code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
lowerCamelCase__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
@dataclass
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : Any =field(
default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} )
__lowerCamelCase : Optional[int] =field(
default=UpperCAmelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
__lowerCamelCase : Union[str, Any] =field(
default=UpperCAmelCase_ , metadata={'help': 'The column name of the images in the files.'} )
__lowerCamelCase : Tuple =field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the training data.'} )
__lowerCamelCase : int =field(default=UpperCAmelCase_ , metadata={'help': 'A folder containing the validation data.'} )
__lowerCamelCase : Optional[Any] =field(
default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} )
__lowerCamelCase : str =field(
default=UpperCAmelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
__lowerCamelCase : Optional[int] =field(
default=UpperCAmelCase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = {}
if self.train_dir is not None:
__a = self.train_dir
if self.validation_dir is not None:
__a = self.validation_dir
__a = data_files if data_files else None
@dataclass
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : Union[str, Any] =field(
default=UpperCAmelCase_ , metadata={
'help': (
'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'
)
} , )
__lowerCamelCase : Union[str, Any] =field(
default=UpperCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} )
__lowerCamelCase : Dict =field(
default=UpperCAmelCase_ , metadata={
'help': (
'Override some existing default config settings when a model is trained from scratch. Example: '
'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'
)
} , )
__lowerCamelCase : Dict =field(
default=UpperCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} )
__lowerCamelCase : Tuple =field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
__lowerCamelCase : Tuple =field(default=UpperCAmelCase_ , metadata={'help': 'Name or path of preprocessor config.'} )
__lowerCamelCase : List[Any] =field(
default=UpperCAmelCase_ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
__lowerCamelCase : Optional[Any] =field(
default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} )
__lowerCamelCase : Union[str, Any] =field(
default=UpperCAmelCase_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} )
@dataclass
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Tuple =field(
default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
__a = torch.stack([example["""pixel_values"""] for example in examples] )
return {"pixel_values": pixel_values}
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__a , __a , __a = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mae""" , __A , __A )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__a = training_args.get_process_log_level()
logger.setLevel(__A )
transformers.utils.logging.set_verbosity(__A )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
__a = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__a = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
__a = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
__a = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __A ) and data_args.train_val_split > 0.0:
__a = ds["""train"""].train_test_split(data_args.train_val_split )
__a = split["""train"""]
__a = split["""test"""]
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__a = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name:
__a = ViTMAEConfig.from_pretrained(model_args.config_name , **__A )
elif model_args.model_name_or_path:
__a = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__A )
else:
__a = ViTMAEConfig()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(f"New config: {config}" )
# adapt config
config.update(
{
"""mask_ratio""": model_args.mask_ratio,
"""norm_pix_loss""": model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
__a = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__A )
elif model_args.model_name_or_path:
__a = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__A )
else:
__a = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
__a = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
__a = ViTMAEForPreTraining(__A )
if training_args.do_train:
__a = ds["""train"""].column_names
else:
__a = ds["""validation"""].column_names
if data_args.image_column_name is not None:
__a = data_args.image_column_name
elif "image" in column_names:
__a = """image"""
elif "img" in column_names:
__a = """img"""
else:
__a = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
__a = image_processor.size["""shortest_edge"""]
else:
__a = (image_processor.size["""height"""], image_processor.size["""width"""])
__a = Compose(
[
Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(__A , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_SCREAMING_SNAKE_CASE : Optional[int] ):
__a = [transforms(__A ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
__a = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(__A )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
__a = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(__A )
# Compute absolute learning rate
__a = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
__a = training_args.base_learning_rate * total_train_batch_size / 256
# Initialize our trainer
__a = Trainer(
model=__A , args=__A , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=__A , data_collator=__A , )
# Training
if training_args.do_train:
__a = None
if training_args.resume_from_checkpoint is not None:
__a = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__a = last_checkpoint
__a = trainer.train(resume_from_checkpoint=__A )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__a = trainer.evaluate()
trainer.log_metrics("""eval""" , __A )
trainer.save_metrics("""eval""" , __A )
# Write model card and (optionally) push to hub
__a = {
"""tasks""": """masked-auto-encoding""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-auto-encoding"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__A )
else:
trainer.create_model_card(**__A )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 302 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a__ : Union[str, Any] = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''albert'''
def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any:
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
__UpperCamelCase = vocab_size
__UpperCamelCase = embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_hidden_groups
__UpperCamelCase = num_attention_heads
__UpperCamelCase = inner_group_num
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = classifier_dropout_prob
__UpperCamelCase = position_embedding_type
class UpperCAmelCase__ ( UpperCAmelCase_):
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 0 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a_ : List[str] , a_ : List[Any]=13 , a_ : List[Any]=7 , a_ : Any=True , a_ : str=True , a_ : Optional[int]=True , a_ : str=True , a_ : Any=True , a_ : Any=False , a_ : str=False , a_ : str=False , a_ : int=2 , a_ : Optional[Any]=99 , a_ : Optional[Any]=0 , a_ : Optional[int]=32 , a_ : int=5 , a_ : int=4 , a_ : Tuple=0.1 , a_ : List[Any]=0.1 , a_ : List[str]=5_12 , a_ : Optional[Any]=2 , a_ : Tuple=0.02 , a_ : Dict=2 , a_ : Any=4 , a_ : str="last" , a_ : Optional[Any]=True , a_ : Tuple=None , a_ : List[str]=0 , ):
lowerCAmelCase_ : List[str] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : str = seq_length
lowerCAmelCase_ : Union[str, Any] = is_training
lowerCAmelCase_ : Tuple = use_input_lengths
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Union[str, Any] = use_labels
lowerCAmelCase_ : List[str] = gelu_activation
lowerCAmelCase_ : List[str] = sinusoidal_embeddings
lowerCAmelCase_ : Dict = causal
lowerCAmelCase_ : Optional[int] = asm
lowerCAmelCase_ : Any = n_langs
lowerCAmelCase_ : Optional[int] = vocab_size
lowerCAmelCase_ : Dict = n_special
lowerCAmelCase_ : List[str] = hidden_size
lowerCAmelCase_ : Dict = num_hidden_layers
lowerCAmelCase_ : str = num_attention_heads
lowerCAmelCase_ : Any = hidden_dropout_prob
lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Tuple = max_position_embeddings
lowerCAmelCase_ : Dict = type_sequence_label_size
lowerCAmelCase_ : List[str] = initializer_range
lowerCAmelCase_ : Optional[int] = num_labels
lowerCAmelCase_ : str = num_choices
lowerCAmelCase_ : Optional[int] = summary_type
lowerCAmelCase_ : Dict = use_proj
lowerCAmelCase_ : str = scope
lowerCAmelCase_ : Dict = bos_token_id
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : int = None
if self.use_input_lengths:
lowerCAmelCase_ : Any = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowerCAmelCase_ : List[str] = None
if self.use_token_type_ids:
lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowerCAmelCase_ : str = None
lowerCAmelCase_ : List[Any] = None
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float()
lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase_ : Dict = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCamelCase ( self : Union[str, Any] ):
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowerCamelCase ( self : Any , a_ : Optional[int] , a_ : Union[str, Any] , a_ : str , a_ : Dict , a_ : List[Any] , a_ : Optional[Any] , a_ : Any , a_ : Any , a_ : List[str] , ):
lowerCAmelCase_ : Any = XLMModel(config=a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : Any = model(a_ , lengths=a_ , langs=a_ )
lowerCAmelCase_ : Tuple = model(a_ , langs=a_ )
lowerCAmelCase_ : Optional[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCamelCase ( self : Dict , a_ : Tuple , a_ : int , a_ : List[Any] , a_ : Optional[Any] , a_ : List[str] , a_ : Optional[Any] , a_ : Optional[Any] , a_ : List[Any] , a_ : Optional[Any] , ):
lowerCAmelCase_ : Any = XLMWithLMHeadModel(a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : str = model(a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCamelCase ( self : str , a_ : List[str] , a_ : List[Any] , a_ : str , a_ : Tuple , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : int , a_ : List[str] , a_ : List[Any] , ):
lowerCAmelCase_ : int = XLMForQuestionAnsweringSimple(a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : Any = model(a_ )
lowerCAmelCase_ : Any = model(a_ , start_positions=a_ , end_positions=a_ )
lowerCAmelCase_ : Optional[Any] = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCamelCase ( self : Tuple , a_ : Any , a_ : str , a_ : Optional[int] , a_ : Dict , a_ : Any , a_ : int , a_ : List[str] , a_ : int , a_ : List[str] , ):
lowerCAmelCase_ : int = XLMForQuestionAnswering(a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : int = model(a_ )
lowerCAmelCase_ : List[Any] = model(
a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , )
lowerCAmelCase_ : List[str] = model(
a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , )
((lowerCAmelCase_ ) , ) : Optional[Any] = result_with_labels.to_tuple()
lowerCAmelCase_ : Optional[int] = model(a_ , start_positions=a_ , end_positions=a_ )
((lowerCAmelCase_ ) , ) : Tuple = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowerCamelCase ( self : str , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : int , a_ : Union[str, Any] , a_ : str , a_ : str , a_ : int , a_ : Optional[Any] , ):
lowerCAmelCase_ : int = XLMForSequenceClassification(a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : List[str] = model(a_ )
lowerCAmelCase_ : Any = model(a_ , labels=a_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCamelCase ( self : Optional[Any] , a_ : Tuple , a_ : Optional[Any] , a_ : int , a_ : Optional[Any] , a_ : str , a_ : Union[str, Any] , a_ : str , a_ : Any , a_ : Optional[Any] , ):
lowerCAmelCase_ : Dict = self.num_labels
lowerCAmelCase_ : Optional[Any] = XLMForTokenClassification(a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : Any = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCamelCase ( self : List[Any] , a_ : Dict , a_ : Any , a_ : List[str] , a_ : Tuple , a_ : Any , a_ : int , a_ : Optional[Any] , a_ : str , a_ : Dict , ):
lowerCAmelCase_ : List[Any] = self.num_choices
lowerCAmelCase_ : Union[str, Any] = XLMForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
lowerCAmelCase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase_ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCAmelCase_ : Any = model(
a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCamelCase ( self : Dict ):
lowerCAmelCase_ : Dict = self.prepare_config_and_inputs()
(
(
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) , (
lowerCAmelCase_
) ,
) : Any = config_and_inputs
lowerCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
a_ : Tuple = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
a_ : Any = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
a_ : Optional[int] = (
{
"""feature-extraction""": XLMModel,
"""fill-mask""": XLMWithLMHeadModel,
"""question-answering""": XLMForQuestionAnsweringSimple,
"""text-classification""": XLMForSequenceClassification,
"""text-generation""": XLMWithLMHeadModel,
"""token-classification""": XLMForTokenClassification,
