, Any] =self.default_image_processor UpperCAmelCase : Any =prepare_img() UpperCAmelCase : Dict =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase : List[Any] =model(**snake_case__ ) UpperCAmelCase : Any =outputs.logits # verify the logits UpperCAmelCase : int =torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase : List[str] =torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase : int =2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase : List[Any] =model.to(snake_case__ ) UpperCAmelCase : str =BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) UpperCAmelCase : Union[str, Any] =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase : List[Any] =Image.open(ds[0]['''file'''] ) UpperCAmelCase : List[str] =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] =model(**snake_case__ ) UpperCAmelCase : Dict =outputs.logits # verify the logits UpperCAmelCase : Any =torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase : int =version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: UpperCAmelCase : Optional[Any] =torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase : List[str] =torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCAmelCase : Union[str, Any] =model.to(snake_case__ ) UpperCAmelCase : Tuple =BeitImageProcessor(do_resize=snake_case__ , size=640 , do_center_crop=snake_case__ ) UpperCAmelCase : Dict =load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase : int =Image.open(ds[0]['''file'''] ) UpperCAmelCase : int =image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase : List[str] =model(**snake_case__ ) UpperCAmelCase : Dict =outputs.logits.detach().cpu() UpperCAmelCase : Dict =image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(500, 300)] ) UpperCAmelCase : Any =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase : List[str] =image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase : Tuple =torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , snake_case__ )
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ = True , snake_case__ = False ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : str =scheduler UpperCAmelCase : Union[str, Any] =optimizers if isinstance(snake_case__ , (list, tuple) ) else [optimizers] UpperCAmelCase : int =split_batches UpperCAmelCase : int =step_with_optimizer UpperCAmelCase : Union[str, Any] =GradientState() def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> Tuple: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*snake_case__ , **snake_case__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*snake_case__ , **snake_case__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase : Tuple =AcceleratorState().num_processes for _ in range(snake_case__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*snake_case__ , **snake_case__ ) else: self.scheduler.step(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.get_last_lr() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.state_dict() def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' self.scheduler.load_state_dict(snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return self.scheduler.get_lr() def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> List[str]: '''simple docstring''' return self.scheduler.print_lr(*snake_case__ , **snake_case__ )
348
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase_ ( __lowerCAmelCase = 8 )-> str: '''simple docstring''' UpperCAmelCase : Tuple =ascii_letters + digits + punctuation return "".join(secrets.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' i -= len(__lowerCAmelCase ) UpperCAmelCase : Dict =i // 3 UpperCAmelCase : Optional[Any] =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase : List[str] =( chars_incl + random(__lowerCAmelCase , quotient + remainder ) + random(__lowerCAmelCase , __lowerCAmelCase ) + random(__lowerCAmelCase , __lowerCAmelCase ) ) UpperCAmelCase : Tuple =list(__lowerCAmelCase ) shuffle(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' return "".join(secrets.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' pass # Put your code here... def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' pass # Put your code here... def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' pass # Put your code here... def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 8 )-> bool: '''simple docstring''' if len(__lowerCAmelCase ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase : List[Any] =any(char in ascii_uppercase for char in password ) UpperCAmelCase : int =any(char in ascii_lowercase for char in password ) UpperCAmelCase : Optional[int] =any(char in digits for char in password ) UpperCAmelCase : Optional[Any] =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : Tuple =int(input('''Please indicate the max length of your password: ''' ).strip() ) UpperCAmelCase : Union[str, Any] =input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(__lowerCAmelCase ) ) print( '''Alternative Password generated:''' , alternative_password_generator(__lowerCAmelCase , __lowerCAmelCase ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __snake_case = False class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 12 @property def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return 12 @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : List[str] =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Dict =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(snake_case__ ) @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple =12 UpperCAmelCase : str =12 UpperCAmelCase : int ={ '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } UpperCAmelCase : List[Any] =TransformeraDModel(**snake_case__ ) return model def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any ='''cpu''' UpperCAmelCase : Tuple =self.dummy_vqvae UpperCAmelCase : str =self.dummy_text_encoder UpperCAmelCase : Any =self.dummy_tokenizer UpperCAmelCase : Optional[int] =self.dummy_transformer UpperCAmelCase : Union[str, Any] =VQDiffusionScheduler(self.num_embed ) UpperCAmelCase : Optional[int] =LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case__ ) UpperCAmelCase : Optional[Any] =VQDiffusionPipeline( vqvae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , transformer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Tuple ='''teddy bear playing in the pool''' UpperCAmelCase : Union[str, Any] =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Tuple =pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase : Tuple =output.images UpperCAmelCase : Any =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : int =pipe( [prompt] , generator=snake_case__ , output_type='''np''' , return_dict=snake_case__ , num_inference_steps=2 )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase : Union[str, Any] =np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] ='''cpu''' UpperCAmelCase : List[Any] =self.dummy_vqvae UpperCAmelCase : int =self.dummy_text_encoder UpperCAmelCase : Dict =self.dummy_tokenizer UpperCAmelCase : Optional[Any] =self.dummy_transformer UpperCAmelCase : List[str] =VQDiffusionScheduler(self.num_embed ) UpperCAmelCase : Any =LearnedClassifierFreeSamplingEmbeddings( learnable=snake_case__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) UpperCAmelCase : Any =VQDiffusionPipeline( vqvae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , transformer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) UpperCAmelCase : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] ='''teddy bear playing in the pool''' UpperCAmelCase : Any =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Optional[int] =pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase : Union[str, Any] =output.images UpperCAmelCase : Union[str, Any] =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : int =pipe( [prompt] , generator=snake_case__ , output_type='''np''' , return_dict=snake_case__ , num_inference_steps=2 )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : Dict =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCAmelCase : int =np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) UpperCAmelCase : Dict =VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) UpperCAmelCase : List[Any] =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCAmelCase : List[str] =torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase : Optional[int] =pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Optional[int] =output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
348
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __snake_case = logging.getLogger(__name__) __snake_case = 50 # max width of layer names __snake_case = 70 # max width of quantizer names def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Optional[int] =parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=__lowerCAmelCase , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=__lowerCAmelCase , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=__lowerCAmelCase , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=__lowerCAmelCase , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=__lowerCAmelCase , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=__lowerCAmelCase , type=__lowerCAmelCase , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=__lowerCAmelCase , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' if args.calibrator == "max": UpperCAmelCase : Union[str, Any] ='''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase : Optional[Any] ='''histogram''' elif args.calibrator == "mse": UpperCAmelCase : str ='''histogram''' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) UpperCAmelCase : Tuple =QuantDescriptor(num_bits=args.aprec , calib_method=__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowerCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False )-> Optional[Any]: '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowerCAmelCase , ['''embeddings'''] , which='''weight''' , _disabled=__lowerCAmelCase ) if args.quant_disable: set_quantizer_by_name(__lowerCAmelCase , [''''''] , _disabled=__lowerCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowerCAmelCase , args.quant_disable_keyword , _disabled=__lowerCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=__lowerCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowerCAmelCase , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=__lowerCAmelCase ) if args.recalibrate_weights: recalibrate_weights(__lowerCAmelCase ) if args.fuse_qkv: fuse_qkv(__lowerCAmelCase , __lowerCAmelCase ) if args.clip_gelu: clip_gelu(__lowerCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' def fusea(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): for mod in [qq, qk, qv]: if not hasattr(__lowerCAmelCase , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase : List[Any] =qq._amax.detach().item() UpperCAmelCase : Dict =qk._amax.detach().item() UpperCAmelCase : Dict =qv._amax.detach().item() UpperCAmelCase : Any =max(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) qq._amax.fill_(__lowerCAmelCase ) qk._amax.fill_(__lowerCAmelCase ) qv._amax.fill_(__lowerCAmelCase ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase : Union[str, Any] =mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowerCAmelCase ) UpperCAmelCase : Dict =mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase : List[str] =mod.weight.shape[0] UpperCAmelCase : Dict =mod._weight_quantizer._amax.detach() UpperCAmelCase : List[Any] =torch.ones(__lowerCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase : Optional[int] =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase : Optional[Any] =set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase : Tuple =pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowerCAmelCase , keepdims=__lowerCAmelCase ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCAmelCase : int =amax def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=25 , __lowerCAmelCase=1_80 , __lowerCAmelCase=None )-> Dict: '''simple docstring''' if ignore is None: UpperCAmelCase : List[str] =[] elif not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : List[Any] =[ignore] UpperCAmelCase : Dict =0 for name, mod in model.named_modules(): if not hasattr(__lowerCAmelCase , '''weight''' ): continue UpperCAmelCase : Union[str, Any] =max(__lowerCAmelCase , len(__lowerCAmelCase ) ) for name, mod in model.named_modules(): UpperCAmelCase : List[Any] =getattr(__lowerCAmelCase , '''_input_quantizer''' , __lowerCAmelCase ) UpperCAmelCase : str =getattr(__lowerCAmelCase , '''_weight_quantizer''' , __lowerCAmelCase ) if not hasattr(__lowerCAmelCase , '''weight''' ): continue if type(__lowerCAmelCase ) in ignore: continue if [True for s in ignore if type(__lowerCAmelCase ) is str and s in name]: continue UpperCAmelCase : Optional[int] =f'''Act:{input_q.extra_repr()}''' UpperCAmelCase : Optional[Any] =f'''Wgt:{weight_q.extra_repr()}''' UpperCAmelCase : Optional[Any] =f'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowerCAmelCase ) <= line_width: logger.info(__lowerCAmelCase ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =0 for name, mod in model.named_modules(): if isinstance(__lowerCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if quantizer_mod is not None: assert hasattr(__lowerCAmelCase , __lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: logger.warning(f'''{name} has no {quantizer}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="both" , **__lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] =f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '''_input_quantizer''' , __lowerCAmelCase , __lowerCAmelCase ) if which in ["weight", "both"]: set_quantizer(__lowerCAmelCase , __lowerCAmelCase , '''_weight_quantizer''' , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase )-> List[Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowerCAmelCase , '''_input_quantizer''' ) or hasattr(__lowerCAmelCase , '''_weight_quantizer''' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): set_quantizers(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Tuple =f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) logger.info(__lowerCAmelCase )
348
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase ) UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase ) return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = CLIPConfig __lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config ) UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase : Tuple =[] UpperCAmelCase : Dict =image_embeds.shape[0] for i in range(snake_case__ ): UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : str =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx] UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase : Any =cos_dist[i][concept_idx] UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item() UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : List[str] =self.visual_projection(snake_case__ ) UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds ) UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : Optional[Any] =0.0 UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase : List[Any] =special_care * 0.01 UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
348
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Union[str, Any] = """encoder-decoder""" __lowerCamelCase : Union[str, Any] = True def __init__( self , **snake_case__ ) -> str: '''simple docstring''' super().__init__(**snake_case__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase : Tuple =kwargs.pop('''encoder''' ) UpperCAmelCase : Tuple =encoder_config.pop('''model_type''' ) UpperCAmelCase : Any =kwargs.pop('''decoder''' ) UpperCAmelCase : Optional[Any] =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase : Dict =AutoConfig.for_model(snake_case__ , **snake_case__ ) UpperCAmelCase : Optional[Any] =AutoConfig.for_model(snake_case__ , **snake_case__ ) UpperCAmelCase : Any =True @classmethod def UpperCAmelCase__ ( cls , snake_case__ , snake_case__ , **snake_case__ ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase : Tuple =True UpperCAmelCase : Dict =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[Any] =self.encoder.to_dict() UpperCAmelCase : List[str] =self.decoder.to_dict() UpperCAmelCase : Dict =self.__class__.model_type return output
348
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: UpperCAmelCase : int =int(spanish_id_clean[0:8] ) UpperCAmelCase : Optional[int] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = """xlm-roberta-xl""" def __init__( self , snake_case__=25_0880 , snake_case__=2560 , snake_case__=36 , snake_case__=32 , snake_case__=1_0240 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=514 , snake_case__=1 , snake_case__=0.02 , snake_case__=1e-05 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : Tuple =vocab_size UpperCAmelCase : Optional[Any] =hidden_size UpperCAmelCase : List[str] =num_hidden_layers UpperCAmelCase : List[str] =num_attention_heads UpperCAmelCase : str =hidden_act UpperCAmelCase : Any =intermediate_size UpperCAmelCase : Optional[Any] =hidden_dropout_prob UpperCAmelCase : List[str] =attention_probs_dropout_prob UpperCAmelCase : List[str] =max_position_embeddings UpperCAmelCase : List[str] =type_vocab_size UpperCAmelCase : Any =initializer_range UpperCAmelCase : List[str] =layer_norm_eps UpperCAmelCase : Optional[Any] =position_embedding_type UpperCAmelCase : Tuple =use_cache UpperCAmelCase : List[Any] =classifier_dropout class __snake_case ( lowerCamelCase__ ): @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : List[Any] ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase : Dict ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
348