"""zero-shot""": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCamelCase ( self : Dict , a_ : int , a_ : int , a_ : int , a_ : Tuple , a_ : List[Any] ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCamelCase ( self : str , a_ : Optional[int] , a_ : Optional[Any] , a_ : int=False ):
lowerCAmelCase_ : List[Any] = super()._prepare_for_class(a_ , a_ , return_labels=a_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
lowerCAmelCase_ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
lowerCAmelCase_ : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
return inputs_dict
def lowerCamelCase ( self : List[Any] ):
lowerCAmelCase_ : Any = XLMModelTester(self )
lowerCAmelCase_ : Dict = ConfigTester(self , config_class=a_ , emb_dim=37 )
def lowerCamelCase ( self : int ):
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*a_ )
def lowerCamelCase ( self : str ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*a_ )
def lowerCamelCase ( self : int ):
lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*a_ )
def lowerCamelCase ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*a_ )
def lowerCamelCase ( self : Union[str, Any] ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*a_ )
def lowerCamelCase ( self : List[Any] ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*a_ )
def lowerCamelCase ( self : List[Any] ):
lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*a_ )
def lowerCamelCase ( self : Any , a_ : Any , a_ : Dict , a_ : Any , a_ : str , a_ : str , a_ : Optional[Any]=False , a_ : Optional[Any]=1 ):
self.assertIsInstance(a_ , a_ )
self.assertListEqual(
[isinstance(a_ , a_ ) for iter_attentions in attentions] , [True] * len(a_ ) )
self.assertEqual(len(a_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(a_ ):
# adds PAD dummy token
lowerCAmelCase_ : Optional[int] = min_length + idx + 1
lowerCAmelCase_ : int = min_length + idx + 1
lowerCAmelCase_ : List[Any] = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(a_ ) )
def lowerCamelCase ( self : int , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : str , a_ : Optional[int] , a_ : Dict=False , a_ : Optional[int]=1 ):
self.assertIsInstance(a_ , a_ )
self.assertListEqual(
[isinstance(a_ , a_ ) for iter_hidden_states in hidden_states] , [True] * len(a_ ) , )
self.assertEqual(len(a_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(a_ ):
# adds PAD dummy token
lowerCAmelCase_ : int = min_length + idx + 1
lowerCAmelCase_ : List[str] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(a_ ) , )
pass
@slow
def lowerCamelCase ( self : Union[str, Any] ):
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : int = XLMModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : Dict = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" )
model.to(a_ )
lowerCAmelCase_ : str = torch.tensor([[14, 4_47]] , dtype=torch.long , device=a_ ) # the president
lowerCAmelCase_ : List[Any] = [
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
lowerCAmelCase_ : str = model.generate(a_ , do_sample=a_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , a_ )
| 241 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _lowercase ( __A ):
'''simple docstring'''
return (data["data"], data["target"])
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__A ,__A )
# Predict target for test data
__UpperCamelCase = xgb.predict(__A )
__UpperCamelCase = predictions.reshape(len(__A ) ,1 )
return predictions
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = fetch_california_housing()
__UpperCamelCase , __UpperCamelCase = data_handling(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(
__A ,__A ,test_size=0.25 ,random_state=1 )
__UpperCamelCase = xgboost(__A ,__A ,__A )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" )
print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 349 | 0 |
from __future__ import annotations
def lowerCAmelCase__( lowercase : Dict , lowercase : Union[str, Any] , lowercase : Optional[int] ) -> Dict:
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance < 0:
raise ValueError("Resistance cannot be negative" )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder()
__UpperCamelCase = inputs_dict["""input_ids"""]
__UpperCamelCase = input_ids[:1, :]
__UpperCamelCase = inputs_dict["""attention_mask"""][:1, :]
__UpperCamelCase = inputs_dict["""head_mask"""]
__UpperCamelCase = 1
# first forward pass
__UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase = model(lowercase , attention_mask=lowercase )[0]
__UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
__SCREAMING_SNAKE_CASE = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__SCREAMING_SNAKE_CASE = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__SCREAMING_SNAKE_CASE = '''google/pegasus-xsum'''
@cached_property
def __lowerCamelCase ( self ) -> int:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCamelCase ( self , **lowercase ) -> Optional[int]:
__UpperCamelCase = self.translate_src_text(**lowercase )
assert self.expected_text == generated_words
def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]:
__UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" )
__UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , )
__UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )
return generated_words
@slow
def __lowerCamelCase ( self ) -> Dict:
self._assert_generated_batch_equal_expected()
| 349 | 0 |
"""simple docstring"""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
a = logging.get_logger(__name__)
def lowercase (snake_case__ : str , snake_case__ : Dict ) -> Dict:
'''simple docstring'''
try:
with open(__A , """rb""" ) as flax_state_f:
lowerCAmelCase = from_bytes(__A , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__A ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(__A , __A )
def lowercase (snake_case__ : Optional[Any] , snake_case__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , __A ) ).values()
if any(__A ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
lowerCAmelCase = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __A )
lowerCAmelCase = """"""
lowerCAmelCase = flatten_dict(__A , sep=""".""" )
lowerCAmelCase = pt_model.state_dict()
# keep track of unexpected & missing keys
lowerCAmelCase = []
lowerCAmelCase = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowerCAmelCase = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
lowerCAmelCase = flax_key_tuple_array[:-1] + ["""weight"""]
lowerCAmelCase = jnp.transpose(__A , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
lowerCAmelCase = flax_key_tuple_array[:-1] + ["""weight"""]
lowerCAmelCase = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
lowerCAmelCase = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__A ):
lowerCAmelCase = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
lowerCAmelCase = """.""".join(__A )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
lowerCAmelCase = np.asarray(__A ) if not isinstance(__A , np.ndarray ) else flax_tensor
lowerCAmelCase = torch.from_numpy(__A )
# remove from missing keys
missing_keys.remove(__A )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__A )
pt_model.load_state_dict(__A )
# re-transform missing_keys to list
lowerCAmelCase = list(__A )
if len(__A ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(__A ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
""" use it for predictions and inference.""" )
return pt_model
| 155 |
'''simple docstring'''
import string
def _lowercase ( __A ):
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(__A )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = input("""Encrypted message: """ )
__UpperCamelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 349 | 0 |
"""simple docstring"""
import copy
import re
class UpperCamelCase_ :
__magic_name__ = '''hp'''
__magic_name__ = {}
__magic_name__ = None
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> Dict:
UpperCAmelCase_ : List[str] = prefix
UpperCAmelCase_ : Any = defaults
cls.build_naming_info()
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> Optional[Any]:
if len(lowerCAmelCase_ ) == 0:
return ""
UpperCAmelCase_ : Union[str, Any] = None
if any(char.isdigit() for char in word ):
raise Exception(f"""Parameters should not contain numbers: '{word}' contains a number""" )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(lowerCAmelCase_ ) + 1 ):
UpperCAmelCase_ : Optional[Any] = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
UpperCAmelCase_ : int = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(lowerCAmelCase_ : int ):
UpperCAmelCase_ : List[Any] = ""
while integer != 0:
UpperCAmelCase_ : int = chr(ord("A" ) + integer % 10 ) + s
integer //= 10
return s
UpperCAmelCase_ : Dict = 0
while True:
UpperCAmelCase_ : List[str] = word + "#" + int_to_alphabetic(lowerCAmelCase_ )
if sword in info["reverse_short_word"]:
continue
else:
UpperCAmelCase_ : str = sword
break
UpperCAmelCase_ : Tuple = short_word
UpperCAmelCase_ : Union[str, Any] = word
return short_word
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Optional[int]:
UpperCAmelCase_ : int = param_name.split("_" )
UpperCAmelCase_ : List[Any] = [TrialShortNamer.shortname_for_word(lowerCAmelCase_ , lowerCAmelCase_ ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
UpperCAmelCase_ : str = ["", "_"]
for separator in separators:
UpperCAmelCase_ : str = separator.join(lowerCAmelCase_ )
if shortname not in info["reverse_short_param"]:
UpperCAmelCase_ : int = shortname
UpperCAmelCase_ : Union[str, Any] = param_name
return shortname
return param_name
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]:
UpperCAmelCase_ : int = TrialShortNamer.shortname_for_key(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = short_name
UpperCAmelCase_ : Dict = param_name
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[int] ) -> Any:
if cls.NAMING_INFO is not None:
return
UpperCAmelCase_ : int = {
"short_word": {},
"reverse_short_word": {},
"short_param": {},
"reverse_short_param": {},
}
UpperCAmelCase_ : List[str] = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(lowerCAmelCase_ , lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = info
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> str:
cls.build_naming_info()
assert cls.PREFIX is not None
UpperCAmelCase_ : Dict = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
UpperCAmelCase_ : Dict = cls.NAMING_INFO["short_param"][k]
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
UpperCAmelCase_ : int = 1 if v else 0
UpperCAmelCase_ : str = "" if isinstance(lowerCAmelCase_ , (int, float) ) else "-"
UpperCAmelCase_ : int = f"""{key}{sep}{v}"""
name.append(lowerCAmelCase_ )
return "_".join(lowerCAmelCase_ )
@classmethod
def _SCREAMING_SNAKE_CASE ( cls : str , lowerCAmelCase_ : Union[str, Any] ) -> List[str]:
UpperCAmelCase_ : str = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
UpperCAmelCase_ : Tuple = []
else:
UpperCAmelCase_ : Dict = repr.split("_" )
UpperCAmelCase_ : List[str] = {}
for value in values:
if "-" in value:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = value.split("-" )
else:
UpperCAmelCase_ : Optional[Any] = re.sub("[0-9.]" , "" , lowerCAmelCase_ )
UpperCAmelCase_ : str = float(re.sub("[^0-9.]" , "" , lowerCAmelCase_ ) )
UpperCAmelCase_ : List[str] = cls.NAMING_INFO["reverse_short_param"][p_k]
UpperCAmelCase_ : int = p_v
for k in cls.DEFAULTS:
if k not in parameters:
UpperCAmelCase_ : Union[str, Any] = cls.DEFAULTS[k]
return parameters
| 268 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Dict = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''gptj'''
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = n_inner
__UpperCamelCase = rotary_dim
__UpperCamelCase = activation_function
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = attn_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
__UpperCamelCase = bos_token_id
__UpperCamelCase = eos_token_id
super().__init__(
bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]:
super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase )
if not getattr(self._config , """pad_token_id""" , lowercase ):
# TODO: how to do that better?
__UpperCamelCase = 0
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
__UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction="""inputs""" )
__UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_layer
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_head
def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase = super(lowercase , self ).generate_dummy_inputs(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__UpperCamelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers )
]
__UpperCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__UpperCamelCase = ordered_inputs["""attention_mask"""].dtype
__UpperCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
return ordered_inputs
@property
def __lowerCamelCase ( self ) -> int:
return 1_3
| 349 | 0 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __UpperCamelCase ( ) -> Dict:
"""simple docstring"""
A : Optional[int] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=__A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=__A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=__A )
return parser.parse_args()
def __UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
A : Union[str, Any] = parse_args()