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __snake_case = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( )-> str: '''simple docstring''' UpperCAmelCase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase : str =bs[:] UpperCAmelCase : int =0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase : Any =[chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =set() UpperCAmelCase : int =word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Dict =char return pairs class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ) -> str: '''simple docstring''' UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Tuple =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : int =json.load(snake_case__ ) UpperCAmelCase : Any ={v: k for k, v in self.encoder.items()} UpperCAmelCase : Optional[int] =errors # how to handle errors in decoding UpperCAmelCase : List[str] =bytes_to_unicode() UpperCAmelCase : Any ={v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : Dict =merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : Dict =[tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Optional[int] ={} UpperCAmelCase : List[str] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase : str =re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[Any] =tuple(snake_case__ ) UpperCAmelCase : str =get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase : str =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Union[str, Any] =bigram UpperCAmelCase : List[Any] =[] UpperCAmelCase : Optional[int] =0 while i < len(snake_case__ ): try: UpperCAmelCase : int =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Dict =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Any =tuple(snake_case__ ) UpperCAmelCase : Union[str, Any] =new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase : int =get_pairs(snake_case__ ) UpperCAmelCase : Tuple =''' '''.join(snake_case__ ) UpperCAmelCase : Tuple =word return word def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =[] for token in re.findall(self.pat , snake_case__ ): UpperCAmelCase : str =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(''' ''' ) ) return bpe_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[int]: '''simple docstring''' return self.decoder.get(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =''''''.join(snake_case__ ) UpperCAmelCase : int =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : str =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) UpperCAmelCase : str =0 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : List[Any] =token_index writer.write(''' '''.join(snake_case__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Any =[self.sep_token_id] UpperCAmelCase : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self , snake_case__ , snake_case__=False , **snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): UpperCAmelCase : Dict =''' ''' + text return (text, kwargs) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> str: '''simple docstring''' return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , snake_case__ ) -> List[int]: '''simple docstring''' UpperCAmelCase : List[Any] =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) UpperCAmelCase : List[str] =''' '''.join(snake_case__ ) UpperCAmelCase : str =self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: UpperCAmelCase : List[Any] =input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = DDIMPipeline __lowerCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __lowerCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } __lowerCamelCase : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __lowerCamelCase : Optional[int] = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) UpperCAmelCase : int =DDIMScheduler() UpperCAmelCase : str ={'''unet''': unet, '''scheduler''': scheduler} return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Union[str, Any]: '''simple docstring''' if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : List[str] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Union[str, Any] =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : Any ={ '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple ='''cpu''' UpperCAmelCase : Tuple =self.get_dummy_components() UpperCAmelCase : str =self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] =self.get_dummy_inputs(snake_case__ ) UpperCAmelCase : int =pipe(**snake_case__ ).images UpperCAmelCase : List[str] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCAmelCase : Any =np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) UpperCAmelCase : List[Any] =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ , 1e-3 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ddpm-cifar10-32''' UpperCAmelCase : List[str] =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Tuple =DDIMScheduler() UpperCAmelCase : List[str] =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddim.to(snake_case__ ) ddim.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int =torch.manual_seed(0 ) UpperCAmelCase : int =ddim(generator=snake_case__ , eta=0.0 , output_type='''numpy''' ).images UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Dict =np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ddpm-ema-bedroom-256''' UpperCAmelCase : List[Any] =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : str =DDIMScheduler.from_pretrained(snake_case__ ) UpperCAmelCase : Union[str, Any] =DDIMPipeline(unet=snake_case__ , scheduler=snake_case__ ) ddpm.to(snake_case__ ) ddpm.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[Any] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =ddpm(generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Dict =np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
from __future__ import annotations from fractions import Fraction def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCAmelCase_ ( __lowerCAmelCase )-> list[str]: '''simple docstring''' UpperCAmelCase : str =[] UpperCAmelCase : Union[str, Any] =11 UpperCAmelCase : List[str] =int('''1''' + '''0''' * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase : Any =10 return solutions def lowerCAmelCase_ ( __lowerCAmelCase = 2 )-> int: '''simple docstring''' UpperCAmelCase : str =1.0 for fraction in fraction_list(__lowerCAmelCase ): UpperCAmelCase : str =Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
348
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Optional[int] =[] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : str =[] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] ='''imagenet-1k-id2label.json''' UpperCAmelCase : str =10_00 UpperCAmelCase : List[Any] ='''huggingface/label-files''' UpperCAmelCase : int =num_labels UpperCAmelCase : int =json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase : List[str] ={int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Any =idalabel UpperCAmelCase : int ={v: k for k, v in idalabel.items()} UpperCAmelCase : str =CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": UpperCAmelCase : str =[1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": UpperCAmelCase : Dict =[1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase : Tuple =[2, 2, 20] UpperCAmelCase : Union[str, Any] =[3, 12, 16] UpperCAmelCase : int =[1_92, 7_68, 10_24] UpperCAmelCase : Dict =CvtForImageClassification(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCAmelCase : List[str] =image_size UpperCAmelCase : Dict =torch.load(__lowerCAmelCase , map_location=torch.device('''cpu''' ) ) UpperCAmelCase : Union[str, Any] =OrderedDict() UpperCAmelCase : Optional[int] =[] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase : Tuple =list_of_state_dict + cls_token(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): UpperCAmelCase : Union[str, Any] =list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Tuple =list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): UpperCAmelCase : Union[str, Any] =original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_84, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __snake_case = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
348
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
1
__snake_case = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __snake_case = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __snake_case = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
348
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
1
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> list: '''simple docstring''' UpperCAmelCase : Union[str, Any] =word.split() def justify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: UpperCAmelCase : str =max_width - width UpperCAmelCase : Optional[int] =len(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase : List[str] =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase : Dict =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase : Dict =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__lowerCAmelCase ): num_spaces_between_words_list[i] += 1 UpperCAmelCase : Union[str, Any] =[] for i in range(__lowerCAmelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =[] UpperCAmelCase : list[str] =[] UpperCAmelCase : Optional[int] =0 for word in words: if width + len(__lowerCAmelCase ) + len(__lowerCAmelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__lowerCAmelCase ) width += len(__lowerCAmelCase ) else: # justify the line and add it to result answer.append(justify(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) # reset new line and new width UpperCAmelCase , UpperCAmelCase : Optional[Any] =[word], len(__lowerCAmelCase ) UpperCAmelCase : List[str] =max_width - width - len(__lowerCAmelCase ) answer.append(''' '''.join(__lowerCAmelCase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
348
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __snake_case = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] __lowerCamelCase : Union[str, Any] = GPTaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , **snake_case__ , ) -> Any: '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =kwargs.pop('''add_bos_token''' , snake_case__ ) UpperCAmelCase : Optional[int] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: UpperCAmelCase : Tuple =getattr(snake_case__ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase : Any =add_prefix_space UpperCAmelCase : List[Any] =pre_tok_class(**snake_case__ ) UpperCAmelCase : Optional[Any] =add_prefix_space def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : List[str] =kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Optional[Any] =kwargs.get('''is_split_into_words''' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : Any =self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: UpperCAmelCase : Dict =input_ids[-self.model_max_length :] return input_ids
348
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
1
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =[0] * len(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Tuple =[1] * len(__lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCAmelCase ) ): if indegree[i] == 0: queue.append(__lowerCAmelCase ) while queue: UpperCAmelCase : Optional[Any] =queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase : int =long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCAmelCase ) print(max(__lowerCAmelCase ) ) # Adjacency list of Graph __snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
348
import qiskit def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
348
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : Union[str, Any] =hidden_size UpperCAmelCase : Union[str, Any] =feat_extract_norm UpperCAmelCase : Optional[Any] =feat_extract_activation UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =conv_bias UpperCAmelCase : Tuple =num_conv_pos_embeddings UpperCAmelCase : Dict =num_conv_pos_embedding_groups UpperCAmelCase : str =len(self.conv_dim ) UpperCAmelCase : Dict =num_hidden_layers UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : List[Any] =squeeze_factor UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : int =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[int] =relative_attention UpperCAmelCase : Tuple =norm_rel_ebd UpperCAmelCase : List[Any] =list(snake_case__ ) UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =num_attention_heads UpperCAmelCase : Any =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : str =feat_proj_dropout UpperCAmelCase : Union[str, Any] =final_dropout UpperCAmelCase : Optional[int] =layer_norm_eps UpperCAmelCase : str =feature_layer_norm_eps UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Union[str, Any] =apply_spec_augment UpperCAmelCase : Optional[Any] =mask_time_prob UpperCAmelCase : Tuple =mask_time_length UpperCAmelCase : str =mask_time_min_masks UpperCAmelCase : Optional[int] =mask_feature_prob UpperCAmelCase : Optional[Any] =mask_feature_length UpperCAmelCase : List[Any] =mask_feature_min_masks # ctc loss UpperCAmelCase : str =ctc_loss_reduction UpperCAmelCase : Optional[int] =ctc_zero_infinity # sequence classification UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum UpperCAmelCase : int =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __snake_case = logging.get_logger(__name__) # General docstring __snake_case = '''MobileNetV1Config''' # Base docstring __snake_case = '''google/mobilenet_v1_1.0_224''' __snake_case = [1, 10_24, 7, 7] # Image classification docstring __snake_case = '''google/mobilenet_v1_1.0_224''' __snake_case = '''tabby, tabby cat''' __snake_case = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> int: '''simple docstring''' UpperCAmelCase : Dict ={} if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Any =model.mobilenet_va else: UpperCAmelCase : str =model UpperCAmelCase : Union[str, Any] ='''MobilenetV1/Conv2d_0/''' UpperCAmelCase : Optional[Any] =backbone.conv_stem.convolution.weight UpperCAmelCase : str =backbone.conv_stem.normalization.bias UpperCAmelCase : Optional[Any] =backbone.conv_stem.normalization.weight UpperCAmelCase : List[Any] =backbone.conv_stem.normalization.running_mean UpperCAmelCase : List[Any] =backbone.conv_stem.normalization.running_var for i in range(13 ): UpperCAmelCase : Any =i + 1 UpperCAmelCase : Tuple =i * 2 UpperCAmelCase : Optional[Any] =backbone.layer[pt_index] UpperCAmelCase : Optional[int] =f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' UpperCAmelCase : Union[str, Any] =pointer.convolution.weight UpperCAmelCase : str =pointer.normalization.bias UpperCAmelCase : int =pointer.normalization.weight UpperCAmelCase : str =pointer.normalization.running_mean UpperCAmelCase : Dict =pointer.normalization.running_var UpperCAmelCase : List[str] =backbone.layer[pt_index + 1] UpperCAmelCase : List[Any] =f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' UpperCAmelCase : Any =pointer.convolution.weight UpperCAmelCase : int =pointer.normalization.bias UpperCAmelCase : Dict =pointer.normalization.weight UpperCAmelCase : List[Any] =pointer.normalization.running_mean UpperCAmelCase : Optional[int] =pointer.normalization.running_var if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Tuple ='''MobilenetV1/Logits/Conv2d_1c_1x1/''' UpperCAmelCase : str =model.classifier.weight UpperCAmelCase : Dict =model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model UpperCAmelCase : Tuple =tf.train.list_variables(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] ={} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) UpperCAmelCase : Dict =tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : int =array # Build TF to PyTorch weights loading map UpperCAmelCase : List[Any] =_build_tf_to_pytorch_map(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue UpperCAmelCase : Optional[Any] =tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) UpperCAmelCase : int =np.transpose(__lowerCAmelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer UpperCAmelCase : int =array.squeeze().transpose() else: UpperCAmelCase : Tuple =np.transpose(__lowerCAmelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) UpperCAmelCase : Optional[int] =torch.from_numpy(__lowerCAmelCase ) tf_weights.pop(__lowerCAmelCase , __lowerCAmelCase ) tf_weights.pop(name + '''/RMSProp''' , __lowerCAmelCase ) tf_weights.pop(name + '''/RMSProp_1''' , __lowerCAmelCase ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , __lowerCAmelCase ) logger.info(f'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> torch.Tensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] =features.shape[-2:] UpperCAmelCase , UpperCAmelCase : Tuple =conv_layer.stride UpperCAmelCase , UpperCAmelCase : Union[str, Any] =conv_layer.kernel_size if in_height % stride_height == 0: UpperCAmelCase : Any =max(kernel_height - stride_height , 0 ) else: UpperCAmelCase : Optional[Any] =max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: UpperCAmelCase : Tuple =max(kernel_width - stride_width , 0 ) else: UpperCAmelCase : List[Any] =max(kernel_width - (in_width % stride_width) , 0 ) UpperCAmelCase : List[str] =pad_along_width // 2 UpperCAmelCase : str =pad_along_width - pad_left UpperCAmelCase : Dict =pad_along_height // 2 UpperCAmelCase : Dict =pad_along_height - pad_top UpperCAmelCase : int =(pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__lowerCAmelCase , __lowerCAmelCase , '''constant''' , 0.0 ) class __snake_case ( nn.Module ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = 1 , snake_case__ = False , snake_case__ = True , snake_case__ = True , ) -> None: '''simple docstring''' super().__init__() UpperCAmelCase : str =config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) UpperCAmelCase : Tuple =0 if config.tf_padding else int((kernel_size - 1) / 2 ) UpperCAmelCase : int =nn.Convad( in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=snake_case__ , stride=snake_case__ , padding=snake_case__ , groups=snake_case__ , bias=snake_case__ , padding_mode='''zeros''' , ) if use_normalization: UpperCAmelCase : str =nn.BatchNormad( num_features=snake_case__ , eps=config.layer_norm_eps , momentum=0.9997 , affine=snake_case__ , track_running_stats=snake_case__ , ) else: UpperCAmelCase : Union[str, Any] =None if use_activation: if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =ACTaFN[use_activation] elif isinstance(config.hidden_act , snake_case__ ): UpperCAmelCase : Tuple =ACTaFN[config.hidden_act] else: UpperCAmelCase : Dict =config.hidden_act else: UpperCAmelCase : int =None def UpperCAmelCase__ ( self , snake_case__ ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: UpperCAmelCase : Union[str, Any] =apply_tf_padding(snake_case__ , self.convolution ) UpperCAmelCase : List[str] =self.convolution(snake_case__ ) if self.normalization is not None: UpperCAmelCase : str =self.normalization(snake_case__ ) if self.activation is not None: UpperCAmelCase : str =self.activation(snake_case__ ) return features class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[Any] = MobileNetVaConfig __lowerCamelCase : str = load_tf_weights_in_mobilenet_va __lowerCamelCase : Tuple = """mobilenet_v1""" __lowerCamelCase : Any = """pixel_values""" __lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ ( self , snake_case__ ) -> None: '''simple docstring''' if isinstance(snake_case__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __snake_case = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , lowerCamelCase__ , ) class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ , snake_case__ = True ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Any =config UpperCAmelCase : str =32 UpperCAmelCase : Dict =max(int(depth * config.depth_multiplier ) , config.min_depth ) UpperCAmelCase : Union[str, Any] =MobileNetVaConvLayer( snake_case__ , in_channels=config.num_channels , out_channels=snake_case__ , kernel_size=3 , stride=2 , ) UpperCAmelCase : str =[1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCAmelCase : List[str] =nn.ModuleList() for i in range(13 ): UpperCAmelCase : Optional[int] =out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCAmelCase : int =max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=3 , stride=strides[i] , groups=snake_case__ , ) ) self.layer.append( MobileNetVaConvLayer( snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , kernel_size=1 , ) ) UpperCAmelCase : int =nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[int]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' UpperCAmelCase : Optional[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase : Optional[Any] =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) UpperCAmelCase : Union[str, Any] =self.conv_stem(snake_case__ ) UpperCAmelCase : Union[str, Any] =() if output_hidden_states else None for i, layer_module in enumerate(self.layer ): UpperCAmelCase : List[Any] =layer_module(snake_case__ ) if output_hidden_states: UpperCAmelCase : Union[str, Any] =all_hidden_states + (hidden_states,) UpperCAmelCase : int =hidden_states if self.pooler is not None: UpperCAmelCase : Optional[int] =torch.flatten(self.pooler(snake_case__ ) , start_dim=1 ) else: UpperCAmelCase : Any =None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=snake_case__ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , lowerCamelCase__ , ) class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ ) -> None: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : List[Any] =config.num_labels UpperCAmelCase : int =MobileNetVaModel(snake_case__ ) UpperCAmelCase : Union[str, Any] =self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCAmelCase : Union[str, Any] =nn.Dropout(config.classifier_dropout_prob , inplace=snake_case__ ) UpperCAmelCase : str =nn.Linear(snake_case__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase : Union[str, Any] =self.mobilenet_va(snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ ) UpperCAmelCase : List[str] =outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase : Tuple =self.classifier(self.dropout(snake_case__ ) ) UpperCAmelCase : List[str] =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase : Optional[Any] ='''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase : Optional[Any] ='''single_label_classification''' else: UpperCAmelCase : Optional[int] ='''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase : Optional[int] =MSELoss() if self.num_labels == 1: UpperCAmelCase : Union[str, Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase : Any =loss_fct(snake_case__ , snake_case__ ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase : List[Any] =CrossEntropyLoss() UpperCAmelCase : Any =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase : Optional[Any] =BCEWithLogitsLoss() UpperCAmelCase : Dict =loss_fct(snake_case__ , snake_case__ ) if not return_dict: UpperCAmelCase : Optional[int] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states , )
348
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __snake_case = 4 __snake_case = 3 class __snake_case ( lowerCamelCase__ ): pass def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for shard in shards: for i in range(__lowerCAmelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =int(os.environ['''RANK'''] ) UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase : List[Any] =ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCAmelCase ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase ) parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 ) UpperCAmelCase : Any =parser.parse_args() UpperCAmelCase : List[str] =args.streaming UpperCAmelCase : Tuple =args.num_workers UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]} UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase ) if not streaming: UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) ) UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase ) UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase ) UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : str =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : List[Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
348
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __snake_case = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __snake_case ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=None , snake_case__=True , snake_case__=True , snake_case__=None , ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase : int =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Union[str, Any] =num_channels UpperCAmelCase : Optional[int] =image_size UpperCAmelCase : Optional[int] =min_resolution UpperCAmelCase : Tuple =max_resolution UpperCAmelCase : Optional[int] =size UpperCAmelCase : Union[str, Any] =do_normalize UpperCAmelCase : Dict =do_convert_rgb UpperCAmelCase : Any =[512, 1024, 2048, 4096] UpperCAmelCase : Optional[int] =patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Dict ='''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' UpperCAmelCase : Union[str, Any] =Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple =PixaStructImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Dict =self.image_processor_tester.prepare_dummy_image() UpperCAmelCase : Dict =self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase : List[Any] =2048 UpperCAmelCase : Optional[Any] =image_processor(snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase : Optional[Any] =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase : str =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase : Dict =image_processor( snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase : Tuple =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase : int =True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase : Union[str, Any] =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches UpperCAmelCase : int ='''Hello''' UpperCAmelCase : List[Any] =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase : Dict =image_processor( snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase : Optional[Any] =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase : Union[str, Any] =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase : List[str] =image_processor( snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase : Any =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase : str =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase : Tuple =image_processor( snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase : int =3 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , '''do_normalize''' ) ) self.assertTrue(hasattr(snake_case__ , '''do_convert_rgb''' ) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase : str =( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase : Optional[int] =image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase : Dict =image_processor( snake_case__ , return_tensors='''pt''' , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
1
import argparse import copy def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] ={} with open(__lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCAmelCase : Any =[] _list.append([line.split()[1], line.split()[2]] ) UpperCAmelCase : List[Any] =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCAmelCase : Dict =[] _list.append([line.split()[0], line.split()[2]] ) UpperCAmelCase : Tuple =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' with open(__lowerCAmelCase ) as f: UpperCAmelCase : Optional[Any] =f.read(1 ) UpperCAmelCase : Optional[Any] =start_node UpperCAmelCase : List[str] =[] UpperCAmelCase : Optional[Any] =start_node UpperCAmelCase : str =0 while visiting not in first_solution: UpperCAmelCase : Optional[Any] =1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCAmelCase ) and k[0] not in first_solution: UpperCAmelCase : List[Any] =k[1] UpperCAmelCase : List[str] =k[0] first_solution.append(__lowerCAmelCase ) UpperCAmelCase : Any =distance_of_first_solution + int(__lowerCAmelCase ) UpperCAmelCase : int =best_node first_solution.append(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCAmelCase : Tuple =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Tuple =[] for n in solution[1:-1]: UpperCAmelCase : List[str] =solution.index(__lowerCAmelCase ) for kn in solution[1:-1]: UpperCAmelCase : Optional[int] =solution.index(__lowerCAmelCase ) if n == kn: continue UpperCAmelCase : Optional[Any] =copy.deepcopy(__lowerCAmelCase ) UpperCAmelCase : Tuple =kn UpperCAmelCase : Any =n UpperCAmelCase : List[Any] =0 for k in _tmp[:-1]: UpperCAmelCase : Optional[int] =_tmp[_tmp.index(__lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCAmelCase : Any =distance + int(i[1] ) _tmp.append(__lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCAmelCase : Optional[Any] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Dict =1 UpperCAmelCase : Optional[Any] =first_solution UpperCAmelCase : Dict =[] UpperCAmelCase : Any =distance_of_first_solution UpperCAmelCase : Any =solution while count <= iters: UpperCAmelCase : Tuple =find_neighborhood(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =0 UpperCAmelCase : int =neighborhood[index_of_best_solution] UpperCAmelCase : int =len(__lowerCAmelCase ) - 1 UpperCAmelCase : Union[str, Any] =False while not found: UpperCAmelCase : Dict =0 while i < len(__lowerCAmelCase ): if best_solution[i] != solution[i]: UpperCAmelCase : Union[str, Any] =best_solution[i] UpperCAmelCase : Tuple =solution[i] break UpperCAmelCase : int =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCAmelCase : Optional[Any] =True UpperCAmelCase : Tuple =best_solution[:-1] UpperCAmelCase : Dict =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCAmelCase : Union[str, Any] =cost UpperCAmelCase : int =solution else: UpperCAmelCase : Tuple =index_of_best_solution + 1 UpperCAmelCase : Union[str, Any] =neighborhood[index_of_best_solution] if len(__lowerCAmelCase ) >= size: tabu_list.pop(0 ) UpperCAmelCase : Tuple =count + 1 return best_solution_ever, best_cost def lowerCAmelCase_ ( __lowerCAmelCase=None )-> Any: '''simple docstring''' UpperCAmelCase : Any =generate_neighbours(args.File ) UpperCAmelCase , UpperCAmelCase : int =generate_first_solution( args.File , __lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Any =tabu_search( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = MgpstrTokenizer __lowerCamelCase : Optional[int] = False __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : List[Any] = False def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase : List[str] =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on UpperCAmelCase : Tuple =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(snake_case__ ) + '''\n''' ) def UpperCAmelCase__ ( self , **snake_case__ ) -> Any: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] ='''tester''' UpperCAmelCase : Tuple ='''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase : Tuple ='''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) UpperCAmelCase : List[str] =tokenizer.encode([special_token] , add_special_tokens=snake_case__ ) self.assertEqual(len(snake_case__ ) , 1 ) UpperCAmelCase : Tuple =tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase , UpperCAmelCase : Dict =self.get_input_output_texts(snake_case__ ) UpperCAmelCase : List[str] =tokenizer.tokenize(snake_case__ ) UpperCAmelCase : Optional[int] =tokenizer.convert_tokens_to_ids(snake_case__ ) UpperCAmelCase : Optional[int] =tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase : Tuple =tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertNotEqual(len(snake_case__ ) , 0 ) UpperCAmelCase : Any =tokenizer.decode(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , snake_case__ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False )-> Tuple: '''simple docstring''' try: UpperCAmelCase : Union[str, Any] =os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase : Optional[int] =default else: # KEY is set, convert it to True or False. try: UpperCAmelCase : Optional[int] =strtobool(__lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value __snake_case = parse_flag_from_env('''RUN_SLOW''', default=False) __snake_case = parse_flag_from_env('''RUN_REMOTE''', default=False) __snake_case = parse_flag_from_env('''RUN_LOCAL''', default=True) __snake_case = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __snake_case = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __snake_case = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __snake_case = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __snake_case = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __snake_case = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __snake_case = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __snake_case = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' try: import faiss # noqa except ImportError: UpperCAmelCase : List[str] =unittest.skip('''test requires faiss''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' try: import regex # noqa except ImportError: UpperCAmelCase : Any =unittest.skip('''test requires regex''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' try: import elasticsearch # noqa except ImportError: UpperCAmelCase : Optional[int] =unittest.skip('''test requires elasticsearch''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: UpperCAmelCase : Union[str, Any] =unittest.skip('''test requires sqlalchemy''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' if not config.TORCH_AVAILABLE: UpperCAmelCase : Any =unittest.skip('''test requires PyTorch''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' if not config.TF_AVAILABLE: UpperCAmelCase : Any =unittest.skip('''test requires TensorFlow''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[int]: '''simple docstring''' if not config.JAX_AVAILABLE: UpperCAmelCase : Dict =unittest.skip('''test requires JAX''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' if not config.PIL_AVAILABLE: UpperCAmelCase : List[str] =unittest.skip('''test requires Pillow''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__lowerCAmelCase ) else: return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__lowerCAmelCase ) else: return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCAmelCase ) else: return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' def _require_spacy_model(__lowerCAmelCase ): try: import spacy # noqa F401 spacy.load(__lowerCAmelCase ) except ImportError: return unittest.skip('''test requires spacy''' )(__lowerCAmelCase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__lowerCAmelCase ) )(__lowerCAmelCase ) else: return test_case return _require_spacy_model def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__lowerCAmelCase ) else: return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[int]: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__lowerCAmelCase ) else: return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: UpperCAmelCase : Union[str, Any] =unittest.skip('''test is slow''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[int]: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: UpperCAmelCase : Any =unittest.skip('''test is local''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: UpperCAmelCase : Optional[Any] =unittest.skip('''test is packaged''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: UpperCAmelCase : List[Any] =unittest.skip('''test requires remote''' )(__lowerCAmelCase ) return test_case def lowerCAmelCase_ ( *__lowerCAmelCase )-> int: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__lowerCAmelCase ) and name.startswith('''test''' ): for decorator in decorators: UpperCAmelCase : Optional[Any] =decorator(__lowerCAmelCase ) setattr(cls , __lowerCAmelCase , __lowerCAmelCase ) return cls return decorate class __snake_case ( lowerCamelCase__ ): pass class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : int = 1 __lowerCamelCase : Optional[int] = 2 @contextmanager def lowerCAmelCase_ ( __lowerCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , __lowerCAmelCase=1e-1_6 )-> Tuple: '''simple docstring''' UpperCAmelCase : Optional[Any] =requests.Session().request def timeout_request(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): # Change the url to an invalid url so that the connection hangs UpperCAmelCase : int ='''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) UpperCAmelCase : Union[str, Any] =timeout try: return online_request(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier UpperCAmelCase : Dict =url UpperCAmelCase : Union[str, Any] =e.args[0] UpperCAmelCase : Optional[Any] =(max_retry_error.args[0].replace('''10.255.255.1''' , f'''OfflineMock[{url}]''' ),) UpperCAmelCase : Any =(max_retry_error,) raise def raise_connection_error(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __lowerCAmelCase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def lowerCAmelCase_ ( *__lowerCAmelCase , **__lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Tuple =str(Path().resolve() ) with tempfile.TemporaryDirectory(*__lowerCAmelCase , **__lowerCAmelCase ) as tmp_dir: try: os.chdir(__lowerCAmelCase ) yield finally: os.chdir(__lowerCAmelCase ) @contextmanager def lowerCAmelCase_ ( )-> str: '''simple docstring''' import gc gc.collect() UpperCAmelCase : int =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowerCAmelCase_ ( )-> List[Any]: '''simple docstring''' import gc gc.collect() UpperCAmelCase : Optional[int] =pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' return deepcopy(__lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): try: return func(*__lowerCAmelCase , **__lowerCAmelCase ) except HTTPError as err: if str(__lowerCAmelCase ).startswith('''500''' ) or str(__lowerCAmelCase ).startswith('''502''' ): pytest.xfail(str(__lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , __lowerCAmelCase ) class __snake_case : def __init__( self , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =returncode UpperCAmelCase : int =stdout UpperCAmelCase : Optional[int] =stderr async def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' while True: UpperCAmelCase : Union[str, Any] =await stream.readline() if line: callback(__lowerCAmelCase ) else: break async def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False )-> _RunOutput: '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(__lowerCAmelCase ) ) UpperCAmelCase : Any =await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase : int =[] UpperCAmelCase : Dict =[] def tee(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="" ): UpperCAmelCase : Dict =line.decode('''utf-8''' ).rstrip() sink.append(__lowerCAmelCase ) if not quiet: print(__lowerCAmelCase , __lowerCAmelCase , file=__lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __lowerCAmelCase : tee(__lowerCAmelCase , __lowerCAmelCase , sys.stderr , label='''stderr:''' ) ), ] , timeout=__lowerCAmelCase , ) return _RunOutput(await p.wait() , __lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1_80 , __lowerCAmelCase=False , __lowerCAmelCase=True )-> _RunOutput: '''simple docstring''' UpperCAmelCase : List[Any] =asyncio.get_event_loop() UpperCAmelCase : Any =loop.run_until_complete( _stream_subprocess(__lowerCAmelCase , env=__lowerCAmelCase , stdin=__lowerCAmelCase , timeout=__lowerCAmelCase , quiet=__lowerCAmelCase , echo=__lowerCAmelCase ) ) UpperCAmelCase : List[str] =''' '''.join(__lowerCAmelCase ) if result.returncode > 0: UpperCAmelCase : Optional[Any] ='''\n'''.join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) UpperCAmelCase : Any =re.sub(R'''^gw''' , '''''' , __lowerCAmelCase , 0 , re.M ) return int(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =2_95_00 UpperCAmelCase : Dict =pytest_xdist_worker_id() return port + uniq_delta
348