# Import training_script as a module.
A : int = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
A : Optional[Any] = script_fpath.stem
A : Dict = importlib.import_module(__A )
# Patch sys.argv
A : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 116 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a__ : int = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['LayoutLMv3FeatureExtractor']
a__ : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
lowerCAmelCase__ : str = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : int = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
lowerCAmelCase__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 143 |
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = len(__A )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
snake_case : str = logging.getLogger(__name__)
class _snake_case ( UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = 'summarization'
SCREAMING_SNAKE_CASE__ = ['loss']
SCREAMING_SNAKE_CASE__ = ROUGE_KEYS
SCREAMING_SNAKE_CASE__ = 'rouge2'
def __init__( self , _lowerCamelCase , **_lowerCamelCase ):
if hparams.sortish_sampler and hparams.gpus > 1:
a :Optional[Any] = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' )
if hparams.sortish_sampler:
raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' )
super().__init__(_lowerCamelCase , num_labels=_lowerCamelCase , mode=self.mode , **_lowerCamelCase )
use_task_specific_params(self.model , '''summarization''' )
save_git_info(self.hparams.output_dir )
a :Tuple = Path(self.output_dir ) / '''metrics.json'''
a :Optional[Any] = Path(self.output_dir ) / '''hparams.pkl'''
pickle_save(self.hparams , self.hparams_save_path )
a :Optional[Any] = 0
a :Union[str, Any] = defaultdict(_lowerCamelCase )
a :Dict = self.config.model_type
a :Dict = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size
a :Optional[Any] = {
'''data_dir''': self.hparams.data_dir,
'''max_source_length''': self.hparams.max_source_length,
'''prefix''': self.model.config.prefix or '''''',
}
a :Tuple = {
'''train''': self.hparams.n_train,
'''val''': self.hparams.n_val,
'''test''': self.hparams.n_test,
}
a :List[Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
a :Union[str, Any] = {
'''train''': self.hparams.max_target_length,
'''val''': self.hparams.val_max_target_length,
'''test''': self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}'''
assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}'''
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
a :Tuple = get_git_info()['''repo_sha''']
a :Any = hparams.num_workers
a :Any = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _lowerCamelCase ):
a :int = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
a :Union[str, Any] = self.decoder_start_token_id
a :Union[str, Any] = (
SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset
)
a :Union[str, Any] = False
a :List[Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
a :Optional[Any] = self.hparams.eval_max_gen_length
else:
a :Optional[int] = self.model.config.max_length
a :Dict = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :Union[str, Any] = {
k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items()
}
save_json(_lowerCamelCase , Path(self.output_dir ) / '''text_batch.json''' )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' )
a :Union[str, Any] = True
return readable_batch
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ):
return self.model(_lowerCamelCase , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :Dict = self.tokenizer.batch_decode(
_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
return lmap(str.strip , _lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :Optional[int] = self.tokenizer.pad_token_id
a , a :List[Any] = batch['''input_ids'''], batch['''attention_mask''']
a :Optional[Any] = batch['''labels''']
if isinstance(self.model , _lowerCamelCase ):
a :Union[str, Any] = self.model._shift_right(_lowerCamelCase )
else:
a :int = shift_tokens_right(_lowerCamelCase , _lowerCamelCase )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
a :int = decoder_input_ids
self.save_readable_batch(_lowerCamelCase )
a :Tuple = self(_lowerCamelCase , attention_mask=_lowerCamelCase , decoder_input_ids=_lowerCamelCase , use_cache=_lowerCamelCase )
a :Optional[int] = outputs['''logits''']
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
a :Union[str, Any] = nn.CrossEntropyLoss(ignore_index=_lowerCamelCase )
assert lm_logits.shape[-1] == self.vocab_size
a :Tuple = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
a :List[Any] = nn.functional.log_softmax(_lowerCamelCase , dim=-1 )
a , a :str = label_smoothed_nll_loss(
_lowerCamelCase , _lowerCamelCase , self.hparams.label_smoothing , ignore_index=_lowerCamelCase )
return (loss,)
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return self.tokenizer.pad_token_id
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
a :Tuple = self._step(_lowerCamelCase )
a :Any = dict(zip(self.loss_names , _lowerCamelCase ) )
# tokens per batch
a :Tuple = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum()
a :Any = batch['''input_ids'''].shape[0]
a :Optional[int] = batch['''input_ids'''].eq(self.pad ).sum()
a :int = batch['''input_ids'''].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return self._generative_step(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase="val" ):
self.step_count += 1
a :List[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
a :Any = losses['''loss''']
a :Tuple = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len''']
}
a :Any = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
a :Dict = torch.tensor(_lowerCamelCase ).type_as(_lowerCamelCase )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(_lowerCamelCase )
a :List[Any] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()}
a :Tuple = self.step_count
self.metrics[prefix].append(_lowerCamelCase ) # callback writes this to self.metrics_save_path
a :Dict = flatten_list([x['''preds'''] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
F'''{prefix}_loss''': loss,
F'''{prefix}_{self.val_metric}''': metric_tensor,
}
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return calculate_rouge(_lowerCamelCase , _lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :List[Any] = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
a :Any = self.model.generate(
batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_lowerCamelCase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
a :Tuple = (time.time() - ta) / batch['''input_ids'''].shape[0]
a :Union[str, Any] = self.ids_to_clean_text(_lowerCamelCase )
a :Optional[Any] = self.ids_to_clean_text(batch['''labels'''] )
a :List[str] = self._step(_lowerCamelCase )
a :Optional[Any] = dict(zip(self.loss_names , _lowerCamelCase ) )
a :List[Any] = self.calc_generative_metrics(_lowerCamelCase , _lowerCamelCase )
a :str = np.mean(lmap(_lowerCamelCase , _lowerCamelCase ) )
base_metrics.update(gen_time=_lowerCamelCase , gen_len=_lowerCamelCase , preds=_lowerCamelCase , target=_lowerCamelCase , **_lowerCamelCase )
return base_metrics
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return self._generative_step(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
return self.validation_epoch_end(_lowerCamelCase , prefix='''test''' )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :int = self.n_obs[type_path]
a :int = self.target_lens[type_path]
a :Union[str, Any] = self.dataset_class(
self.tokenizer , type_path=_lowerCamelCase , n_obs=_lowerCamelCase , max_target_length=_lowerCamelCase , **self.dataset_kwargs , )
return dataset
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ):
a :Union[str, Any] = self.get_dataset(_lowerCamelCase )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
a :Optional[int] = dataset.make_sortish_sampler(_lowerCamelCase , distributed=self.hparams.gpus > 1 )
return DataLoader(
_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=_lowerCamelCase , num_workers=self.num_workers , sampler=_lowerCamelCase , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
a :List[Any] = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
_lowerCamelCase , batch_sampler=_lowerCamelCase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
_lowerCamelCase , batch_size=_lowerCamelCase , collate_fn=dataset.collate_fn , shuffle=_lowerCamelCase , num_workers=self.num_workers , sampler=_lowerCamelCase , )
def SCREAMING_SNAKE_CASE__ ( self ):
a :str = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_lowerCamelCase )
return dataloader
def SCREAMING_SNAKE_CASE__ ( self ):
return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size )
def SCREAMING_SNAKE_CASE__ ( self ):
return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase ):
BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase )
add_generic_args(_lowerCamelCase , _lowerCamelCase )
parser.add_argument(
'''--max_source_length''' , default=1024 , type=_lowerCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--max_target_length''' , default=56 , type=_lowerCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--val_max_target_length''' , default=142 , type=_lowerCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--test_max_target_length''' , default=142 , type=_lowerCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument('''--freeze_encoder''' , action='''store_true''' )
parser.add_argument('''--freeze_embeds''' , action='''store_true''' )
parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_lowerCamelCase )
parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_lowerCamelCase )
parser.add_argument('''--max_tokens_per_batch''' , type=_lowerCamelCase , default=_lowerCamelCase )
parser.add_argument('''--logger_name''' , type=_lowerCamelCase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' )
parser.add_argument('''--n_train''' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--n_val''' , type=_lowerCamelCase , default=500 , required=_lowerCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--n_test''' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument(
'''--task''' , type=_lowerCamelCase , default='''summarization''' , required=_lowerCamelCase , help='''# examples. -1 means use all.''' )
parser.add_argument('''--label_smoothing''' , type=_lowerCamelCase , default=0.0 , required=_lowerCamelCase )
parser.add_argument('''--src_lang''' , type=_lowerCamelCase , default='''''' , required=_lowerCamelCase )
parser.add_argument('''--tgt_lang''' , type=_lowerCamelCase , default='''''' , required=_lowerCamelCase )
parser.add_argument('''--eval_beams''' , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase )
parser.add_argument(
'''--val_metric''' , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , choices=['''bleu''', '''rouge2''', '''loss''', None] )
parser.add_argument('''--eval_max_gen_length''' , type=_lowerCamelCase , default=_lowerCamelCase , help='''never generate more than n tokens''' )
parser.add_argument('''--save_top_k''' , type=_lowerCamelCase , default=1 , required=_lowerCamelCase , help='''How many checkpoints to save''' )
parser.add_argument(
'''--early_stopping_patience''' , type=_lowerCamelCase , default=-1 , required=_lowerCamelCase , help=(
'''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So'''
''' val_check_interval will effect it.'''
) , )
return parser
class _snake_case ( UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = 'translation'
SCREAMING_SNAKE_CASE__ = ['loss']
SCREAMING_SNAKE_CASE__ = ['bleu']
SCREAMING_SNAKE_CASE__ = 'bleu'
def __init__( self , _lowerCamelCase , **_lowerCamelCase ):
super().__init__(_lowerCamelCase , **_lowerCamelCase )
a :List[Any] = hparams.src_lang
a :str = hparams.tgt_lang
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ):
return calculate_bleu(_lowerCamelCase , _lowerCamelCase )
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]=None ):
"""simple docstring"""
Path(args.output_dir ).mkdir(exist_ok=__A )
check_output_dir(__A , expected_items=3 )
if model is None:
if "summarization" in args.task:
a :Optional[Any] = SummarizationModule(__A )
else:
a :str = TranslationModule(__A )
a :List[str] = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith('''/tmp''' )
or str(args.output_dir ).startswith('''/var''' )
):
a :Tuple = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
a :Any = os.environ.get('''WANDB_PROJECT''' , __A )
a :Dict = WandbLogger(name=model.output_dir.name , project=__A )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
a :Dict = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' )
if args.early_stopping_patience >= 0:
a :List[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience )
else:
a :str = False
a :Any = args.val_metric == '''loss'''
a :List[str] = generic_train(
__A , __A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback(
args.output_dir , model.val_metric , args.save_top_k , __A ) , early_stopping_callback=__A , logger=__A , )
pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' )
if not args.do_predict:
return model
a :str = ''''''
a :Tuple = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__A ) )
if checkpoints:
a :List[Any] = checkpoints[-1]
a :Optional[Any] = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
snake_case : Any = argparse.ArgumentParser()
snake_case : Tuple = pl.Trainer.add_argparse_args(parser)
snake_case : Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd())
snake_case : str = parser.parse_args()
main(args)
| 94 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
a__ : Any = get_logger(__name__)
class UpperCAmelCase__ :
def __init__( self , lowercase = None ) -> List[str]:
__UpperCamelCase = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__UpperCamelCase = Extractor
def __lowerCamelCase ( self , lowercase ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__UpperCamelCase = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def __lowerCamelCase ( self , lowercase , lowercase ) -> bool:
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str:
__UpperCamelCase = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
__UpperCamelCase = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
@abstractmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
...
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
...