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Any = """mvp""" __lowerCamelCase : Any = ["""past_key_values"""] __lowerCamelCase : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : List[Any] =max_position_embeddings UpperCAmelCase : List[str] =d_model UpperCAmelCase : List[str] =encoder_ffn_dim UpperCAmelCase : int =encoder_layers UpperCAmelCase : Any =encoder_attention_heads UpperCAmelCase : List[Any] =decoder_ffn_dim UpperCAmelCase : Optional[Any] =decoder_layers UpperCAmelCase : int =decoder_attention_heads UpperCAmelCase : Dict =dropout UpperCAmelCase : List[str] =attention_dropout UpperCAmelCase : List[str] =activation_dropout UpperCAmelCase : int =activation_function UpperCAmelCase : int =init_std UpperCAmelCase : str =encoder_layerdrop UpperCAmelCase : int =decoder_layerdrop UpperCAmelCase : Union[str, Any] =classifier_dropout UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : Tuple =encoder_layers UpperCAmelCase : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : int =use_prompt UpperCAmelCase : Union[str, Any] =prompt_length UpperCAmelCase : Union[str, Any] =prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , snake_case__ ): UpperCAmelCase : Dict =self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' '''The config can simply be saved and uploaded again to be fixed.''' )
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
1
import math import tensorflow as tf from packaging import version def lowerCAmelCase_ ( __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =tf.convert_to_tensor(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =tf.convert_to_tensor(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =tf.cast(math.pi , x.dtype ) UpperCAmelCase : str =tf.cast(0.044715 , x.dtype ) UpperCAmelCase : Optional[Any] =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__lowerCAmelCase , 3 )) )) return x * cdf def lowerCAmelCase_ ( __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : str =tf.convert_to_tensor(__lowerCAmelCase ) return x * tf.tanh(tf.math.softplus(__lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =tf.convert_to_tensor(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =tf.cast(0.044715 , x.dtype ) UpperCAmelCase : List[str] =tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : str =tf.convert_to_tensor(__lowerCAmelCase ) UpperCAmelCase : List[Any] =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' return tf.clip_by_value(_gelu(__lowerCAmelCase ) , -10 , 10 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=-1 )-> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] =tf.split(__lowerCAmelCase , 2 , axis=__lowerCAmelCase ) return a * tf.math.sigmoid(__lowerCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def lowerCAmelCase_ ( __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' return tf.keras.activations.gelu(__lowerCAmelCase , approximate=__lowerCAmelCase ) __snake_case = tf.keras.activations.gelu __snake_case = approximate_gelu_wrap else: __snake_case = _gelu __snake_case = _gelu_new __snake_case = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def lowerCAmelCase_ ( __lowerCAmelCase )-> Dict: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
348
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase ) UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase ) return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = CLIPConfig __lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config ) UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase : Tuple =[] UpperCAmelCase : Dict =image_embeds.shape[0] for i in range(snake_case__ ): UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : str =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx] UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase : Any =cos_dist[i][concept_idx] UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item() UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : List[str] =self.visual_projection(snake_case__ ) UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds ) UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : Optional[Any] =0.0 UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase : List[Any] =special_care * 0.01 UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
348
1
def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __snake_case = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __snake_case = { '''ctrl''': 2_56, } __snake_case = { '''Pregnancy''': 16_86_29, '''Christianity''': 76_75, '''Explain''': 10_64_23, '''Fitness''': 6_34_40, '''Saving''': 6_31_63, '''Ask''': 2_71_71, '''Ass''': 9_59_85, '''Joke''': 16_35_09, '''Questions''': 4_56_22, '''Thoughts''': 4_96_05, '''Retail''': 5_23_42, '''Feminism''': 16_43_38, '''Writing''': 1_19_92, '''Atheism''': 19_22_63, '''Netflix''': 4_86_16, '''Computing''': 3_96_39, '''Opinion''': 4_32_13, '''Alone''': 4_49_67, '''Funny''': 5_89_17, '''Gaming''': 4_03_58, '''Human''': 40_88, '''India''': 13_31, '''Joker''': 7_71_38, '''Diet''': 3_62_06, '''Legal''': 1_18_59, '''Norman''': 49_39, '''Tip''': 7_26_89, '''Weight''': 5_23_43, '''Movies''': 4_62_73, '''Running''': 2_34_25, '''Science''': 20_90, '''Horror''': 3_77_93, '''Confession''': 6_05_72, '''Finance''': 1_22_50, '''Politics''': 1_63_60, '''Scary''': 19_19_85, '''Support''': 1_26_54, '''Technologies''': 3_25_16, '''Teenage''': 6_61_60, '''Event''': 3_27_69, '''Learned''': 6_74_60, '''Notion''': 18_27_70, '''Wikipedia''': 3_75_83, '''Books''': 66_65, '''Extract''': 7_60_50, '''Confessions''': 10_27_01, '''Conspiracy''': 7_59_32, '''Links''': 6_36_74, '''Narcissus''': 15_04_25, '''Relationship''': 5_47_66, '''Relationships''': 13_47_96, '''Reviews''': 4_16_71, '''News''': 42_56, '''Translation''': 2_68_20, '''multilingual''': 12_84_06, } def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =set() UpperCAmelCase : Dict =word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase : Dict =char UpperCAmelCase : Tuple =set(__lowerCAmelCase ) return pairs class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = CONTROL_CODES def __init__( self , snake_case__ , snake_case__ , snake_case__="<unk>" , **snake_case__ ) -> int: '''simple docstring''' super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase : Optional[Any] =json.load(snake_case__ ) UpperCAmelCase : Dict ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase : List[Any] =merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase : Any =[tuple(merge.split() ) for merge in merges] UpperCAmelCase : List[str] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase : Tuple ={} @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase : Optional[int] =tuple(snake_case__ ) UpperCAmelCase : int =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) UpperCAmelCase : List[str] =get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase : Dict =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase : Dict =bigram UpperCAmelCase : Optional[int] =[] UpperCAmelCase : int =0 while i < len(snake_case__ ): try: UpperCAmelCase : List[str] =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase : Optional[int] =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase : Union[str, Any] =tuple(snake_case__ ) UpperCAmelCase : Optional[Any] =new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase : Tuple =get_pairs(snake_case__ ) UpperCAmelCase : Dict ='''@@ '''.join(snake_case__ ) UpperCAmelCase : int =word[:-4] UpperCAmelCase : int =word return word def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Dict =re.findall(r'''\S+\n?''' , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =''' '''.join(snake_case__ ).replace('''@@ ''' , '''''' ).strip() return out_string def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase : Any =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '''\n''' ) UpperCAmelCase : Optional[Any] =0 with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase : str =token_index writer.write(''' '''.join(snake_case__ ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
348
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: UpperCAmelCase : int =int(spanish_id_clean[0:8] ) UpperCAmelCase : Optional[int] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
1
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = False )-> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis UpperCAmelCase : Union[str, Any] =[ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] UpperCAmelCase : Any =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check UpperCAmelCase : List[Any] =primes[:idx] break UpperCAmelCase , UpperCAmelCase : Union[str, Any] =n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: UpperCAmelCase : Union[str, Any] =False for r in range(__lowerCAmelCase ): UpperCAmelCase : Optional[Any] =pow(__lowerCAmelCase , d * 2**r , __lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): UpperCAmelCase : str =True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCAmelCase_ ( )-> None: '''simple docstring''' assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
348
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCAmelCase) , (UpperCAmelCase)) : int =extended_euclid(__lowerCAmelCase , a % b ) UpperCAmelCase : Dict =a // b return (y, x - k * y) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' ((UpperCAmelCase) , (UpperCAmelCase)) : int =extended_euclid(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =na * na UpperCAmelCase : int =ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' ((UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] =extended_euclid(__lowerCAmelCase , __lowerCAmelCase ) if b < 0: UpperCAmelCase : List[str] =(b % n + n) % n return b def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =invert_modulo(__lowerCAmelCase , __lowerCAmelCase ), invert_modulo(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Optional[int] =na * na UpperCAmelCase : Union[str, Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } __snake_case = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] __lowerCamelCase : Optional[Any] = BartTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: UpperCAmelCase : str =getattr(snake_case__ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase : Union[str, Any] =add_prefix_space UpperCAmelCase : Optional[int] =pre_tok_class(**snake_case__ ) UpperCAmelCase : List[str] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : Optional[Any] ='''post_processor''' UpperCAmelCase : Any =getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: UpperCAmelCase : str =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : Union[str, Any] =tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase : Any =tuple(state['''cls'''] ) UpperCAmelCase : Dict =False if state.get('''add_prefix_space''' , snake_case__ ) != add_prefix_space: UpperCAmelCase : List[Any] =add_prefix_space UpperCAmelCase : Dict =True if state.get('''trim_offsets''' , snake_case__ ) != trim_offsets: UpperCAmelCase : Union[str, Any] =trim_offsets UpperCAmelCase : int =True if changes_to_apply: UpperCAmelCase : Tuple =getattr(snake_case__ , state.pop('''type''' ) ) UpperCAmelCase : Optional[Any] =component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value UpperCAmelCase : str =value def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Any =kwargs.get('''is_split_into_words''' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , *snake_case__ , **snake_case__ ) -> BatchEncoding: '''simple docstring''' UpperCAmelCase : Optional[int] =kwargs.get('''is_split_into_words''' , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : str =self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str =[self.sep_token_id] UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' def remove_articles(__lowerCAmelCase ): UpperCAmelCase : List[Any] =re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__lowerCAmelCase , ''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): UpperCAmelCase : int =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Dict =[any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 1_00 def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : Optional[int] =[rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase : List[str] =Counter(__lowerCAmelCase ) UpperCAmelCase : Tuple =Counter(__lowerCAmelCase ) UpperCAmelCase : List[Any] =Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase : Dict =scount * numref UpperCAmelCase : int =Counter(__lowerCAmelCase ) UpperCAmelCase : int =Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase : List[str] =ccount * numref # KEEP UpperCAmelCase : Optional[int] =sgramcounter_rep & cgramcounter_rep UpperCAmelCase : Tuple =keepgramcounter_rep & rgramcounter UpperCAmelCase : Union[str, Any] =sgramcounter_rep & rgramcounter UpperCAmelCase : Dict =0 UpperCAmelCase : Dict =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : int =1 UpperCAmelCase : List[str] =1 if len(__lowerCAmelCase ) > 0: UpperCAmelCase : str =keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase : str =keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase : Optional[int] =0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase : Union[str, Any] =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase : str =sgramcounter_rep - cgramcounter_rep UpperCAmelCase : Optional[int] =delgramcounter_rep - rgramcounter UpperCAmelCase : List[Any] =sgramcounter_rep - rgramcounter UpperCAmelCase : Any =0 UpperCAmelCase : List[str] =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : Optional[int] =1 if len(__lowerCAmelCase ) > 0: UpperCAmelCase : Optional[Any] =deltmpscorea / len(__lowerCAmelCase ) # ADDITION UpperCAmelCase : Union[str, Any] =set(__lowerCAmelCase ) - set(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =set(__lowerCAmelCase ) & set(__lowerCAmelCase ) UpperCAmelCase : Optional[int] =set(__lowerCAmelCase ) - set(__lowerCAmelCase ) UpperCAmelCase : List[str] =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase : List[Any] =1 UpperCAmelCase : List[str] =1 if len(__lowerCAmelCase ) > 0: UpperCAmelCase : str =addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: UpperCAmelCase : str =addtmpscore / len(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase : List[Any] =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : str =len(__lowerCAmelCase ) UpperCAmelCase : int =ssent.split(''' ''' ) UpperCAmelCase : int =csent.split(''' ''' ) UpperCAmelCase : Dict =[] UpperCAmelCase : Tuple =[] UpperCAmelCase : Tuple =[] UpperCAmelCase : Any =[] UpperCAmelCase : Dict =[] UpperCAmelCase : List[Any] =[] UpperCAmelCase : List[str] =[] UpperCAmelCase : List[Any] =[] UpperCAmelCase : Tuple =[] UpperCAmelCase : Tuple =[] for rsent in rsents: UpperCAmelCase : Tuple =rsent.split(''' ''' ) UpperCAmelCase : List[str] =[] UpperCAmelCase : Optional[Any] =[] UpperCAmelCase : Union[str, Any] =[] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: UpperCAmelCase : Any =ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: UpperCAmelCase : Optional[int] =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: UpperCAmelCase : Union[str, Any] =ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: UpperCAmelCase : int =sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: UpperCAmelCase : Optional[int] =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: UpperCAmelCase : Any =sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: UpperCAmelCase : Any =cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: UpperCAmelCase : str =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: UpperCAmelCase : List[Any] =cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Optional[Any] =SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : str =SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Dict =SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) : Union[str, Any] =SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase : Union[str, Any] =sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase : List[str] =sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase : Any =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = "13a" , __lowerCAmelCase = True )-> Optional[int]: '''simple docstring''' if lowercase: UpperCAmelCase : Optional[int] =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase : Union[str, Any] =sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: UpperCAmelCase : Union[str, Any] =sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": UpperCAmelCase : Optional[Any] =sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": UpperCAmelCase : Union[str, Any] =sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: UpperCAmelCase : Union[str, Any] =sentence if not return_str: UpperCAmelCase : Optional[int] =normalized_sent.split() return normalized_sent def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: '''simple docstring''' if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) UpperCAmelCase : int =0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) UpperCAmelCase : Optional[int] =sari_score / len(__lowerCAmelCase ) return 1_00 * sari_score def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="exp" , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , )-> int: '''simple docstring''' UpperCAmelCase : Any =len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) UpperCAmelCase : Any =[[refs[i] for refs in references] for i in range(__lowerCAmelCase )] UpperCAmelCase : int =sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : str ={} result.update({'''sari''': compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} ) result.update({'''exact''': compute_em(predictions=snake_case__ , references=snake_case__ )} ) return result
348
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = """autoformer""" __lowerCamelCase : List[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = [1, 2, 3, 4, 5, 6, 7] , snake_case__ = True , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__ = True , snake_case__=True , snake_case__ = 10 , snake_case__ = 25 , snake_case__ = 3 , **snake_case__ , ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =prediction_length UpperCAmelCase : Tuple =context_length if context_length is not None else prediction_length UpperCAmelCase : int =distribution_output UpperCAmelCase : Any =loss UpperCAmelCase : List[Any] =input_size UpperCAmelCase : str =num_time_features UpperCAmelCase : int =lags_sequence UpperCAmelCase : str =scaling UpperCAmelCase : Union[str, Any] =num_dynamic_real_features UpperCAmelCase : List[str] =num_static_real_features UpperCAmelCase : Union[str, Any] =num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : int =cardinality else: UpperCAmelCase : Tuple =[0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCAmelCase : Any =embedding_dimension else: UpperCAmelCase : Any =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : List[Any] =num_parallel_samples # Transformer architecture configuration UpperCAmelCase : str =input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : Any =d_model UpperCAmelCase : str =encoder_attention_heads UpperCAmelCase : List[str] =decoder_attention_heads UpperCAmelCase : int =encoder_ffn_dim UpperCAmelCase : int =decoder_ffn_dim UpperCAmelCase : Tuple =encoder_layers UpperCAmelCase : Optional[Any] =decoder_layers UpperCAmelCase : List[str] =dropout UpperCAmelCase : Optional[int] =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : int =encoder_layerdrop UpperCAmelCase : Any =decoder_layerdrop UpperCAmelCase : Union[str, Any] =activation_function UpperCAmelCase : Dict =init_std UpperCAmelCase : Any =use_cache # Autoformer UpperCAmelCase : Tuple =label_length UpperCAmelCase : Union[str, Any] =moving_average UpperCAmelCase : int =autocorrelation_factor super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
348
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __snake_case = logging.getLogger(__name__) __snake_case = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowerCamelCase__ )} , ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCamelCase : bool = field( default=lowerCamelCase__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __lowerCamelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCamelCase : bool = field( default=lowerCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class __snake_case : __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCamelCase : Optional[str] = field(default=lowerCamelCase__ , metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __lowerCamelCase : Optional[str] = field( default=lowerCamelCase__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __lowerCamelCase : bool = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __lowerCamelCase : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __lowerCamelCase : Optional[int] = field( default=lowerCamelCase__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __lowerCamelCase : Optional[int] = field( default=lowerCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __lowerCamelCase : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCamelCase : bool = field( default=lowerCamelCase__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: UpperCAmelCase : List[Any] =self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCAmelCase : Any =self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase : str =[json.loads(__lowerCAmelCase ) for line in f.read().splitlines() if (len(__lowerCAmelCase ) > 0 and not line.isspace())] assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) UpperCAmelCase : List[Any] ={c: dataset[c] for c in dataset.column_names} UpperCAmelCase : Any =refs return Dataset.from_dict(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCAmelCase : Dict =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : Optional[int] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase : Tuple =load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCAmelCase : Tuple =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) UpperCAmelCase : Optional[int] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: UpperCAmelCase : List[str] ={} if data_args.train_file is not None: UpperCAmelCase : List[str] =data_args.train_file if data_args.validation_file is not None: UpperCAmelCase : Tuple =data_args.validation_file UpperCAmelCase : int =data_args.train_file.split('''.''' )[-1] if extension == "txt": UpperCAmelCase : int ='''text''' UpperCAmelCase : int =load_dataset(__lowerCAmelCase , data_files=__lowerCAmelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : List[str] ={ '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase : str =AutoConfig.from_pretrained(model_args.config_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: UpperCAmelCase : Dict =AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: UpperCAmelCase : int =CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) UpperCAmelCase : Any ={ '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCAmelCase : Any =AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowerCAmelCase ) elif model_args.model_name_or_path: UpperCAmelCase : str =AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowerCAmelCase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: UpperCAmelCase : Dict =AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase : Optional[Any] =AutoModelForMaskedLM.from_config(__lowerCAmelCase ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCAmelCase : str =datasets['''train'''].column_names else: UpperCAmelCase : Any =datasets['''validation'''].column_names UpperCAmelCase : Optional[Any] ='''text''' if '''text''' in column_names else column_names[0] UpperCAmelCase : Optional[Any] ='''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowerCAmelCase ): # Remove empty lines UpperCAmelCase : Dict =[line for line in examples['''text'''] if len(__lowerCAmelCase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=data_args.max_seq_length ) UpperCAmelCase : Optional[int] =datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCAmelCase : Tuple =add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCAmelCase : int =add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCAmelCase : Optional[Any] =data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCAmelCase : Tuple =False # Data collator # This one will take care of randomly masking the tokens. UpperCAmelCase : List[Any] =DataCollatorForWholeWordMask(tokenizer=__lowerCAmelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase : List[Any] =Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCAmelCase : Union[str, Any] =last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCAmelCase : List[str] =model_args.model_name_or_path else: UpperCAmelCase : Dict =None UpperCAmelCase : List[str] =trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase : List[Any] =os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation UpperCAmelCase : str ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase : Optional[int] =trainer.evaluate() UpperCAmelCase : Optional[Any] =math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase : List[Any] =perplexity UpperCAmelCase : Optional[Any] =os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
348
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __snake_case = logging.get_logger(__name__) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = ["""input_features""", """is_longer"""] def __init__( self , snake_case__=64 , snake_case__=4_8000 , snake_case__=480 , snake_case__=10 , snake_case__=1024 , snake_case__=0.0 , snake_case__=False , snake_case__ = 0 , snake_case__ = 1_4000 , snake_case__ = None , snake_case__ = "fusion" , snake_case__ = "repeatpad" , **snake_case__ , ) -> Optional[Any]: '''simple docstring''' super().__init__( feature_size=snake_case__ , sampling_rate=snake_case__ , padding_value=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =top_db UpperCAmelCase : Dict =truncation UpperCAmelCase : int =padding UpperCAmelCase : str =fft_window_size UpperCAmelCase : str =(fft_window_size >> 1) + 1 UpperCAmelCase : Tuple =hop_length UpperCAmelCase : List[Any] =max_length_s UpperCAmelCase : List[Any] =max_length_s * sampling_rate UpperCAmelCase : Any =sampling_rate UpperCAmelCase : Dict =frequency_min UpperCAmelCase : Union[str, Any] =frequency_max UpperCAmelCase : str =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm=snake_case__ , mel_scale='''htk''' , ) UpperCAmelCase : List[str] =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case__ , min_frequency=snake_case__ , max_frequency=snake_case__ , sampling_rate=snake_case__ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCAmelCase__ ( self ) -> Dict[str, Any]: '''simple docstring''' UpperCAmelCase : Any =copy.deepcopy(self.__dict__ ) UpperCAmelCase : Union[str, Any] =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> np.ndarray: '''simple docstring''' UpperCAmelCase : List[Any] =spectrogram( snake_case__ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case__ , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Tuple =np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase : Optional[Any] =[0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase : Dict =[0] # randomly choose index for each part UpperCAmelCase : List[Any] =np.random.choice(ranges[0] ) UpperCAmelCase : Optional[Any] =np.random.choice(ranges[1] ) UpperCAmelCase : Tuple =np.random.choice(ranges[2] ) UpperCAmelCase : str =mel[idx_front : idx_front + chunk_frames, :] UpperCAmelCase : str =mel[idx_middle : idx_middle + chunk_frames, :] UpperCAmelCase : Dict =mel[idx_back : idx_back + chunk_frames, :] UpperCAmelCase : str =torch.tensor(mel[None, None, :] ) UpperCAmelCase : Union[str, Any] =torch.nn.functional.interpolate( snake_case__ , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case__ ) UpperCAmelCase : List[str] =mel_shrink[0][0].numpy() UpperCAmelCase : Optional[Any] =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCAmelCase : Optional[Any] =True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCAmelCase : Any =len(snake_case__ ) - max_length UpperCAmelCase : Optional[int] =np.random.randint(0 , overflow + 1 ) UpperCAmelCase : Tuple =waveform[idx : idx + max_length] UpperCAmelCase : List[str] =self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCAmelCase : Tuple =self._np_extract_fbank_features(snake_case__ , self.mel_filters ) UpperCAmelCase : Union[str, Any] =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCAmelCase : Any =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCAmelCase : List[Any] =np.stack([mel, mel, mel, mel] , axis=0 ) UpperCAmelCase : List[str] =False else: UpperCAmelCase : Union[str, Any] =self._random_mel_fusion(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[Any] =True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: UpperCAmelCase : str =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCAmelCase : Optional[Any] =int(max_length / len(snake_case__ ) ) UpperCAmelCase : Optional[Any] =np.stack(np.tile(snake_case__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCAmelCase : List[Any] =int(max_length / len(snake_case__ ) ) UpperCAmelCase : Any =np.stack(np.tile(snake_case__ , snake_case__ ) ) UpperCAmelCase : str =np.pad(snake_case__ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": UpperCAmelCase : List[Any] =self._np_extract_fbank_features(snake_case__ , self.mel_filters ) UpperCAmelCase : int =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCAmelCase : Dict =self._np_extract_fbank_features(snake_case__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , **snake_case__ , ) -> BatchFeature: '''simple docstring''' UpperCAmelCase : str =truncation if truncation is not None else self.truncation UpperCAmelCase : Optional[Any] =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase : Optional[int] =isinstance(snake_case__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase : str =is_batched_numpy or ( isinstance(snake_case__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : int =[np.asarray(snake_case__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case__ , np.ndarray ): UpperCAmelCase : Optional[Any] =np.asarray(snake_case__ , dtype=np.floataa ) elif isinstance(snake_case__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : Tuple =raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : Dict =[np.asarray(snake_case__ )] # convert to mel spectrogram, truncate and pad if needed. UpperCAmelCase : Tuple =[ self._get_input_mel(snake_case__ , max_length if max_length else self.nb_max_samples , snake_case__ , snake_case__ ) for waveform in raw_speech ] UpperCAmelCase : Tuple =[] UpperCAmelCase : Optional[int] =[] for mel, longer in padded_inputs: input_mel.append(snake_case__ ) is_longer.append(snake_case__ ) if truncation == "fusion" and sum(snake_case__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCAmelCase : List[Any] =np.random.randint(0 , len(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =True if isinstance(input_mel[0] , snake_case__ ): UpperCAmelCase : List[str] =[np.asarray(snake_case__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCAmelCase : Tuple =[[longer] for longer in is_longer] UpperCAmelCase : List[str] ={'''input_features''': input_mel, '''is_longer''': is_longer} UpperCAmelCase : int =BatchFeature(snake_case__ ) if return_tensors is not None: UpperCAmelCase : Optional[int] =input_features.convert_to_tensors(snake_case__ ) return input_features
348
import qiskit def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
348
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple: '''simple docstring''' return (data["data"], data["target"]) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> XGBClassifier: '''simple docstring''' UpperCAmelCase : List[Any] =XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def lowerCAmelCase_ ( )-> None: '''simple docstring''' UpperCAmelCase : List[Any] =load_iris() UpperCAmelCase , UpperCAmelCase : List[str] =data_handling(__lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) UpperCAmelCase : Optional[int] =iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase : Union[str, Any] =xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
348
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
1
from scipy.stats import spearmanr import datasets __snake_case = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __snake_case = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __snake_case = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__=False ) -> int: '''simple docstring''' UpperCAmelCase : Any =spearmanr(snake_case__ , snake_case__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : Union[str, Any] =hidden_size UpperCAmelCase : Union[str, Any] =feat_extract_norm UpperCAmelCase : Optional[Any] =feat_extract_activation UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =conv_bias UpperCAmelCase : Tuple =num_conv_pos_embeddings UpperCAmelCase : Dict =num_conv_pos_embedding_groups UpperCAmelCase : str =len(self.conv_dim ) UpperCAmelCase : Dict =num_hidden_layers UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : List[Any] =squeeze_factor UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : int =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[int] =relative_attention UpperCAmelCase : Tuple =norm_rel_ebd UpperCAmelCase : List[Any] =list(snake_case__ ) UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =num_attention_heads UpperCAmelCase : Any =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : str =feat_proj_dropout UpperCAmelCase : Union[str, Any] =final_dropout UpperCAmelCase : Optional[int] =layer_norm_eps UpperCAmelCase : str =feature_layer_norm_eps UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Union[str, Any] =apply_spec_augment UpperCAmelCase : Optional[Any] =mask_time_prob UpperCAmelCase : Tuple =mask_time_length UpperCAmelCase : str =mask_time_min_masks UpperCAmelCase : Optional[int] =mask_feature_prob UpperCAmelCase : Optional[Any] =mask_feature_length UpperCAmelCase : List[Any] =mask_feature_min_masks # ctc loss UpperCAmelCase : str =ctc_loss_reduction UpperCAmelCase : Optional[int] =ctc_zero_infinity # sequence classification UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum UpperCAmelCase : int =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any =[False] * len(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =[-1] * len(__lowerCAmelCase ) def dfs(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : int =True UpperCAmelCase : Union[str, Any] =c for u in graph[v]: if not visited[u]: dfs(__lowerCAmelCase , 1 - c ) for i in range(len(__lowerCAmelCase ) ): if not visited[i]: dfs(__lowerCAmelCase , 0 ) for i in range(len(__lowerCAmelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __snake_case = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
348
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __snake_case = 4 __snake_case = 3 class __snake_case ( lowerCamelCase__ ): pass def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for shard in shards: for i in range(__lowerCAmelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =int(os.environ['''RANK'''] ) UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase : List[Any] =ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCAmelCase ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase ) parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 ) UpperCAmelCase : Any =parser.parse_args() UpperCAmelCase : List[str] =args.streaming UpperCAmelCase : Tuple =args.num_workers UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]} UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase ) if not streaming: UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) ) UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase ) UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase ) UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : str =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : List[Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
348