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = []
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> int:
with open(lowercase , """rb""" ) as f:
return f.read(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if not magic_number:
__UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
__UpperCamelCase = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
return tarfile.is_tarfile(lowercase )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
__UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
__UpperCamelCase = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" )
else:
yield finfo
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x1F\x8B''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with gzip.open(lowercase , """rb""" ) as gzip_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , """rb""" ) as fp:
__UpperCamelCase = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
__UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , """r""" ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
__UpperCamelCase = zstd.ZstdDecompressor()
with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with bza.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , """r""" ) as archive:
archive.extractall(lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__SCREAMING_SNAKE_CASE = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def __lowerCamelCase ( cls ) -> Union[str, Any]:
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/>
__UpperCamelCase = cls._get_magic_number_max_length()
__UpperCamelCase = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
__UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format
else:
__UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 349 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
lowercase : List[Any] = logging.get_logger(__name__)
lowercase : Optional[Any] = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class A ( UpperCAmelCase_ ):
__magic_name__ = '''dpt'''
def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=384 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=[2, 5, 8, 11] , SCREAMING_SNAKE_CASE="project" , SCREAMING_SNAKE_CASE=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE=[96, 192, 384, 768] , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=-1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.4 , SCREAMING_SNAKE_CASE=255 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=[1, 1024, 24, 24] , SCREAMING_SNAKE_CASE=[0, 1] , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : str = hidden_size
A : Union[str, Any] = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
A : Union[str, Any] = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
A : Tuple = BitConfig(**SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
A : Any = BitConfig(**SCREAMING_SNAKE_CASE )
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : List[Any] = backbone_config
else:
raise ValueError(
F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' )
A : Optional[Any] = backbone_featmap_shape
A : Dict = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
A : Optional[int] = None
A : List[str] = None
A : Tuple = []
A : List[Any] = num_hidden_layers
A : Optional[Any] = num_attention_heads
A : Union[str, Any] = intermediate_size
A : str = hidden_act
A : Union[str, Any] = hidden_dropout_prob
A : int = attention_probs_dropout_prob
A : str = initializer_range
A : Any = layer_norm_eps
A : Any = image_size
A : List[str] = patch_size
A : Dict = num_channels
A : int = qkv_bias
A : Tuple = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
A : List[Any] = readout_type
A : List[str] = reassemble_factors
A : List[Any] = neck_hidden_sizes
A : Tuple = fusion_hidden_size
A : Any = head_in_index
A : Tuple = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
A : List[Any] = use_auxiliary_head
A : Union[str, Any] = auxiliary_loss_weight
A : Dict = semantic_loss_ignore_index
A : Union[str, Any] = semantic_classifier_dropout
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Tuple = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
A : List[str] = self.backbone_config.to_dict()
A : List[Any] = self.__class__.model_type
return output
| 3 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = FlaxPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = self._prepare_for_class(lowercase , lowercase )
__UpperCamelCase = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = model_class(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCamelCase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase )
__UpperCamelCase = np.ones((1, 1) )
__UpperCamelCase = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase )
__UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences
__UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded
| 349 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =tempfile.mkdtemp()
SCREAMING_SNAKE_CASE =BlipImageProcessor()
SCREAMING_SNAKE_CASE =BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' )
SCREAMING_SNAKE_CASE =BlipProcessor(snake_case ,snake_case )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : List[str] ,**snake_case : Tuple ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case ).tokenizer
def _lowerCAmelCase ( self : Optional[Any] ,**snake_case : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname ,**snake_case ).image_processor
def _lowerCAmelCase ( self : List[str] ):
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =[np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )]
SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(snake_case ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' )
SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=snake_case ,padding_value=1.0 )
SCREAMING_SNAKE_CASE =BlipProcessor.from_pretrained(
self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=snake_case ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,snake_case )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,snake_case )
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.get_image_processor()
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=snake_case ,image_processor=snake_case )
SCREAMING_SNAKE_CASE =self.prepare_image_inputs()
SCREAMING_SNAKE_CASE =image_processor(snake_case ,return_tensors='np' )
SCREAMING_SNAKE_CASE =processor(images=snake_case ,return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.get_image_processor()
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=snake_case ,image_processor=snake_case )
SCREAMING_SNAKE_CASE ='lower newer'
SCREAMING_SNAKE_CASE =processor(text=snake_case )
SCREAMING_SNAKE_CASE =tokenizer(snake_case ,return_token_type_ids=snake_case )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def _lowerCAmelCase ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE =self.get_image_processor()
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=snake_case ,image_processor=snake_case )
SCREAMING_SNAKE_CASE ='lower newer'
SCREAMING_SNAKE_CASE =self.prepare_image_inputs()
SCREAMING_SNAKE_CASE =processor(text=snake_case ,images=snake_case )
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] )
# test if it raises when no input is passed
with pytest.raises(snake_case ):
processor()
def _lowerCAmelCase ( self : Dict ):
SCREAMING_SNAKE_CASE =self.get_image_processor()
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=snake_case ,image_processor=snake_case )
SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE =processor.batch_decode(snake_case )
SCREAMING_SNAKE_CASE =tokenizer.batch_decode(snake_case )
self.assertListEqual(snake_case ,snake_case )
def _lowerCAmelCase ( self : List[str] ):
SCREAMING_SNAKE_CASE =self.get_image_processor()
SCREAMING_SNAKE_CASE =self.get_tokenizer()
SCREAMING_SNAKE_CASE =BlipProcessor(tokenizer=snake_case ,image_processor=snake_case )
SCREAMING_SNAKE_CASE ='lower newer'
SCREAMING_SNAKE_CASE =self.prepare_image_inputs()
SCREAMING_SNAKE_CASE =processor(text=snake_case ,images=snake_case )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'input_ids', 'attention_mask'] )
| 334 |
'''simple docstring'''
import pytest
a__ : List[str] = '__dummy_dataset1__'
a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = dataset_loading_script_name
__UpperCamelCase = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=__A )
__UpperCamelCase = script_dir / f"{script_name}.py"
with open(__A ,"""w""" ) as f:
f.write(__A )
return str(__A )
| 349 | 0 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = 4_2
UpperCAmelCase__ = 4_2
UpperCAmelCase__ = 4_2
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 273 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
a__ : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = {}
with open(__A ,"""r""" ) as file:
for line_number, line in enumerate(__A ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(__A ,__A ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = """.""".join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if """lm_head""" in full_key else value[0]
a__ : Dict = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _lowercase ( __A ,__A ,__A=None ,__A=None ):
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(__A )[0].split(""".""" )[-2]
__UpperCamelCase = mapped_key.replace("""*""" ,__A )
if "weight_g" in name:
__UpperCamelCase = """weight_g"""
elif "weight_v" in name:
__UpperCamelCase = """weight_v"""
elif "bias" in name:
__UpperCamelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = """weight"""
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(__A ,__A ,__A ,__A ,__A )
else:
set_recursively(__A ,__A ,__A ,__A ,__A )
return is_used
return is_used
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
__A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,)
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A )
if not is_used:
unused_weights.append(__A )
logger.warning(f"Unused weights: {unused_weights}" )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = full_name.split("""conv_layers.""" )[-1]
__UpperCamelCase = name.split(""".""" )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(__A )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(__A )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(__A )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(__A ,"""vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A ,exist_ok=__A )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(__A ,__A )
__UpperCamelCase = WavaVecaCTCTokenizer(
__A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,)
__UpperCamelCase = True if config.feat_extract_norm == """layer""" else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
__UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A )
processor.save_pretrained(__A )
__UpperCamelCase = WavaVecaForCTC(__A )
else:
__UpperCamelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" )
__UpperCamelCase = fairseq.tasks.setup_task(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A )
__UpperCamelCase = model[0].eval()
recursively_load_weights(__A ,__A ,not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
a__ : Optional[int] = parser.parse_args()
a__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 349 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase__ = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
lowerCamelCase__ = {
'gpt-neox-20b': 2048,
}
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Any =VOCAB_FILES_NAMES
__lowerCamelCase : int =PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : int =['input_ids', 'attention_mask']
def __init__( self : int , __lowercase : Any=None , __lowercase : Tuple=None , __lowercase : Dict=None , __lowercase : Tuple="<|endoftext|>" , __lowercase : Optional[Any]="<|endoftext|>" , __lowercase : str="<|endoftext|>" , __lowercase : List[str]=False , **__lowercase : Optional[Any] , ):
'''simple docstring'''
super().__init__(
__lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , )
__a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __lowercase ) != add_prefix_space:
__a = getattr(__lowercase , pre_tok_state.pop("""type""" ) )
__a = add_prefix_space
__a = pre_tok_class(**__lowercase )
__a = add_prefix_space
def UpperCamelCase_ ( self : int , __lowercase : Optional[int] , __lowercase : Optional[Any] = None ):
'''simple docstring'''
__a = self._tokenizer.model.save(__lowercase , name=__lowercase )
return tuple(__lowercase )
def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Any ):
'''simple docstring'''
__a = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] )
if len(__lowercase ) > self.model_max_length:
__a = input_ids[-self.model_max_length :]
return input_ids
| 302 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase__ :
def __init__( self , lowercase , ) -> Union[str, Any]:
__UpperCamelCase = parent
__UpperCamelCase = 1_3
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = 9_9
__UpperCamelCase = 3_2
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 3_7
__UpperCamelCase = """gelu"""
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 5_1_2
__UpperCamelCase = 1_6
__UpperCamelCase = 2
__UpperCamelCase = 0.02
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = None
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = TFDistilBertModel(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase )
__UpperCamelCase = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForSequenceClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFDistilBertForMultipleChoice(lowercase )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForTokenClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__SCREAMING_SNAKE_CASE = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 )
def __lowerCamelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def __lowerCamelCase ( self ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCamelCase = model(lowercase )[0]
__UpperCamelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowercase )
__UpperCamelCase = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
| 349 | 0 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("""3.8"""):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=False ) -> List[Any]:
"""simple docstring"""
try:
lowerCAmelCase_ : Optional[int] = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowerCAmelCase_ : Dict = default
else:
# KEY is set, convert it to True or False.
try:
lowerCAmelCase_ : Tuple = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''' )
return _value
lowercase__ = parse_flag_from_env("""RUN_SLOW""", default=False)
lowercase__ = parse_flag_from_env("""RUN_REMOTE""", default=False)
lowercase__ = parse_flag_from_env("""RUN_LOCAL""", default=True)
lowercase__ = parse_flag_from_env("""RUN_PACKAGED""", default=True)
# Compression
lowercase__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""")
lowercase__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""")
lowercase__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""")
# Audio
lowercase__ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""),
reason="""test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; """,
)
# Beam
lowercase__ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""),
reason="""test requires apache-beam and a compatible dill version""",
)
# Dill-cloudpickle compatibility
lowercase__ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("""0.3.2"""),
reason="""test requires dill>0.3.2 for cloudpickle compatibility""",
)
# Windows
lowercase__ = pytest.mark.skipif(
sys.platform == """win32""",
reason="""test should not be run on Windows""",
)
def __lowerCamelCase ( __UpperCamelCase ) -> Dict:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
lowerCAmelCase_ : Optional[Any] = unittest.skip("test requires faiss" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Dict:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
lowerCAmelCase_ : Optional[Any] = unittest.skip("test requires regex" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
lowerCAmelCase_ : Any = unittest.skip("test requires elasticsearch" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
lowerCAmelCase_ : Any = unittest.skip("test requires sqlalchemy" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
lowerCAmelCase_ : List[str] = unittest.skip("test requires PyTorch" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Tuple:
"""simple docstring"""
if not config.TF_AVAILABLE:
lowerCAmelCase_ : Optional[int] = unittest.skip("test requires TensorFlow" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]:
"""simple docstring"""
if not config.JAX_AVAILABLE:
lowerCAmelCase_ : int = unittest.skip("test requires JAX" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Any:
"""simple docstring"""
if not config.PIL_AVAILABLE:
lowerCAmelCase_ : int = unittest.skip("test requires Pillow" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(__A )
else:
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(__A )
else:
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Optional[Any]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(__A )
else:
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
def _require_spacy_model(__UpperCamelCase ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("test requires spacy" )(__A )
except OSError:
return unittest.skip("test requires spacy model '{}'".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def __lowerCamelCase ( __UpperCamelCase ) -> Tuple:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(__A )
else:
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Any:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(__A )
else:
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
lowerCAmelCase_ : Any = unittest.skip("test is slow" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
lowerCAmelCase_ : Dict = unittest.skip("test is local" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
lowerCAmelCase_ : Tuple = unittest.skip("test is packaged" )(__A )
return test_case
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
lowerCAmelCase_ : Tuple = unittest.skip("test requires remote" )(__A )
return test_case
def __lowerCamelCase ( *__UpperCamelCase ) -> Any:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("test" ):
for decorator in decorators:
lowerCAmelCase_ : List[Any] = decorator(__A )
setattr(cls , __A , __A )
return cls
return decorate
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
pass
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Any = 0
a_ : Tuple = 1
a_ : Optional[Any] = 2
@contextmanager
def __lowerCamelCase ( __UpperCamelCase=OfflineSimulationMode.CONNECTION_FAILS , __UpperCamelCase=1e-16 ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase_ : Optional[Any] = requests.Session().request
def timeout_request(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ):
# Change the url to an invalid url so that the connection hangs
lowerCAmelCase_ : int = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
lowerCAmelCase_ : int = timeout
try:
return online_request(__A , __A , **__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
lowerCAmelCase_ : List[Any] = url
lowerCAmelCase_ : List[str] = e.args[0]
lowerCAmelCase_ : Optional[int] = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]''' ),)
lowerCAmelCase_ : Union[str, Any] = (max_retry_error,)
raise
def raise_connection_error(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ):
raise requests.ConnectionError("Offline mode is enabled." , request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , __A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , __A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , __A ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def __lowerCamelCase ( *__UpperCamelCase , **__UpperCamelCase ) -> str:
"""simple docstring"""
lowerCAmelCase_ : Optional[int] = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A , **__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
import gc
gc.collect()
lowerCAmelCase_ : List[Any] = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def __lowerCamelCase ( ) -> List[str]:
"""simple docstring"""
import gc
gc.collect()
lowerCAmelCase_ : Tuple = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> str:
"""simple docstring"""
return deepcopy(__A ).integers(0 , 100 , 10 ).tolist() == deepcopy(__A ).integers(0 , 100 , 10 ).tolist()
def __lowerCamelCase ( __UpperCamelCase ) -> Dict:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ):
try:
return func(*__A , **__A )
except HTTPError as err:
if str(__A ).startswith("500" ) or str(__A ).startswith("502" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper , __A )
class __lowerCamelCase :
'''simple docstring'''
def __init__( self : str , a_ : List[Any] , a_ : int , a_ : Optional[int] ):
lowerCAmelCase_ : Optional[int] = returncode
lowerCAmelCase_ : str = stdout
lowerCAmelCase_ : List[str] = stderr
async def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> int:
"""simple docstring"""
while True:
lowerCAmelCase_ : Any = await stream.readline()
if line:
callback(__A )
else:
break
async def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False ) -> Optional[int]:
"""simple docstring"""
if echo:
print("\nRunning: " , " ".join(__A ) )
lowerCAmelCase_ : Dict = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowerCAmelCase_ : List[Any] = []
lowerCAmelCase_ : int = []
def tee(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="" ):
lowerCAmelCase_ : List[Any] = line.decode("utf-8" ).rstrip()
sink.append(__A )
if not quiet:
print(__A , __A , file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda __UpperCamelCase : tee(__A , __A , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda __UpperCamelCase : tee(__A , __A , sys.stderr , label="stderr:" ) ),
] , timeout=__A , )
return _RunOutput(await p.wait() , __A , __A )
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=180 , __UpperCamelCase=False , __UpperCamelCase=True ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase_ : Tuple = asyncio.get_event_loop()
lowerCAmelCase_ : Any = loop.run_until_complete(
_stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) )
lowerCAmelCase_ : Union[str, Any] = " ".join(__A )
if result.returncode > 0:
lowerCAmelCase_ : str = "\n".join(result.stderr )
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' )
return result
def __lowerCamelCase ( ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase_ : List[Any] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
lowerCAmelCase_ : Dict = re.sub(r"^gw" , "" , __A , 0 , re.M )
return int(__A )
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase_ : Union[str, Any] = 29500
lowerCAmelCase_ : List[Any] = pytest_xdist_worker_id()
return port + uniq_delta
| 241 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _lowercase ( __A ,__A ):
'''simple docstring'''
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
if dataset.ndim != value_array.ndim:
__UpperCamelCase = (
"""Wrong input data's dimensions... """
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
__UpperCamelCase = (
"""Wrong input data's shape... """
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("""Wrong shape""" )
if dataset.dtype != value_array.dtype:
__UpperCamelCase = (
"""Input data have different datatype... """
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(__A )
__UpperCamelCase = []
for value in value_array:
__UpperCamelCase = euclidean(__A ,dataset[0] )
__UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
__UpperCamelCase = euclidean(__A ,__A )
if dist > temp_dist:
__UpperCamelCase = temp_dist
__UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _lowercase ( __A ,__A ):
'''simple docstring'''
return np.dot(__A ,__A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
from bisect import bisect
from itertools import accumulate
def lowerCAmelCase__( lowercase : Tuple , lowercase : str , lowercase : Union[str, Any] , lowercase : Dict ) -> str:
__snake_case : Optional[int] = sorted(zip(__A , __A ) , key=lambda lowercase : x[0] / x[1] , reverse=__A )
__snake_case , __snake_case : Optional[int] = [i[0] for i in r], [i[1] for i in r]
__snake_case : int = list(accumulate(__A ) )
__snake_case : List[str] = bisect(__A , __A )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 326 |
'''simple docstring'''
from datetime import datetime
import requests
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
__UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(__A ).content
if __name__ == "__main__":
a__ : int = input('Enter Video/IGTV url: ').strip()
a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 349 | 0 |
"""simple docstring"""
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
| 155 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowercase ( __A ,__A=False ):
'''simple docstring'''
try:
__UpperCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__UpperCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__UpperCamelCase = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no." )
return _value
a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False)
a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False)
a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True)
a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
a__ : List[Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
a__ : str = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
a__ : str = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
a__ : Tuple = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowercase ( __A ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires faiss""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires regex""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TF_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires JAX""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
def _require_spacy_model(__A ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def _lowercase ( __A ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
__UpperCamelCase = unittest.skip("""test is slow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
__UpperCamelCase = unittest.skip("""test is local""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
__UpperCamelCase = unittest.skip("""test is packaged""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
__UpperCamelCase = unittest.skip("""test requires remote""" )(__A )
return test_case
def _lowercase ( *__A ):
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("""test""" ):
for decorator in decorators:
__UpperCamelCase = decorator(__A )
setattr(cls ,__A ,__A )
return cls
return decorate
class UpperCAmelCase__ ( UpperCAmelCase_):
pass
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
@contextmanager
def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ):
'''simple docstring'''
__UpperCamelCase = requests.Session().request
def timeout_request(__A ,__A ,__A ,**__A ):
# Change the url to an invalid url so that the connection hangs
__UpperCamelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
__UpperCamelCase = timeout
try:
return online_request(__A ,__A ,**__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__UpperCamelCase = url
__UpperCamelCase = e.args[0]
__UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),)
__UpperCamelCase = (max_retry_error,)
raise
def raise_connection_error(__A ,__A ,**__A ):
raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" ,__A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" ,__A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _lowercase ( *__A ,**__A ):
'''simple docstring'''
__UpperCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowercase ( __A ,__A ):
'''simple docstring'''
return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist()
def _lowercase ( __A ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__A ,*__A ,**__A ):
try:
return func(*__A ,**__A )
except HTTPError as err:
if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper ,__A )
class UpperCAmelCase__ :
def __init__( self , lowercase , lowercase , lowercase ) -> str:
__UpperCamelCase = returncode
__UpperCamelCase = stdout
__UpperCamelCase = stderr
async def _lowercase ( __A ,__A ):
'''simple docstring'''
while True:
__UpperCamelCase = await stream.readline()
if line:
callback(__A )
else:
break
async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ ,""" """.join(__A ) )
__UpperCamelCase = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__UpperCamelCase = []
__UpperCamelCase = []
def tee(__A ,__A ,__A ,__A="" ):
__UpperCamelCase = line.decode("""utf-8""" ).rstrip()
sink.append(__A )
if not quiet:
print(__A ,__A ,file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ),
_read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ),
] ,timeout=__A ,)
return _RunOutput(await p.wait() ,__A ,__A )
def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ):
'''simple docstring'''
__UpperCamelCase = asyncio.get_event_loop()
__UpperCamelCase = loop.run_until_complete(
_stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) )
__UpperCamelCase = """ """.join(__A )
if result.returncode > 0:
__UpperCamelCase = """\n""".join(result.stderr )
raise RuntimeError(
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
f"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"'{cmd_str}' produced no output." )
return result
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" )
__UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M )
return int(__A )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = 29_500
__UpperCamelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 349 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class UpperCamelCase_ :
__magic_name__ = field(
metadata={'''help''': '''The output directory where the model will be written.'''} , )
__magic_name__ = field(
metadata={
'''help''': (
'''The encoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train an encoder model from scratch.'''
)
} , )
__magic_name__ = field(
metadata={
'''help''': (
'''The decoder model checkpoint for weights initialization.'''
'''Don\'t set if you want to train a decoder model from scratch.'''
)
} , )
__magic_name__ = field(
default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} )
__magic_name__ = field(
default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} )
def snake_case ( ):
UpperCAmelCase_ : Union[str, Any] = HfArgumentParser((ModelArguments,) )
((UpperCAmelCase_ ) , ) : Union[str, Any] = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
UpperCAmelCase_ : int = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
UpperCAmelCase_ : Dict = True
UpperCAmelCase_ : int = True
UpperCAmelCase_ : List[Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path ,decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path ,encoder_config=__A ,decoder_config=__A ,)
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
UpperCAmelCase_ : Dict = decoder_config.decoder_start_token_id
UpperCAmelCase_ : Tuple = decoder_config.pad_token_id
if decoder_start_token_id is None:
UpperCAmelCase_ : List[str] = decoder_config.bos_token_id
if pad_token_id is None:
UpperCAmelCase_ : int = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
UpperCAmelCase_ : str = decoder_config.eos_token_id
UpperCAmelCase_ : Dict = decoder_start_token_id
UpperCAmelCase_ : Tuple = pad_token_id
UpperCAmelCase_ : Union[str, Any] = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
UpperCAmelCase_ : Dict = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 268 |
'''simple docstring'''
import re
def _lowercase ( __A ):
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
try:
__UpperCamelCase = split_input(__A )
if upper:
__UpperCamelCase = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__UpperCamelCase = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _lowercase ( __A ):
'''simple docstring'''
return to_simple_case(__A )
def _lowercase ( __A ):
'''simple docstring'''
try:
__UpperCamelCase = to_simple_case(__A )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""_""" )
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""-""" )
if __name__ == "__main__":
__import__('doctest').testmod()
| 349 | 0 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
SCREAMING_SNAKE_CASE_:Tuple = getLogger(__name__)
SCREAMING_SNAKE_CASE_:Tuple = 'cuda' if torch.cuda.is_available() else 'cpu'
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 8 , _lowerCAmelCase = DEFAULT_DEVICE , _lowerCAmelCase=False , _lowerCAmelCase="summarization" , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Tuple:
"""simple docstring"""
A : Optional[int] = Path(__A ).open("""w""" , encoding="""utf-8""" )
A : Tuple = str(__A )
A : int = AutoModelForSeqaSeqLM.from_pretrained(__A ).to(__A )
if fpaa:
A : List[Any] = model.half()
A : List[str] = AutoTokenizer.from_pretrained(__A )
logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
A : Dict = time.time()
# update config with task specific params
use_task_specific_params(__A , __A )
if prefix is None:
A : int = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(__A , __A ) ) ):
A : Union[str, Any] = [prefix + text for text in examples_chunk]
A : Union[str, Any] = tokenizer(__A , return_tensors="""pt""" , truncation=__A , padding="""longest""" ).to(__A )
A : int = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **__A , )
A : Optional[Any] = tokenizer.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
A : str = int(time.time() - start_time ) # seconds
A : Tuple = len(__A )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def __UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def __UpperCamelCase ( _lowerCAmelCase=True ) -> Tuple:
"""simple docstring"""
A : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=__A , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=__A , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=__A , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=__A , required=__A , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=__A , required=__A , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=__A , required=__A , default=__A , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=__A , required=__A , default=__A , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=__A , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=__A , default=8 , required=__A , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=__A , default=-1 , required=__A , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=__A , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
A , A : List[Any] = parser.parse_known_args()
A : Dict = parse_numeric_n_bool_cl_kwargs(__A )
if parsed_args and verbose:
print(f'''parsed the following generate kwargs: {parsed_args}''' )
A : List[Any] = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
A : int = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=__A )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can't mix --fp16 and --device cpu""" )
A : Optional[int] = generate_summaries_or_translations(
__A , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **__A , )
if args.reference_path is None:
return {}
# Compute scores
A : List[str] = calculate_bleu if """translation""" in args.task else calculate_rouge
A : int = [x.rstrip() for x in open(args.save_path ).readlines()]
A : Dict = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(__A )]
A : List[Any] = score_fn(__A , __A )
scores.update(__A )
if args.dump_args:
scores.update(__A )
if args.info:
A : str = args.info
if verbose:
print(__A )
if args.score_path is not None:
json.dump(__A , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 116 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (3_2, 3_2)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase )
return image
@property
def __lowerCamelCase ( self ) -> Dict:
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def __lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __lowerCamelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowercase )
@property
def __lowerCamelCase ( self ) -> Tuple:
def extract(*lowercase , **lowercase ):
class UpperCAmelCase__ :
def __init__( self ) -> Tuple:
__UpperCamelCase = torch.ones([0] )
def __lowerCamelCase ( self , lowercase ) -> List[str]:
self.pixel_values.to(lowercase )
return self
return Out()
return extract
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase )
assert isinstance(lowercase , lowercase )
assert isinstance(pipe.scheduler , lowercase )
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCamelCase = 4_0_0_3_6_6_0_3_4_6