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __snake_case = {'''allegro/herbert-base-cased''': 5_14} __snake_case = {} class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[Any] = HerbertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__="</s>" , **snake_case__ , ) -> int: '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , sep_token=snake_case__ , **snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.cls_token_id] UpperCAmelCase : Any =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str =[self.sep_token_id] UpperCAmelCase : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : Any =self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __snake_case = 50_00_00 __snake_case , __snake_case = os.path.split(__file__) __snake_case = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowerCAmelCase_ ( __lowerCAmelCase , **__lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Optional[Any] =dataset.map(**__lowerCAmelCase ) @get_duration def lowerCAmelCase_ ( __lowerCAmelCase , **__lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =dataset.filter(**__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : Any ={'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Dict =datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase : str =generate_example_dataset( os.path.join(__lowerCAmelCase , '''dataset.arrow''' ) , __lowerCAmelCase , num_examples=__lowerCAmelCase ) UpperCAmelCase : Tuple =transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCAmelCase ) def tokenize(__lowerCAmelCase ): return tokenizer(examples['''text'''] ) UpperCAmelCase : List[str] =map(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =map(__lowerCAmelCase , batched=__lowerCAmelCase ) UpperCAmelCase : int =map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase : Optional[Any] =map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase : str =map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCAmelCase : str =map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCAmelCase : Any =map(__lowerCAmelCase , function=lambda __lowerCAmelCase : None , batched=__lowerCAmelCase ) UpperCAmelCase : Dict =map(__lowerCAmelCase , function=__lowerCAmelCase , batched=__lowerCAmelCase ) UpperCAmelCase : Optional[int] =filter(__lowerCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowerCAmelCase , '''wb''' ) as f: f.write(json.dumps(__lowerCAmelCase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __snake_case ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=4 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Dict =parent UpperCAmelCase : int =batch_size UpperCAmelCase : str =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : str =use_attention_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Any =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : int =hidden_size UpperCAmelCase : str =num_hidden_layers UpperCAmelCase : int =num_attention_heads UpperCAmelCase : List[str] =intermediate_size UpperCAmelCase : List[str] =hidden_act UpperCAmelCase : int =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Optional[Any] =max_position_embeddings UpperCAmelCase : int =type_vocab_size UpperCAmelCase : str =type_sequence_label_size UpperCAmelCase : Union[str, Any] =initializer_range UpperCAmelCase : List[str] =num_choices def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str =None if self.use_attention_mask: UpperCAmelCase : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] =None if self.use_token_type_ids: UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Dict =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] =config_and_inputs UpperCAmelCase : List[str] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple =config_and_inputs UpperCAmelCase : List[Any] =True UpperCAmelCase : Tuple =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[Any] = True __lowerCamelCase : List[str] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =FlaxRobertaPreLayerNormModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Optional[int] =model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=snake_case__ ) UpperCAmelCase : int =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=snake_case__ ) UpperCAmelCase : Tuple =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) UpperCAmelCase : int =model(snake_case__ )[0] UpperCAmelCase : List[Any] =[1, 11, 5_0265] self.assertEqual(list(output.shape ) , snake_case__ ) # compare the actual values for a slice. UpperCAmelCase : List[str] =np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=snake_case__ ) UpperCAmelCase : Union[str, Any] =np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) UpperCAmelCase : int =model(snake_case__ )[0] # compare the actual values for a slice. UpperCAmelCase : Dict =np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[str] = """swin""" __lowerCamelCase : int = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case__=224 , snake_case__=4 , snake_case__=3 , snake_case__=96 , snake_case__=[2, 2, 6, 2] , snake_case__=[3, 6, 12, 24] , snake_case__=7 , snake_case__=4.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=False , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=32 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase : Union[str, Any] =image_size UpperCAmelCase : Any =patch_size UpperCAmelCase : List[str] =num_channels UpperCAmelCase : Optional[int] =embed_dim UpperCAmelCase : int =depths UpperCAmelCase : str =len(snake_case__ ) UpperCAmelCase : int =num_heads UpperCAmelCase : Optional[Any] =window_size UpperCAmelCase : Any =mlp_ratio UpperCAmelCase : List[str] =qkv_bias UpperCAmelCase : Dict =hidden_dropout_prob UpperCAmelCase : Union[str, Any] =attention_probs_dropout_prob UpperCAmelCase : Optional[int] =drop_path_rate UpperCAmelCase : Tuple =hidden_act UpperCAmelCase : str =use_absolute_embeddings UpperCAmelCase : Tuple =layer_norm_eps UpperCAmelCase : List[Any] =initializer_range UpperCAmelCase : Tuple =encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase : int =int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) UpperCAmelCase : Union[str, Any] =['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(snake_case__ ) + 1 )] UpperCAmelCase , UpperCAmelCase : Optional[Any] =get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-4
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
def lowerCAmelCase_ ( __lowerCAmelCase = 10 )-> str: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or n < 0: raise ValueError('''Invalid input''' ) UpperCAmelCase : List[Any] =10**n UpperCAmelCase : Any =2_84_33 * (pow(2 , 7_83_04_57 , __lowerCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(10) = }')
348
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = (PNDMScheduler,) __lowerCamelCase : Dict = (("""num_inference_steps""", 50),) def UpperCAmelCase__ ( self , **snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] ={ '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self , snake_case__=0 , **snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =dict(self.forward_default_kwargs ) UpperCAmelCase : Dict =kwargs.pop('''num_inference_steps''' , snake_case__ ) UpperCAmelCase : Any =self.dummy_sample UpperCAmelCase : Optional[int] =0.1 * sample UpperCAmelCase : Optional[Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase : List[str] =self.get_scheduler_config(**snake_case__ ) UpperCAmelCase : Dict =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCAmelCase : Optional[int] =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCAmelCase : Optional[int] =scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCAmelCase : int =dummy_past_residuals[:] UpperCAmelCase : List[str] =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : List[str] =new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase : Union[str, Any] =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : Optional[Any] =new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self , snake_case__=0 , **snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =dict(self.forward_default_kwargs ) UpperCAmelCase : Tuple =kwargs.pop('''num_inference_steps''' , snake_case__ ) UpperCAmelCase : List[str] =self.dummy_sample UpperCAmelCase : Tuple =0.1 * sample UpperCAmelCase : Union[str, Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase : Optional[Any] =self.get_scheduler_config() UpperCAmelCase : Any =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase : str =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCAmelCase : Optional[int] =scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase : int =dummy_past_residuals[:] UpperCAmelCase : List[str] =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : Optional[Any] =new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase : str =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : Optional[Any] =new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , **snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =self.scheduler_classes[0] UpperCAmelCase : List[str] =self.get_scheduler_config(**snake_case__ ) UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) UpperCAmelCase : str =10 UpperCAmelCase : List[Any] =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =dict(self.forward_default_kwargs ) UpperCAmelCase : Any =kwargs.pop('''num_inference_steps''' , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase : str =self.get_scheduler_config() UpperCAmelCase : str =scheduler_class(**snake_case__ ) UpperCAmelCase : List[str] =self.dummy_sample UpperCAmelCase : str =0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , '''set_timesteps''' ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , '''set_timesteps''' ): UpperCAmelCase : Dict =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase : Any =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase : List[Any] =dummy_past_residuals[:] UpperCAmelCase : List[str] =scheduler.step_prk(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : List[str] =scheduler.step_prk(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase : Tuple =scheduler.step_plms(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase : List[Any] =scheduler.step_plms(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[Any] =self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase : Union[str, Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =27 for scheduler_class in self.scheduler_classes: UpperCAmelCase : Dict =self.dummy_sample UpperCAmelCase : Tuple =0.1 * sample UpperCAmelCase : List[Any] =self.get_scheduler_config() UpperCAmelCase : List[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase : int =scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' with self.assertRaises(snake_case__ ): UpperCAmelCase : Dict =self.scheduler_classes[0] UpperCAmelCase : Tuple =self.get_scheduler_config() UpperCAmelCase : Tuple =scheduler_class(**snake_case__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.full_loop() UpperCAmelCase : List[Any] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase : Tuple =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) UpperCAmelCase : Optional[Any] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Dict =self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Any =torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __snake_case = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) __snake_case = [] __snake_case = [] __snake_case = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __snake_case = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', '''emoji''': True, }, } ] __snake_case = 0 for log in Path().glob('''*.log'''): __snake_case = 0 with open(log, '''r''') as f: for line in f: __snake_case = json.loads(line) if line.get('''nodeid''', '''''') != "": __snake_case = line['''nodeid'''] if line.get('''duration''', None) is not None: __snake_case = f'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __snake_case = [] log.unlink() __snake_case = '''''' __snake_case = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __snake_case = [] __snake_case = {} for test in failed_tests: __snake_case = test[0].split('''::''') __snake_case = data[0].split('''/''')[-1] if data[0] not in filesafailed: __snake_case = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __snake_case = [test[0] for test in failed_table] __snake_case = list(set(files)) # Count number of instances in failed_tests __snake_case = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __snake_case = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: __snake_case = '''Too many failed tests, please see the full report in the Action results.''' __snake_case = len(err) + 10 __snake_case = message[: 30_00 - offset] + f'\n...\n```\n{err}' print(f'### {message}') else: __snake_case = '''No failed tests! 🤗''' print(f'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient __snake_case = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": __snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) __snake_case = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) __snake_case = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) __snake_case = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __snake_case = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: __snake_case = row[0] else: __snake_case = '''''' __snake_case = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
348
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
1
import requests __snake_case = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' UpperCAmelCase : List[str] =requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(f'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
348
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase ) UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase ) return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = CLIPConfig __lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config ) UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase : Tuple =[] UpperCAmelCase : Dict =image_embeds.shape[0] for i in range(snake_case__ ): UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : str =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx] UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase : Any =cos_dist[i][concept_idx] UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item() UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : List[str] =self.visual_projection(snake_case__ ) UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds ) UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : Optional[Any] =0.0 UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase : List[Any] =special_care * 0.01 UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
348
1
from sklearn.metrics import matthews_corrcoef import datasets __snake_case = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __snake_case = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __snake_case = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__=None ) -> Optional[int]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(snake_case__ , snake_case__ , sample_weight=snake_case__ ) ), }
348
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __snake_case = parser.parse_args() __snake_case = '''cpu''' __snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __snake_case = '''path-to-your-trained-model''' __snake_case = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case = pipe.to(device) # to channels last __snake_case = pipe.unet.to(memory_format=torch.channels_last) __snake_case = pipe.vae.to(memory_format=torch.channels_last) __snake_case = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case = torch.randn(2, 4, 64, 64) __snake_case = torch.rand(1) * 9_99 __snake_case = torch.randn(2, 77, 7_68) __snake_case = (sample, timestep, encoder_hidden_status) try: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case = 6_66 __snake_case = torch.Generator(device).manual_seed(seed) __snake_case = {'''generator''': generator} if args.steps is not None: __snake_case = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
348
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class __snake_case ( lowerCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowerCamelCase : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCamelCase : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __lowerCamelCase : ClassVar[Features] = Features({"""labels""": ClassLabel} ) __lowerCamelCase : str = "text" __lowerCamelCase : str = "labels" def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , snake_case__ ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase : Optional[Any] =copy.deepcopy(self ) UpperCAmelCase : Dict =self.label_schema.copy() UpperCAmelCase : Union[str, Any] =features[self.label_column] UpperCAmelCase : Optional[int] =label_schema return task_template @property def UpperCAmelCase__ ( self ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
348
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: UpperCAmelCase : int =int(spanish_id_clean[0:8] ) UpperCAmelCase : Optional[int] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Any =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : List[str] =list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase : int =s_dict.pop(__lowerCAmelCase ) elif "subsample" in key: UpperCAmelCase : Any =s_dict.pop(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =emb.weight.shape UpperCAmelCase : Optional[Any] =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) UpperCAmelCase : List[str] =emb.weight.data return lin_layer def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : Tuple =torch.load(__lowerCAmelCase , map_location='''cpu''' ) UpperCAmelCase : Dict =mam_aaa['''args'''] UpperCAmelCase : Union[str, Any] =mam_aaa['''model'''] UpperCAmelCase : Tuple =state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__lowerCAmelCase ) rename_keys(__lowerCAmelCase ) UpperCAmelCase : str =state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCAmelCase : Tuple =args.share_decoder_input_output_embed UpperCAmelCase : str =[int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] UpperCAmelCase : Optional[int] =SpeechaTextConfig( vocab_size=__lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowerCAmelCase , num_beams=5 , max_length=2_00 , use_cache=__lowerCAmelCase , decoder_start_token_id=2 , early_stopping=__lowerCAmelCase , ) UpperCAmelCase : List[Any] =SpeechaTextForConditionalGeneration(__lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple =model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase : Union[str, Any] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase : Union[str, Any] =lm_head_weights model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __snake_case = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
348
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) # TODO Update this __snake_case = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Tuple = """esm""" def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : List[str] =vocab_size UpperCAmelCase : str =hidden_size UpperCAmelCase : List[Any] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : str =intermediate_size UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : int =attention_probs_dropout_prob UpperCAmelCase : Dict =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : Union[str, Any] =layer_norm_eps UpperCAmelCase : Dict =position_embedding_type UpperCAmelCase : Optional[Any] =use_cache UpperCAmelCase : int =emb_layer_norm_before UpperCAmelCase : List[str] =token_dropout UpperCAmelCase : Optional[Any] =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase : Optional[Any] =EsmFoldConfig() elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ ) UpperCAmelCase : Tuple =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase : Any =get_default_vocab_list() else: UpperCAmelCase : Tuple =vocab_list else: UpperCAmelCase : Optional[int] =None UpperCAmelCase : Union[str, Any] =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =super().to_dict() if isinstance(self.esmfold_config , snake_case__ ): UpperCAmelCase : str =self.esmfold_config.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : str = None __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : bool = False __lowerCamelCase : float = 0 __lowerCamelCase : bool = True __lowerCamelCase : bool = False __lowerCamelCase : int = 128 __lowerCamelCase : "TrunkConfig" = None def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.trunk is None: UpperCAmelCase : str =TrunkConfig() elif isinstance(self.trunk , snake_case__ ): UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =asdict(self ) UpperCAmelCase : Any =self.trunk.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 48 __lowerCamelCase : int = 1024 __lowerCamelCase : int = 128 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : int = 32 __lowerCamelCase : float = 0 __lowerCamelCase : float = 0 __lowerCamelCase : bool = False __lowerCamelCase : int = 4 __lowerCamelCase : Optional[int] = 128 __lowerCamelCase : "StructureModuleConfig" = None def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' if self.structure_module is None: UpperCAmelCase : Any =StructureModuleConfig() elif isinstance(self.structure_module , snake_case__ ): UpperCAmelCase : str =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =asdict(self ) UpperCAmelCase : Tuple =self.structure_module.to_dict() return output @dataclass class __snake_case : __lowerCamelCase : int = 384 __lowerCamelCase : int = 128 __lowerCamelCase : int = 16 __lowerCamelCase : int = 128 __lowerCamelCase : int = 12 __lowerCamelCase : int = 4 __lowerCamelCase : int = 8 __lowerCamelCase : float = 0.1 __lowerCamelCase : int = 8 __lowerCamelCase : int = 1 __lowerCamelCase : int = 2 __lowerCamelCase : int = 7 __lowerCamelCase : int = 10 __lowerCamelCase : float = 1E-8 __lowerCamelCase : float = 1E5 def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return asdict(self ) def lowerCAmelCase_ ( )-> Tuple: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
348
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,) __lowerCamelCase : List[str] = 10 def UpperCAmelCase__ ( self , **snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : int ={ '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case__ ) return config def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : str =self.dummy_model() UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Any =model(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : int =output.prev_sample UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : Any =self.scheduler_classes[0] UpperCAmelCase : Optional[int] =self.get_scheduler_config() UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Optional[int] =self.dummy_model() UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : str =sample.to(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =output.prev_sample UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' if torch_device == "mps": return UpperCAmelCase : List[Any] =self.scheduler_classes[0] UpperCAmelCase : Dict =self.get_scheduler_config() UpperCAmelCase : List[str] =scheduler_class(**snake_case__ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ ) UpperCAmelCase : int =self.dummy_model() UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ ) UpperCAmelCase : int =model(snake_case__ , snake_case__ ) UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =output.prev_sample UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) ) if str(snake_case__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
348
1
def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' return "".join([hex(__lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(__lowerCAmelCase )] ) def lowerCAmelCase_ ( __lowerCAmelCase )-> bytes: '''simple docstring''' if (len(__lowerCAmelCase ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowerCAmelCase ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
348
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): UpperCAmelCase : Optional[int] =model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ='''sshleifer/tiny-gpt2''' UpperCAmelCase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) UpperCAmelCase : List[Any] =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : Union[str, Any] =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''sgugger/tiny-distilbert-classification''' UpperCAmelCase : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , only_pretrain_model=snake_case__ , ) UpperCAmelCase : Optional[int] =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ='''sshleifer/tiny-gpt2''' UpperCAmelCase : str =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) UpperCAmelCase : Any =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] ='''sshleifer/tiny-gpt2''' UpperCAmelCase : int =AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase : List[str] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) UpperCAmelCase : Optional[int] =TensorFlowBenchmark(snake_case__ , [config] ) UpperCAmelCase : str =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict ='''sshleifer/tiny-gpt2''' UpperCAmelCase : Tuple =AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase : List[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) UpperCAmelCase : Optional[int] =TensorFlowBenchmark(snake_case__ , [config] ) UpperCAmelCase : str =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any ='''sshleifer/tiny-gpt2''' UpperCAmelCase : Optional[Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) UpperCAmelCase : Dict =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] ='''sshleifer/tiny-gpt2''' UpperCAmelCase : str =AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) UpperCAmelCase : Optional[int] =TensorFlowBenchmark(snake_case__ , [config] ) UpperCAmelCase : List[Any] =benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int ='''patrickvonplaten/t5-tiny-random''' UpperCAmelCase : List[str] =AutoConfig.from_pretrained(snake_case__ ) UpperCAmelCase : Tuple =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) UpperCAmelCase : str =TensorFlowBenchmark(snake_case__ , configs=[config] ) UpperCAmelCase : Tuple =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple ='''sshleifer/tiny-gpt2''' UpperCAmelCase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=snake_case__ , multi_process=snake_case__ , ) UpperCAmelCase : Dict =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : int =benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any ='''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[int] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , save_to_csv=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case__ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(snake_case__ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(snake_case__ , '''env.csv''' ) , multi_process=snake_case__ , ) UpperCAmelCase : Union[str, Any] =TensorFlowBenchmark(snake_case__ ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case__ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , '''env.csv''' ) ).exists() ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Tuple ='''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(snake_case__ ): self.assertTrue(hasattr(snake_case__ , '''sequential''' ) ) self.assertTrue(hasattr(snake_case__ , '''cumulative''' ) ) self.assertTrue(hasattr(snake_case__ , '''current''' ) ) self.assertTrue(hasattr(snake_case__ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Union[str, Any] =TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case__ , '''log.txt''' ) , log_print=snake_case__ , trace_memory_line_by_line=snake_case__ , eager_mode=snake_case__ , multi_process=snake_case__ , ) UpperCAmelCase : Union[str, Any] =TensorFlowBenchmark(snake_case__ ) UpperCAmelCase : Any =benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(snake_case__ , '''log.txt''' ) ).exists() )
348
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCAmelCase_ ( )-> int: '''simple docstring''' UpperCAmelCase : str ={ '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase ) return dataset class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_dataset() UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =get_dataset() UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ ) self.assertEqual(len(snake_case__ ) , 2 ) print(snake_case__ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
348
1
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( lowerCamelCase__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] =ort.SessionOptions() UpperCAmelCase : Optional[int] =False return options def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Optional[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Dict ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : Any =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench''' UpperCAmelCase : int =np.random.RandomState(0 ) UpperCAmelCase : str =pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , ) UpperCAmelCase : Dict =output.images UpperCAmelCase : int =images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
348
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =self.dummy_uncond_unet UpperCAmelCase : Optional[int] =KarrasVeScheduler() UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : List[str] =torch.manual_seed(0 ) UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : str =torch.manual_seed(0 ) UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0] UpperCAmelCase : Any =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256''' UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ ) UpperCAmelCase : Dict =KarrasVeScheduler() UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Any =torch.manual_seed(0 ) UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
348
1
__snake_case = '''Input must be a string of 8 numbers plus letter''' __snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE''' def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}''' raise TypeError(__lowerCAmelCase ) UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper() if len(__lowerCAmelCase ) != 9: raise ValueError(__lowerCAmelCase ) try: UpperCAmelCase : int =int(spanish_id_clean[0:8] ) UpperCAmelCase : Optional[int] =spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowerCAmelCase ) from ex if letter.isdigit(): raise ValueError(__lowerCAmelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
348
import qiskit def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = half_adder(1, 1) print(f'Half Adder Output Qubit Counts: {counts}')
348
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __snake_case = logging.get_logger(__name__) @dataclass class __snake_case : __lowerCamelCase : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) __lowerCamelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __lowerCamelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCamelCase : bool = field( default=lowerCamelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =self.task_name.lower() class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = """train""" __lowerCamelCase : Union[str, Any] = """dev""" __lowerCamelCase : List[Any] = """test""" class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : GlueDataTrainingArguments __lowerCamelCase : str __lowerCamelCase : List[InputFeatures] def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = Split.train , snake_case__ = None , ) -> str: '''simple docstring''' warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , snake_case__ , ) UpperCAmelCase : Dict =args UpperCAmelCase : List[str] =glue_processors[args.task_name]() UpperCAmelCase : Dict =glue_output_modes[args.task_name] if isinstance(snake_case__ , snake_case__ ): try: UpperCAmelCase : str =Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file UpperCAmelCase : Any =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) UpperCAmelCase : Any =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase , UpperCAmelCase : Tuple =label_list[2], label_list[1] UpperCAmelCase : str =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase : List[str] =cached_features_file + '''.lock''' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not args.overwrite_cache: UpperCAmelCase : List[Any] =time.time() UpperCAmelCase : Optional[int] =torch.load(snake_case__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase : str =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase : Any =self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase : Union[str, Any] =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase : int =examples[:limit_length] UpperCAmelCase : Optional[Any] =glue_convert_examples_to_features( snake_case__ , snake_case__ , max_length=args.max_seq_length , label_list=snake_case__ , output_mode=self.output_mode , ) UpperCAmelCase : Optional[Any] =time.time() torch.save(self.features , snake_case__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> int: '''simple docstring''' return len(self.features ) def __getitem__( self , snake_case__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.label_list
348
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __snake_case : __lowerCamelCase : str = BlenderbotConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[int] = """gelu""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : Dict =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : List[str] =use_labels UpperCAmelCase : List[Any] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Tuple =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : str =hidden_dropout_prob UpperCAmelCase : Optional[int] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : List[Any] =eos_token_id UpperCAmelCase : Optional[int] =pad_token_id UpperCAmelCase : Tuple =bos_token_id def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder() UpperCAmelCase : Any =inputs_dict['''input_ids'''] UpperCAmelCase : str =input_ids[:1, :] UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : Tuple =inputs_dict['''head_mask'''] UpperCAmelCase : List[Any] =1 # first forward pass UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str: '''simple docstring''' if attention_mask is None: UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : Tuple =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase : Dict = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Union[str, Any] = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] =TFBlenderbotModelTester(self ) UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class __snake_case ( unittest.TestCase ): __lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""] __lowerCamelCase : Dict = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase : Optional[int] =self.model.generate( model_inputs.input_ids , ) UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
348
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = RoFormerTokenizer __lowerCamelCase : Union[str, Any] = RoFormerTokenizerFast __lowerCamelCase : Any = True __lowerCamelCase : Optional[Any] = True def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **snake_case__ ) -> Any: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> Optional[Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] ='''永和服装饰品有限公司,今天天气非常好''' UpperCAmelCase : Optional[Any] ='''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict =self.get_tokenizer() UpperCAmelCase , UpperCAmelCase : List[str] =self.get_chinese_input_output_texts() UpperCAmelCase : Optional[int] =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) UpperCAmelCase : Union[str, Any] =tokens + [tokenizer.unk_token] UpperCAmelCase : Optional[int] =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.get_rust_tokenizer() UpperCAmelCase , UpperCAmelCase : Dict =self.get_chinese_input_output_texts() UpperCAmelCase : Union[str, Any] =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) UpperCAmelCase : Optional[Any] =tokens + [tokenizer.unk_token] UpperCAmelCase : Union[str, Any] =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' pass
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : Union[str, Any] =hidden_size UpperCAmelCase : Union[str, Any] =feat_extract_norm UpperCAmelCase : Optional[Any] =feat_extract_activation UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =conv_bias UpperCAmelCase : Tuple =num_conv_pos_embeddings UpperCAmelCase : Dict =num_conv_pos_embedding_groups UpperCAmelCase : str =len(self.conv_dim ) UpperCAmelCase : Dict =num_hidden_layers UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : List[Any] =squeeze_factor UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : int =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[int] =relative_attention UpperCAmelCase : Tuple =norm_rel_ebd UpperCAmelCase : List[Any] =list(snake_case__ ) UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =num_attention_heads UpperCAmelCase : Any =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : str =feat_proj_dropout UpperCAmelCase : Union[str, Any] =final_dropout UpperCAmelCase : Optional[int] =layer_norm_eps UpperCAmelCase : str =feature_layer_norm_eps UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Union[str, Any] =apply_spec_augment UpperCAmelCase : Optional[Any] =mask_time_prob UpperCAmelCase : Tuple =mask_time_length UpperCAmelCase : str =mask_time_min_masks UpperCAmelCase : Optional[int] =mask_feature_prob UpperCAmelCase : Optional[Any] =mask_feature_length UpperCAmelCase : List[Any] =mask_feature_min_masks # ctc loss UpperCAmelCase : str =ctc_loss_reduction UpperCAmelCase : Optional[int] =ctc_zero_infinity # sequence classification UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum UpperCAmelCase : int =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __snake_case = parser.parse_args() __snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case = CLIPImageProcessor() __snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
348
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __snake_case = 4 __snake_case = 3 class __snake_case ( lowerCamelCase__ ): pass def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for shard in shards: for i in range(__lowerCAmelCase ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =int(os.environ['''RANK'''] ) UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase : List[Any] =ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCAmelCase ) parser.add_argument('''--local_rank''' , type=__lowerCAmelCase ) parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 ) UpperCAmelCase : Any =parser.parse_args() UpperCAmelCase : List[str] =args.streaming UpperCAmelCase : Tuple =args.num_workers UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]} UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase ) if not streaming: UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) ) UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase ) UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase ) UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : str =full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : List[Any] =sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
348
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __snake_case = logging.get_logger(__name__) __snake_case = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : int = """longformer""" def __init__( self , snake_case__ = 512 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 0 , snake_case__ = 2 , snake_case__ = 3_0522 , snake_case__ = 768 , snake_case__ = 12 , snake_case__ = 12 , snake_case__ = 3072 , snake_case__ = "gelu" , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 512 , snake_case__ = 2 , snake_case__ = 0.02 , snake_case__ = 1e-12 , snake_case__ = False , **snake_case__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase : Union[str, Any] =attention_window UpperCAmelCase : Optional[Any] =sep_token_id UpperCAmelCase : int =bos_token_id UpperCAmelCase : int =eos_token_id UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Any =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : str =intermediate_size UpperCAmelCase : List[str] =hidden_dropout_prob UpperCAmelCase : Tuple =attention_probs_dropout_prob UpperCAmelCase : Any =max_position_embeddings UpperCAmelCase : int =type_vocab_size UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[Any] =layer_norm_eps UpperCAmelCase : List[str] =onnx_export class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None ) -> List[str]: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : List[Any] =True @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase : Optional[Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' UpperCAmelCase : Any =super().outputs if self.task == "default": UpperCAmelCase : Union[str, Any] ={0: '''batch'''} return outputs @property def UpperCAmelCase__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ) -> Mapping[str, Any]: '''simple docstring''' UpperCAmelCase : Any =super().generate_dummy_inputs( preprocessor=snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCAmelCase : List[Any] =torch.zeros_like(inputs['''input_ids'''] ) # make every second token global UpperCAmelCase : List[Any] =1 return inputs