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCamelCase = 2_7_3_4_9_7_1_7_5_5
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCamelCase = 1_0_4_4_3_5_5_2_3_4
__UpperCamelCase = 1_2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 349 | 0 |
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class __snake_case :
def __init__( self , __UpperCamelCase , ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Optional[int] = parent
snake_case__ : int = 13
snake_case__ : Tuple = 7
snake_case__ : Union[str, Any] = True
snake_case__ : Optional[int] = True
snake_case__ : str = False
snake_case__ : Optional[Any] = True
snake_case__ : Dict = 99
snake_case__ : int = 32
snake_case__ : Dict = 2
snake_case__ : str = 4
snake_case__ : Union[str, Any] = 37
snake_case__ : Tuple = 'gelu'
snake_case__ : Union[str, Any] = 0.1
snake_case__ : Union[str, Any] = 0.1
snake_case__ : Optional[int] = 512
snake_case__ : str = 16
snake_case__ : Tuple = 2
snake_case__ : int = 0.0_2
snake_case__ : Optional[int] = 3
snake_case__ : Any = 4
snake_case__ : Optional[int] = None
def __a ( self ) -> List[str]:
'''simple docstring'''
snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Dict = None
if self.use_input_mask:
snake_case__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ : Optional[Any] = None
snake_case__ : Any = None
snake_case__ : int = None
if self.use_labels:
snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
snake_case__ : str = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict:
'''simple docstring'''
snake_case__ : int = TFDistilBertModel(config=__UpperCamelCase )
snake_case__ : Dict = {'input_ids': input_ids, 'attention_mask': input_mask}
snake_case__ : Dict = model(__UpperCamelCase )
snake_case__ : Dict = [input_ids, input_mask]
snake_case__ : List[str] = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : List[str] = TFDistilBertForMaskedLM(config=__UpperCamelCase )
snake_case__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
snake_case__ : List[Any] = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = TFDistilBertForQuestionAnswering(config=__UpperCamelCase )
snake_case__ : Tuple = {
'input_ids': input_ids,
'attention_mask': input_mask,
}
snake_case__ : int = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple:
'''simple docstring'''
snake_case__ : Any = self.num_labels
snake_case__ : str = TFDistilBertForSequenceClassification(__UpperCamelCase )
snake_case__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
snake_case__ : Optional[int] = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int:
'''simple docstring'''
snake_case__ : int = self.num_choices
snake_case__ : Any = TFDistilBertForMultipleChoice(__UpperCamelCase )
snake_case__ : Optional[int] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
snake_case__ : Dict = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
snake_case__ : Tuple = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
}
snake_case__ : Optional[int] = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = self.num_labels
snake_case__ : Any = TFDistilBertForTokenClassification(__UpperCamelCase )
snake_case__ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
snake_case__ : Any = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self ) -> Dict:
'''simple docstring'''
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) : Optional[int] = config_and_inputs
snake_case__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( UpperCAmelCase_ ,UpperCAmelCase_ ,unittest.TestCase ):
__lowerCamelCase = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__lowerCamelCase = (
{
"""feature-extraction""": TFDistilBertModel,
"""fill-mask""": TFDistilBertForMaskedLM,
"""question-answering""": TFDistilBertForQuestionAnswering,
"""text-classification""": TFDistilBertForSequenceClassification,
"""token-classification""": TFDistilBertForTokenClassification,
"""zero-shot""": TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
def __a ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = TFDistilBertModelTester(self )
snake_case__ : List[Any] = ConfigTester(self , config_class=__UpperCamelCase , dim=37 )
def __a ( self ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
def __a ( self ) -> Dict:
'''simple docstring'''
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*__UpperCamelCase )
def __a ( self ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCamelCase )
def __a ( self ) -> int:
'''simple docstring'''
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCamelCase )
def __a ( self ) -> Any:
'''simple docstring'''
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCamelCase )
def __a ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCamelCase )
def __a ( self ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCamelCase )
@slow
def __a ( self ) -> Tuple:
'''simple docstring'''
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
snake_case__ : int = TFDistilBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class __snake_case ( unittest.TestCase ):
@slow
def __a ( self ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' )
snake_case__ : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] )
snake_case__ : Union[str, Any] = model(__UpperCamelCase )[0]
snake_case__ : str = [1, 6, 768]
self.assertEqual(output.shape , __UpperCamelCase )
snake_case__ : Tuple = tf.constant(
[
[
[0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9],
[0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4],
[0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
| 143 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Dict:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
| 349 | 0 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
snake_case : Optional[Any] = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
snake_case : Optional[int] = 'main'
# Default branch name
snake_case : Any = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'
# One particular commit (not the top of `main`)
snake_case : Tuple = 'aaaaaaa'
# This commit does not exist, so we should 404.
snake_case : Any = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684'
# Sha-1 of config.json on the top of `main`, for checking purposes
snake_case : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'
@contextlib.contextmanager
def __lowerCamelCase ( ):
"""simple docstring"""
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def __lowerCamelCase ( ):
"""simple docstring"""
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self ):
# If the spec is missing, importlib would not be able to import the module dynamically.
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class _snake_case ( unittest.TestCase ):
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ):
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] )
class _snake_case ( UpperCAmelCase_ ):
pass
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self ):
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['''start_positions''', '''end_positions'''] )
class _snake_case ( UpperCAmelCase_ ):
pass
self.assertEqual(find_labels(_lowerCamelCase ) , ['''labels'''] )
@require_flax
def SCREAMING_SNAKE_CASE__ ( self ):
# Flax models don't have labels
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
class _snake_case ( UpperCAmelCase_ ):
pass
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
| 94 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class UpperCAmelCase__ ( logging.LoggerAdapter):
@staticmethod
def __lowerCamelCase ( lowercase ) -> Dict:
__UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]:
if PartialState._shared_state == {}:
raise RuntimeError(
"""You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" )
__UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase )
__UpperCamelCase = kwargs.pop("""in_order""" , lowercase )
if self.isEnabledFor(lowercase ):
if self._should_log(lowercase ):
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
elif in_order:
__UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
state.wait_for_everyone()
def _lowercase ( __A ,__A = None ):
'''simple docstring'''
if log_level is None:
__UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A )
__UpperCamelCase = logging.getLogger(__A )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__A ,{} )
| 349 | 0 |
'''simple docstring'''
lowercase : int = [0, 2, 4, 6, 8]
lowercase : Optional[Any] = [1, 3, 5, 7, 9]
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
A : Optional[Any] = 0
for digit in range(10 ):
A : Dict = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , __A , __A )
return result
A : Any = 0
for digita in range(10 ):
A : List[Any] = digita
if (remainder + digita) % 2 == 0:
A : int = ODD_DIGITS
else:
A : Optional[Any] = EVEN_DIGITS
for digita in other_parity_digits:
A : Dict = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , __A , __A , )
return result
def lowerCAmelCase_ ( snake_case__ = 9 ):
'''simple docstring'''
A : List[str] = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(__A , 0 , [0] * length , __A )
return result
if __name__ == "__main__":
print(f'''{solution() = }''')
| 3 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
a__ : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase__ :
def __init__( self ) -> Any:
__UpperCamelCase = False
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str:
if not self.initialized:
__UpperCamelCase = RagRetriever(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = True
def __lowerCamelCase ( self ) -> Optional[Any]:
self.retriever.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict:
__UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]:
if index is not None and index.is_initialized() and len(lowercase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase )
for worker in self.retrieval_workers
] )
def __lowerCamelCase ( self ) -> Dict:
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) )
else:
__UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any:
return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int:
__UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase )
__UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
__UpperCamelCase = rag_tokenizer.question_encoder
__UpperCamelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCamelCase = """custom"""
__UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase )
else:
__UpperCamelCase = cls._build_index(lowercase )
return cls(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
| 349 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class a_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} )
__UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _lowerCAmelCase ( self : List[str] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =ControlNetModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=snake_case ,set_alpha_to_one=snake_case ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
SCREAMING_SNAKE_CASE =CLIPTextModel(snake_case )
SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE ={
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowerCAmelCase ( self : Tuple ,snake_case : int ,snake_case : Any=0 ):
if str(snake_case ).startswith('mps' ):
SCREAMING_SNAKE_CASE =torch.manual_seed(snake_case )
else:
SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(snake_case )
SCREAMING_SNAKE_CASE =2
SCREAMING_SNAKE_CASE =randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=snake_case ,device=torch.device(snake_case ) ,)
SCREAMING_SNAKE_CASE =floats_tensor(control_image.shape ,rng=random.Random(snake_case ) ).to(snake_case )
SCREAMING_SNAKE_CASE =image.cpu().permute(0 ,2 ,3 ,1 )[0]
SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) )
SCREAMING_SNAKE_CASE ={
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def _lowerCAmelCase ( self : List[str] ):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,)
def _lowerCAmelCase ( self : Dict ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def _lowerCAmelCase ( self : Optional[Any] ):
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
class a_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
__UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__UpperCAmelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def _lowerCAmelCase ( self : Union[str, Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
torch.manual_seed(0 )
def init_weights(snake_case : List[str] ):
if isinstance(snake_case ,torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
SCREAMING_SNAKE_CASE =ControlNetModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,)
controlneta.controlnet_down_blocks.apply(snake_case )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =ControlNetModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,)
controlneta.controlnet_down_blocks.apply(snake_case )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=snake_case ,set_alpha_to_one=snake_case ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
SCREAMING_SNAKE_CASE =CLIPTextModel(snake_case )
SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE =MultiControlNetModel([controlneta, controlneta] )
SCREAMING_SNAKE_CASE ={
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowerCAmelCase ( self : List[str] ,snake_case : List[str] ,snake_case : List[Any]=0 ):
if str(snake_case ).startswith('mps' ):
SCREAMING_SNAKE_CASE =torch.manual_seed(snake_case )
else:
SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(snake_case )
SCREAMING_SNAKE_CASE =2
SCREAMING_SNAKE_CASE =[
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=snake_case ,device=torch.device(snake_case ) ,),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=snake_case ,device=torch.device(snake_case ) ,),
]
SCREAMING_SNAKE_CASE =floats_tensor(control_image[0].shape ,rng=random.Random(snake_case ) ).to(snake_case )
SCREAMING_SNAKE_CASE =image.cpu().permute(0 ,2 ,3 ,1 )[0]
SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) )
SCREAMING_SNAKE_CASE ={
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.get_dummy_components()
SCREAMING_SNAKE_CASE =self.pipeline_class(**snake_case )
pipe.to(snake_case )
SCREAMING_SNAKE_CASE =10.0
SCREAMING_SNAKE_CASE =4
SCREAMING_SNAKE_CASE =self.get_dummy_inputs(snake_case )
SCREAMING_SNAKE_CASE =steps
SCREAMING_SNAKE_CASE =scale
SCREAMING_SNAKE_CASE =pipe(**snake_case )[0]
SCREAMING_SNAKE_CASE =self.get_dummy_inputs(snake_case )
SCREAMING_SNAKE_CASE =steps
SCREAMING_SNAKE_CASE =scale
SCREAMING_SNAKE_CASE =pipe(**snake_case ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0]
SCREAMING_SNAKE_CASE =self.get_dummy_inputs(snake_case )
SCREAMING_SNAKE_CASE =steps
SCREAMING_SNAKE_CASE =scale
SCREAMING_SNAKE_CASE =pipe(**snake_case ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0]
SCREAMING_SNAKE_CASE =self.get_dummy_inputs(snake_case )
SCREAMING_SNAKE_CASE =steps
SCREAMING_SNAKE_CASE =scale
SCREAMING_SNAKE_CASE =pipe(**snake_case ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
assert np.sum(np.abs(output_a - output_a ) ) > 1e-3
def _lowerCAmelCase ( self : Optional[int] ):
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,)
def _lowerCAmelCase ( self : Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 )
def _lowerCAmelCase ( self : Any ):
self._test_inference_batch_single_identical(expected_max_diff=2e-3 )
def _lowerCAmelCase ( self : Tuple ):
SCREAMING_SNAKE_CASE =self.get_dummy_components()
SCREAMING_SNAKE_CASE =self.pipeline_class(**snake_case )
pipe.to(snake_case )
pipe.set_progress_bar_config(disable=snake_case )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(snake_case )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : List[Any] ):
SCREAMING_SNAKE_CASE =ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' )
SCREAMING_SNAKE_CASE =StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' ,safety_checker=snake_case ,controlnet=snake_case )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE =torch.Generator(device='cpu' ).manual_seed(0 )
SCREAMING_SNAKE_CASE ='evil space-punk bird'
SCREAMING_SNAKE_CASE =load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) )
SCREAMING_SNAKE_CASE =load_image(
'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) )
SCREAMING_SNAKE_CASE =pipe(
snake_case ,snake_case ,control_image=snake_case ,generator=snake_case ,output_type='np' ,num_inference_steps=50 ,strength=0.6 ,)
SCREAMING_SNAKE_CASE =output.images[0]
assert image.shape == (512, 512, 3)
SCREAMING_SNAKE_CASE =load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' )
assert np.abs(expected_image - image ).max() < 9e-2
| 334 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a__ : Any = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': 5_1_2,
'squeezebert/squeezebert-mnli': 5_1_2,
'squeezebert/squeezebert-mnli-headless': 5_1_2,
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = SqueezeBertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple:
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**lowercase )
__UpperCamelCase = do_lower_case
def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple:
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]:
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]:
__UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase )
| 349 | 0 |
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
__A : Any = get_logger(__name__)
class A_ :
def __init__( self , _A = None ):
'''simple docstring'''
UpperCAmelCase = (
os.path.join(_A , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
UpperCAmelCase = Extractor
def _lowercase ( self , _A ):
'''simple docstring'''
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
UpperCAmelCase = os.path.abspath(_A )
return os.path.join(self.extract_dir , hash_url_to_filename(_A ) )
def _lowercase ( self , _A , _A ):
'''simple docstring'''
return force_extract or (
not os.path.isfile(_A ) and not (os.path.isdir(_A ) and os.listdir(_A ))
)
def _lowercase ( self , _A , _A = False ):
'''simple docstring'''
UpperCAmelCase = self.extractor.infer_extractor_format(_A )
if not extractor_format:
return input_path
UpperCAmelCase = self._get_output_path(_A )
if self._do_extract(_A , _A ):
self.extractor.extract(_A , _A , _A )
return output_path
class A_ (UpperCAmelCase_ ):
@classmethod
@abstractmethod
def _lowercase ( cls , _A , **_A ):
'''simple docstring'''
...