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase="pt" )-> str: '''simple docstring''' UpperCAmelCase : Any ={'''add_prefix_space''': True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(''' ''' ) else {} UpperCAmelCase : Optional[int] =padding_side return tokenizer( [line] , max_length=__lowerCAmelCase , padding='''max_length''' if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , )-> str: '''simple docstring''' UpperCAmelCase : Tuple =input_ids.ne(__lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __snake_case ( lowerCamelCase__ ): def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__="train" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="" , ) -> int: '''simple docstring''' super().__init__() UpperCAmelCase : Dict =Path(snake_case__ ).joinpath(type_path + '''.source''' ) UpperCAmelCase : int =Path(snake_case__ ).joinpath(type_path + '''.target''' ) UpperCAmelCase : Dict =self.get_char_lens(self.src_file ) UpperCAmelCase : Any =max_source_length UpperCAmelCase : Dict =max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' UpperCAmelCase : List[str] =tokenizer UpperCAmelCase : List[Any] =prefix if n_obs is not None: UpperCAmelCase : Union[str, Any] =self.src_lens[:n_obs] UpperCAmelCase : List[Any] =src_lang UpperCAmelCase : Union[str, Any] =tgt_lang def __len__( self ) -> Dict: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , snake_case__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase : int =index + 1 # linecache starts at 1 UpperCAmelCase : Union[str, Any] =self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip('''\n''' ) UpperCAmelCase : List[Any] =linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase : Dict =( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) UpperCAmelCase : str =self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer UpperCAmelCase : Union[str, Any] =encode_line(snake_case__ , snake_case__ , self.max_source_length , '''right''' ) UpperCAmelCase : Any =encode_line(snake_case__ , snake_case__ , self.max_target_length , '''right''' ) UpperCAmelCase : Union[str, Any] =source_inputs['''input_ids'''].squeeze() UpperCAmelCase : str =target_inputs['''input_ids'''].squeeze() UpperCAmelCase : Dict =source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase__ ( snake_case__ ) -> Tuple: '''simple docstring''' return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCAmelCase__ ( self , snake_case__ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase : int =torch.stack([x['''input_ids'''] for x in batch] ) UpperCAmelCase : Tuple =torch.stack([x['''attention_mask'''] for x in batch] ) UpperCAmelCase : List[Any] =torch.stack([x['''decoder_input_ids'''] for x in batch] ) UpperCAmelCase : Union[str, Any] =( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) UpperCAmelCase : Union[str, Any] =( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) UpperCAmelCase : Tuple =trim_batch(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Any =trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Optional[Any] ={ '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __snake_case = getLogger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' return list(itertools.chain.from_iterable(__lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' UpperCAmelCase : str =get_git_info() save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''git_log.json''' ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=4 , **__lowerCAmelCase )-> Any: '''simple docstring''' with open(__lowerCAmelCase , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[Any]: '''simple docstring''' with open(__lowerCAmelCase ) as f: return json.load(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> str: '''simple docstring''' UpperCAmelCase : List[str] =git.Repo(search_parent_directories=__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] ={ '''repo_id''': str(__lowerCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List: '''simple docstring''' return list(map(__lowerCAmelCase , __lowerCAmelCase ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' with open(__lowerCAmelCase , '''wb''' ) as f: return pickle.dump(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' def remove_articles(__lowerCAmelCase ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): UpperCAmelCase : List[str] =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' UpperCAmelCase : int =normalize_answer(__lowerCAmelCase ).split() UpperCAmelCase : Union[str, Any] =normalize_answer(__lowerCAmelCase ).split() UpperCAmelCase : Tuple =Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase : int =1.0 * num_same / len(__lowerCAmelCase ) UpperCAmelCase : Dict =1.0 * num_same / len(__lowerCAmelCase ) UpperCAmelCase : List[str] =(2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =0 for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: em /= len(__lowerCAmelCase ) return {"em": em} def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' return model_prefix.startswith('''rag''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] ={p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase : List[str] ='''dropout_rate''' for p in extra_params: if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(__lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) continue UpperCAmelCase : Union[str, Any] =p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p] setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) ) delattr(__lowerCAmelCase , __lowerCAmelCase ) return hparams, config
348
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> List[str]: '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase : Tuple =getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: UpperCAmelCase : List[Any] =getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: UpperCAmelCase : str =hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase : str =value elif weight_type == "weight_g": UpperCAmelCase : str =value elif weight_type == "weight_v": UpperCAmelCase : Dict =value elif weight_type == "bias": UpperCAmelCase : List[str] =value else: UpperCAmelCase : Union[str, Any] =value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =[] UpperCAmelCase : List[str] =fairseq_model.state_dict() UpperCAmelCase : List[str] =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCAmelCase : List[Any] =None for name, value in fairseq_dict.items(): UpperCAmelCase : Dict =False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Optional[Any] =True elif name.split('''.''' )[0] == "proj": UpperCAmelCase : List[Any] =fairseq_model.proj UpperCAmelCase : str =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[int] =True if "*" in mapped_key: UpperCAmelCase : List[Any] =name.split(__lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : Any =mapped_key.replace('''*''' , __lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : Union[str, Any] ='''weight_g''' elif "weight_v" in name: UpperCAmelCase : List[str] ='''weight_v''' elif "bias" in name: UpperCAmelCase : Any ='''bias''' elif "weight" in name: UpperCAmelCase : int ='''weight''' else: UpperCAmelCase : int =None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: '''simple docstring''' UpperCAmelCase : int =full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Tuple =name.split('''.''' ) UpperCAmelCase : Any =int(items[0] ) UpperCAmelCase : Dict =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase : Union[str, Any] =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase : Any =value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase : Any =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase : Optional[int] =value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> Tuple: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] =emb.weight.shape UpperCAmelCase : Optional[Any] =nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) UpperCAmelCase : List[str] =emb.weight.data return lin_layer def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase : Any =f.readlines() UpperCAmelCase : Optional[Any] =[line.split(''' ''' )[0] for line in lines] UpperCAmelCase : str =len(__lowerCAmelCase ) UpperCAmelCase : Optional[int] ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =WavaVecaConfig.from_pretrained(__lowerCAmelCase ) UpperCAmelCase : str =SpeechaTextaConfig.from_pretrained( __lowerCAmelCase , vocab_size=__lowerCAmelCase , decoder_layers=__lowerCAmelCase , do_stable_layer_norm=__lowerCAmelCase ) UpperCAmelCase : List[Any] =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase : List[Any] =model[0].eval() # set weights for wav2vec2 encoder UpperCAmelCase : int =WavaVecaModel(__lowerCAmelCase ) UpperCAmelCase : Optional[Any] =recursively_load_weights_wavaveca(model.encoder , __lowerCAmelCase ) UpperCAmelCase : Optional[int] =SpeechaTextaForCausalLM(__lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : int =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCAmelCase ) # set output linear layer unexpected_keys.remove('''embed_out''' ) UpperCAmelCase : str =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) UpperCAmelCase : Union[str, Any] =SpeechEncoderDecoderModel(encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCAmelCase : List[str] =False # add projection layer UpperCAmelCase : Union[str, Any] =nn.Parameter(projection_layer.weight ) UpperCAmelCase : Optional[Any] =nn.Parameter(projection_layer.bias ) UpperCAmelCase : Union[str, Any] =create_vocab_dict(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =SpeechaTextaTokenizer(os.path.join(__lowerCAmelCase , '''vocab.json''' ) ) tokenizer.save_pretrained(__lowerCAmelCase ) UpperCAmelCase : Tuple =hf_wavavec.config.to_dict() UpperCAmelCase : int =tokenizer.pad_token_id UpperCAmelCase : Any =tokenizer.bos_token_id UpperCAmelCase : str =tokenizer.eos_token_id UpperCAmelCase : Union[str, Any] ='''speech_to_text_2''' UpperCAmelCase : Any ='''wav2vec2''' UpperCAmelCase : Any =SpeechEncoderDecoderConfig.from_dict(__lowerCAmelCase ) hf_wavavec.save_pretrained(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_02_24, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
348
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
1
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase )-> bool: '''simple docstring''' if len(__lowerCAmelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) UpperCAmelCase : List[str] =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[Any]: '''simple docstring''' print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[[float('''inf''' ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): UpperCAmelCase : int =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCAmelCase ): # looping through rows of graph array for i in range(__lowerCAmelCase ): # looping through columns of graph array for j in range(__lowerCAmelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCAmelCase : List[Any] =dist[i][k] + dist[k][j] _print_dist(__lowerCAmelCase , __lowerCAmelCase ) return dist, v if __name__ == "__main__": __snake_case = int(input('''Enter number of vertices: ''')) __snake_case = int(input('''Enter number of edges: ''')) __snake_case = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __snake_case = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __snake_case = int(input('''Enter source:''')) __snake_case = int(input('''Enter destination:''')) __snake_case = float(input('''Enter weight:''')) __snake_case = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
348
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } __snake_case = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } __snake_case = '''▁''' class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Dict = VOCAB_FILES_NAMES __lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : List[str] = BigBirdTokenizer __lowerCamelCase : Any = ["""input_ids""", """attention_mask"""] __lowerCamelCase : List[int] = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase : Tuple =vocab_file UpperCAmelCase : Optional[int] =False if not self.vocab_file else True def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : int =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] =[self.sep_token_id] UpperCAmelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Optional[int] =os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
348
1
import json import sys def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' with open(__lowerCAmelCase , encoding='''utf-8''' ) as f: UpperCAmelCase : str =json.load(__lowerCAmelCase ) UpperCAmelCase : List[Any] =['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(__lowerCAmelCase ): UpperCAmelCase : Any =results[benchmark_name] UpperCAmelCase : str =benchmark_name.split('''/''' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) UpperCAmelCase : List[str] ='''| metric |''' UpperCAmelCase : Any ='''|--------|''' UpperCAmelCase : Dict ='''| new / old (diff) |''' for metric_name in sorted(__lowerCAmelCase ): UpperCAmelCase : int =benchmark_res[metric_name] UpperCAmelCase : str =metric_vals['''new'''] UpperCAmelCase : Optional[Any] =metric_vals.get('''old''' , __lowerCAmelCase ) UpperCAmelCase : Any =metric_vals.get('''diff''' , __lowerCAmelCase ) UpperCAmelCase : int =f''' {new_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else '''None''' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(__lowerCAmelCase , (int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(__lowerCAmelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(__lowerCAmelCase ) ) if __name__ == "__main__": __snake_case = sys.argv[1] __snake_case = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
348
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase : List[Any] =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase : Dict =proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x UpperCAmelCase : List[Any] =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def lowerCAmelCase_ ( __lowerCAmelCase )-> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase : Dict =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
348
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase : Optional[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ ) else: UpperCAmelCase : Union[str, Any] =None UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : VQModel __lowerCamelCase : CLIPTextModel __lowerCamelCase : CLIPTokenizer __lowerCamelCase : TransformeraDModel __lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings __lowerCamelCase : VQDiffusionScheduler def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase : Optional[int] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase : int =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate text embeddings for each generation per prompt UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 ) else: UpperCAmelCase : str =[''''''] * batch_size UpperCAmelCase : Tuple =text_input_ids.shape[-1] UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1] UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 ) UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Optional[int] =1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase : Tuple =len(snake_case__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' ) UpperCAmelCase : Tuple =batch_size * num_images_per_prompt UpperCAmelCase : List[str] =guidance_scale > 1.0 UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(snake_case__ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1 UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase : Any =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(snake_case__ , device=self.device ) UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device ) UpperCAmelCase : Optional[int] =latents for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 ) UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ ) UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase : Optional[Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ ) UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ ) UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ ) UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase : int =keep_mask[:, :-1, :] UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase : Dict =log_p_x_0.clone() UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0) return rv
348
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : Optional[int] =batch_size UpperCAmelCase : List[Any] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Union[str, Any] =use_input_mask UpperCAmelCase : Tuple =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : Tuple =hidden_size UpperCAmelCase : Dict =projection_dim UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Dict =num_attention_heads UpperCAmelCase : int =intermediate_size UpperCAmelCase : Any =dropout UpperCAmelCase : Union[str, Any] =attention_dropout UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =scope UpperCAmelCase : str =bos_token_id def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int =None if self.use_input_mask: UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Optional[int] =input_mask.numpy() UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : List[Any] =1 UpperCAmelCase : Tuple =0 UpperCAmelCase : List[Any] =self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ ) UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ ) UpperCAmelCase : str =model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else () __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Dict = False def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str =BlipTextModelTester(self ) UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self , snake_case__=True ) -> Any: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
348
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ConditionalDetrFeatureExtractor'''] __snake_case = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase ) UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase ) return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = CLIPConfig __lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config ) UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase : Tuple =[] UpperCAmelCase : Dict =image_embeds.shape[0] for i in range(snake_case__ ): UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : str =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx] UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase : Any =cos_dist[i][concept_idx] UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item() UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : List[str] =self.visual_projection(snake_case__ ) UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds ) UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : Optional[Any] =0.0 UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase : List[Any] =special_care * 0.01 UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
348
1