@staticmethod
@abstractmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
...
class A_ (UpperCAmelCase_ , UpperCAmelCase_ ):
UpperCAmelCase__ = []
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
with open(_A , '''rb''' ) as f:
return f.read(_A )
@classmethod
def _lowercase ( cls , _A , _A = b"" ):
'''simple docstring'''
if not magic_number:
UpperCAmelCase = max(len(_A ) for cls_magic_number in cls.magic_numbers )
try:
UpperCAmelCase = cls.read_magic_number(_A , _A )
except OSError:
return False
return any(magic_number.startswith(_A ) for cls_magic_number in cls.magic_numbers )
class A_ (UpperCAmelCase_ ):
@classmethod
def _lowercase ( cls , _A , **_A ):
'''simple docstring'''
return tarfile.is_tarfile(_A )
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
def resolved(_A ) -> str:
return os.path.realpath(os.path.abspath(_A ) )
def badpath(_A , _A ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(_A , _A ) ).startswith(_A )
def badlink(_A , _A ) -> bool:
# Links are interpreted relative to the directory containing the link
UpperCAmelCase = resolved(os.path.join(_A , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=_A )
UpperCAmelCase = resolved(_A )
for finfo in members:
if badpath(finfo.name , _A ):
logger.error(F"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(_A , _A ):
logger.error(F"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(_A , _A ):
logger.error(F"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
os.makedirs(_A , exist_ok=_A )
UpperCAmelCase = tarfile.open(_A )
tar_file.extractall(_A , members=TarExtractor.safemembers(_A , _A ) )
tar_file.close()
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\x1F\x8B''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
with gzip.open(_A , '''rb''' ) as gzip_file:
with open(_A , '''wb''' ) as extracted_file:
shutil.copyfileobj(_A , _A )
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def _lowercase ( cls , _A , _A = b"" ):
'''simple docstring'''
if super().is_extractable(_A , magic_number=_A ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(_A , '''rb''' ) as fp:
UpperCAmelCase = _EndRecData(_A )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
UpperCAmelCase = fp.read(_A ) # CD is where we expect it to be
if len(_A ) == sizeCentralDir:
UpperCAmelCase = struct.unpack(_A , _A ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
os.makedirs(_A , exist_ok=_A )
with zipfile.ZipFile(_A , '''r''' ) as zip_file:
zip_file.extractall(_A )
zip_file.close()
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
with lzma.open(_A ) as compressed_file:
with open(_A , '''wb''' ) as extracted_file:
shutil.copyfileobj(_A , _A )
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(_A , exist_ok=_A )
UpperCAmelCase = rarfile.RarFile(_A )
rf.extractall(_A )
rf.close()
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
UpperCAmelCase = zstd.ZstdDecompressor()
with open(_A , '''rb''' ) as ifh, open(_A , '''wb''' ) as ofh:
dctx.copy_stream(_A , _A )
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\x42\x5A\x68''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
with bza.open(_A , '''rb''' ) as compressed_file:
with open(_A , '''wb''' ) as extracted_file:
shutil.copyfileobj(_A , _A )
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(_A , exist_ok=_A )
with pyazr.SevenZipFile(_A , '''r''' ) as archive:
archive.extractall(_A )
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = [B'''\x04\x22\x4D\x18''']
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(_A , '''rb''' ) as compressed_file:
with open(_A , '''wb''' ) as extracted_file:
shutil.copyfileobj(_A , _A )
class A_ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
UpperCAmelCase__ = {
'''tar''': TarExtractor,
'''gzip''': GzipExtractor,
'''zip''': ZipExtractor,
'''xz''': XzExtractor,
'''rar''': RarExtractor,
'''zstd''': ZstdExtractor,
'''bz2''': BzipaExtractor,
'''7z''': SevenZipExtractor, # <Added version="2.4.0"/>
'''lz4''': LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def _lowercase ( cls ):
'''simple docstring'''
return max(
len(_A )
for extractor in cls.extractors.values()
if issubclass(_A , _A )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def _lowercase ( _A , _A ):
'''simple docstring'''
try:
return MagicNumberBaseExtractor.read_magic_number(_A , magic_number_length=_A )
except OSError:
return b""
@classmethod
def _lowercase ( cls , _A , _A = False ):
'''simple docstring'''
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=_A , )
UpperCAmelCase = cls.infer_extractor_format(_A )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def _lowercase ( cls , _A ): # <Added version="2.4.0"/>
'''simple docstring'''
UpperCAmelCase = cls._get_magic_number_max_length()
UpperCAmelCase = cls._read_magic_number(_A , _A )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(_A , magic_number=_A ):
return extractor_format
@classmethod
def _lowercase ( cls , _A , _A , _A = None , _A = "deprecated" , ):
'''simple docstring'''
os.makedirs(os.path.dirname(_A ) , exist_ok=_A )
# Prevent parallel extractions
UpperCAmelCase = str(Path(_A ).with_suffix('''.lock''' ) )
with FileLock(_A ):
shutil.rmtree(_A , ignore_errors=_A )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(_A , _A ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=_A , )
UpperCAmelCase = extractor if extractor != '''deprecated''' else extractor_format
else:
UpperCAmelCase = cls.extractors[extractor_format]
return extractor.extract(_A , _A )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=_A , )
for extractor in cls.extractors.values():
if extractor.is_extractable(_A ):
return extractor.extract(_A , _A )
| 273 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a__ : str = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a = checkpoint
__a = {}
__a = vae_state_dict["""encoder.conv_in.weight"""]
__a = vae_state_dict["""encoder.conv_in.bias"""]
__a = vae_state_dict["""encoder.conv_out.weight"""]
__a = vae_state_dict["""encoder.conv_out.bias"""]
__a = vae_state_dict["""encoder.norm_out.weight"""]
__a = vae_state_dict["""encoder.norm_out.bias"""]
__a = vae_state_dict["""decoder.conv_in.weight"""]
__a = vae_state_dict["""decoder.conv_in.bias"""]
__a = vae_state_dict["""decoder.conv_out.weight"""]
__a = vae_state_dict["""decoder.conv_out.bias"""]
__a = vae_state_dict["""decoder.norm_out.weight"""]
__a = vae_state_dict["""decoder.norm_out.bias"""]
__a = vae_state_dict["""quant_conv.weight"""]
__a = vae_state_dict["""quant_conv.bias"""]
__a = vae_state_dict["""post_quant_conv.weight"""]
__a = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
__a = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
__a = {
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(__A )
}
# Retrieves the keys for the decoder up blocks only
__a = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
__a = {
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(__A )
}
for i in range(__A ):
__a = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
__a = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight" )
__a = vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias" )
__a = renew_vae_resnet_paths(__A )
__a = {"""old""": f"down.{i}.block", """new""": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
__a = [key for key in vae_state_dict if """encoder.mid.block""" in key]
__a = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__a = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
__a = renew_vae_resnet_paths(__A )
__a = {"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
__a = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
__a = renew_vae_attention_paths(__A )
__a = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
conv_attn_to_linear(__A )
for i in range(__A ):
__a = num_up_blocks - 1 - i
__a = [
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
__a = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
__a = vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
__a = renew_vae_resnet_paths(__A )
__a = {"""old""": f"up.{block_id}.block", """new""": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
__a = [key for key in vae_state_dict if """decoder.mid.block""" in key]
__a = 2
for i in range(1 , num_mid_res_blocks + 1 ):
__a = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
__a = renew_vae_resnet_paths(__A )
__a = {"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
__a = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
__a = renew_vae_attention_paths(__A )
__a = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__A , __A , __A , additional_replacements=[meta_path] , config=__A )
conv_attn_to_linear(__A )
return new_checkpoint
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , ):
"""simple docstring"""
__a = requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
__a = io.BytesIO(r.content )
__a = OmegaConf.load(__A )
__a = 512
__a = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
__a = {}
with safe_open(__A , framework="""pt""" , device="""cpu""" ) as f:
for key in f.keys():
__a = f.get_tensor(__A )
else:
__a = torch.load(__A , map_location=__A )["""state_dict"""]
# Convert the VAE model.
__a = create_vae_diffusers_config(__A , image_size=__A )
__a = custom_convert_ldm_vae_checkpoint(__A , __A )
__a = AutoencoderKL(**__A )
vae.load_state_dict(__A )
vae.save_pretrained(__A )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""")
lowerCamelCase__ = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 302 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a__ : Union[str, Any] = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''albert'''
def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any:
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
__UpperCamelCase = vocab_size
__UpperCamelCase = embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_hidden_groups
__UpperCamelCase = num_attention_heads
__UpperCamelCase = inner_group_num
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = classifier_dropout_prob
__UpperCamelCase = position_embedding_type
class UpperCAmelCase__ ( UpperCAmelCase_):
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 0 |
"""simple docstring"""
import re
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
return [char.split() for char in re.split(r"[^ a-z A-Z 0-9 \s]" , str_ )]
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
lowerCAmelCase_ : List[str] = split_input(str_ )
return "".join(
["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple:
"""simple docstring"""
try:
lowerCAmelCase_ : Union[str, Any] = split_input(__A )
if upper:
lowerCAmelCase_ : str = "".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
lowerCAmelCase_ : int = "".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def __lowerCamelCase ( __UpperCamelCase ) -> Any:
"""simple docstring"""
return to_simple_case(__A )
def __lowerCamelCase ( __UpperCamelCase ) -> Any:
"""simple docstring"""
try:
lowerCAmelCase_ : int = to_simple_case(__A )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
return to_complex_case(__A , __A , "_" )
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple:
"""simple docstring"""
return to_complex_case(__A , __A , "-" )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 241 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _lowercase ( __A ):
'''simple docstring'''
return (data["data"], data["target"])
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__A ,__A )
# Predict target for test data
__UpperCamelCase = xgb.predict(__A )
__UpperCamelCase = predictions.reshape(len(__A ) ,1 )
return predictions
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = fetch_california_housing()
__UpperCamelCase , __UpperCamelCase = data_handling(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(
__A ,__A ,test_size=0.25 ,random_state=1 )
__UpperCamelCase = xgboost(__A ,__A ,__A )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" )
print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 349 | 0 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
UpperCAmelCase_ : List[str] =42
UpperCAmelCase_ : int =42
UpperCAmelCase_ : Tuple =0.0
UpperCAmelCase_ : Dict =1
UpperCAmelCase_ : int =1
UpperCAmelCase_ : int =True
UpperCAmelCase_ : Union[str, Any] =False
UpperCAmelCase_ : str =False
UpperCAmelCase_ : List[str] =False
UpperCAmelCase_ : List[Any] =jnp.floataa
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Tuple = []
__snake_case : Optional[int] = []
for i in range(self.num_layers ):
__snake_case : int = self.in_channels if i == 0 else self.out_channels
__snake_case : Union[str, Any] = FlaxResnetBlockaD(
in_channels=UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(UpperCAmelCase )
__snake_case : Dict = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(UpperCAmelCase )
__snake_case : Union[str, Any] = resnets
__snake_case : Any = attentions
if self.add_downsample:
__snake_case : Any = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Dict:
'''simple docstring'''
__snake_case : Any = ()
for resnet, attn in zip(self.resnets , self.attentions ):
__snake_case : Any = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
__snake_case : List[Any] = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
__snake_case : Optional[Any] = self.downsamplers_a(UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =42
UpperCAmelCase_ : List[str] =42
UpperCAmelCase_ : Optional[Any] =0.0
UpperCAmelCase_ : List[Any] =1
UpperCAmelCase_ : Any =True
UpperCAmelCase_ : int =jnp.floataa
def UpperCAmelCase ( self ) -> Optional[int]:
'''simple docstring'''
__snake_case : Dict = []
for i in range(self.num_layers ):
__snake_case : List[str] = self.in_channels if i == 0 else self.out_channels
__snake_case : Any = FlaxResnetBlockaD(
in_channels=UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(UpperCAmelCase )
__snake_case : List[Any] = resnets
if self.add_downsample:
__snake_case : Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Any:
'''simple docstring'''
__snake_case : int = ()
for resnet in self.resnets:
__snake_case : Union[str, Any] = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
__snake_case : Dict = self.downsamplers_a(UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] =42
UpperCAmelCase_ : Any =42
UpperCAmelCase_ : Optional[int] =42
UpperCAmelCase_ : str =0.0
UpperCAmelCase_ : Tuple =1
UpperCAmelCase_ : Optional[Any] =1
UpperCAmelCase_ : Optional[int] =True
UpperCAmelCase_ : List[Any] =False
UpperCAmelCase_ : int =False
UpperCAmelCase_ : str =False
UpperCAmelCase_ : List[Any] =jnp.floataa
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : str = []
__snake_case : int = []
for i in range(self.num_layers ):
__snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__snake_case : Dict = self.prev_output_channel if i == 0 else self.out_channels
__snake_case : Union[str, Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(UpperCAmelCase )
__snake_case : List[Any] = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(UpperCAmelCase )
__snake_case : str = resnets
__snake_case : Any = attentions
if self.add_upsample:
__snake_case : Tuple = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Any:
'''simple docstring'''
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
__snake_case : int = res_hidden_states_tuple[-1]
__snake_case : str = res_hidden_states_tuple[:-1]
__snake_case : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__snake_case : Any = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
__snake_case : List[Any] = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
if self.add_upsample:
__snake_case : List[Any] = self.upsamplers_a(UpperCAmelCase )
return hidden_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] =42
UpperCAmelCase_ : int =42
UpperCAmelCase_ : Dict =42
UpperCAmelCase_ : int =0.0
UpperCAmelCase_ : Dict =1
UpperCAmelCase_ : Any =True
UpperCAmelCase_ : Optional[int] =jnp.floataa
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : Optional[Any] = []
for i in range(self.num_layers ):
__snake_case : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
__snake_case : Union[str, Any] = self.prev_output_channel if i == 0 else self.out_channels
__snake_case : List[str] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(UpperCAmelCase )
__snake_case : Optional[int] = resnets
if self.add_upsample:
__snake_case : List[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Tuple:
'''simple docstring'''
for resnet in self.resnets:
# pop res hidden states
__snake_case : Union[str, Any] = res_hidden_states_tuple[-1]
__snake_case : Tuple = res_hidden_states_tuple[:-1]
__snake_case : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
__snake_case : Optional[int] = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
if self.add_upsample:
__snake_case : Optional[int] = self.upsamplers_a(UpperCAmelCase )
return hidden_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] =42
UpperCAmelCase_ : int =0.0
UpperCAmelCase_ : int =1
UpperCAmelCase_ : Any =1
UpperCAmelCase_ : List[Any] =False
UpperCAmelCase_ : Dict =False
UpperCAmelCase_ : Optional[Any] =jnp.floataa
def UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
__snake_case : Dict = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
__snake_case : List[Any] = []
for _ in range(self.num_layers ):
__snake_case : str = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(UpperCAmelCase )
__snake_case : str = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(UpperCAmelCase )
__snake_case : Optional[Any] = resnets
__snake_case : List[Any] = attentions
def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Dict:
'''simple docstring'''
__snake_case : Optional[int] = self.resnets[0](UpperCAmelCase , UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
__snake_case : List[Any] = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
__snake_case : Any = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase )
return hidden_states
| 326 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder()
__UpperCamelCase = inputs_dict["""input_ids"""]
__UpperCamelCase = input_ids[:1, :]
__UpperCamelCase = inputs_dict["""attention_mask"""][:1, :]
__UpperCamelCase = inputs_dict["""head_mask"""]
__UpperCamelCase = 1
# first forward pass
__UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase = model(lowercase , attention_mask=lowercase )[0]
__UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
__SCREAMING_SNAKE_CASE = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__SCREAMING_SNAKE_CASE = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__SCREAMING_SNAKE_CASE = '''google/pegasus-xsum'''
@cached_property
def __lowerCamelCase ( self ) -> int:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCamelCase ( self , **lowercase ) -> Optional[int]:
__UpperCamelCase = self.translate_src_text(**lowercase )
assert self.expected_text == generated_words
def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]:
__UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" )
__UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , )
__UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )
return generated_words
@slow
def __lowerCamelCase ( self ) -> Dict:
self._assert_generated_batch_equal_expected()
| 349 | 0 |
"""simple docstring"""
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
a = threading.Lock()
a = None
a = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
a = logging.WARNING
a = True
def lowercase () -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , __A )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '''
f'''has to be one of: { ', '.join(log_levels.keys() ) }''' )
return _default_log_level
def lowercase () -> Dict:
'''simple docstring'''
return __name__.split(""".""" )[0]
def lowercase () -> Tuple:
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def lowercase () -> Dict:
'''simple docstring'''
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
lowerCAmelCase = logging.StreamHandler() # Set sys.stderr as stream.
lowerCAmelCase = sys.stderr.flush
# Apply our default configuration to the library root logger.
lowerCAmelCase = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
lowerCAmelCase = False
def lowercase () -> Dict:
'''simple docstring'''
global _default_handler
with _lock:
if not _default_handler:
return
lowerCAmelCase = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
lowerCAmelCase = None
def lowercase () -> List[Any]:
'''simple docstring'''
return log_levels
def lowercase (snake_case__ : str = None ) -> Tuple:
'''simple docstring'''
if name is None:
lowerCAmelCase = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(__A )
def lowercase () -> int:
'''simple docstring'''
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def lowercase (snake_case__ : int ) -> str:
'''simple docstring'''
_configure_library_root_logger()
_get_library_root_logger().setLevel(__A )
def lowercase () -> Optional[Any]:
'''simple docstring'''
return set_verbosity(__A )
def lowercase () -> Optional[int]:
'''simple docstring'''
return set_verbosity(__A )
def lowercase () -> List[str]:
'''simple docstring'''
return set_verbosity(__A )
def lowercase () -> List[str]:
'''simple docstring'''
return set_verbosity(__A )
def lowercase () -> List[Any]:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def lowercase () -> List[str]:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def lowercase (snake_case__ : Union[str, Any] ) -> int:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(__A )
def lowercase (snake_case__ : Optional[int] ) -> Any:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(__A )
def lowercase () -> Dict:
'''simple docstring'''
_configure_library_root_logger()
lowerCAmelCase = False
def lowercase () -> Any:
'''simple docstring'''
_configure_library_root_logger()
lowerCAmelCase = True
def lowercase () -> List[str]:
'''simple docstring'''
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
lowerCAmelCase = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" )
handler.setFormatter(__A )
def lowercase () -> int:
'''simple docstring'''
lowerCAmelCase = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(__A )
def lowercase (self : Dict , *snake_case__ : Dict , **snake_case__ : Tuple ) -> Tuple:
'''simple docstring'''
lowerCAmelCase = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , __A )
if no_advisory_warnings:
return
self.warning(*__A , **__A )
a = warning_advice
@functools.lru_cache(__A )
def lowercase (self : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : Tuple ) -> Optional[int]:
'''simple docstring'''
self.warning(*__A , **__A )
a = warning_once
class SCREAMING_SNAKE_CASE__ :
def __init__( self : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any ): # pylint: disable=unused-argument
lowerCAmelCase = args[0] if args else None
def __iter__( self : Dict ):
return iter(self._iterator )
def __getattr__( self : str , lowerCAmelCase : Any ):
def empty_fn(*lowerCAmelCase : str , **lowerCAmelCase : Optional[Any] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : int ):
return self
def __exit__( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any ):
return
class SCREAMING_SNAKE_CASE__ :
def __call__( self : List[str] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any] ):
if _tqdm_active:
return tqdm_lib.tqdm(*lowerCAmelCase , **lowerCAmelCase )
else:
return EmptyTqdm(*lowerCAmelCase , **lowerCAmelCase )
def __lowercase ( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Dict ):
lowerCAmelCase = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*lowerCAmelCase , **lowerCAmelCase )
def __lowercase ( self : Union[str, Any] ):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
a = _tqdm_cls()
def lowercase () -> List[str]:
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def lowercase () -> Tuple:
'''simple docstring'''
global _tqdm_active
lowerCAmelCase = True
hf_hub_utils.enable_progress_bars()
def lowercase () -> Optional[Any]:
'''simple docstring'''
global _tqdm_active
lowerCAmelCase = False
hf_hub_utils.disable_progress_bars()
| 155 |
'''simple docstring'''
import string
def _lowercase ( __A ):
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(__A )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = input("""Encrypted message: """ )
__UpperCamelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 349 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCamelCase_ :
def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=99 , lowerCAmelCase_ : List[str]=36 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Dict=512 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Union[str, Any]=0.0_2 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=1_000 , ) -> Tuple:
UpperCAmelCase_ : str = parent
UpperCAmelCase_ : Optional[Any] = batch_size
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : int = image_size
UpperCAmelCase_ : Optional[Any] = patch_size
UpperCAmelCase_ : Union[str, Any] = is_training
UpperCAmelCase_ : Union[str, Any] = use_input_mask
UpperCAmelCase_ : Union[str, Any] = use_token_type_ids
UpperCAmelCase_ : List[Any] = use_labels
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : List[str] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : Any = type_vocab_size
UpperCAmelCase_ : str = type_sequence_label_size
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Dict = coordinate_size
UpperCAmelCase_ : Tuple = shape_size
UpperCAmelCase_ : Optional[int] = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Optional[Any] = scope
UpperCAmelCase_ : str = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
UpperCAmelCase_ : Optional[int] = text_seq_length
UpperCAmelCase_ : List[str] = (image_size // patch_size) ** 2 + 1
UpperCAmelCase_ : Union[str, Any] = self.text_seq_length + self.image_seq_length
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
UpperCAmelCase_ : Optional[Any] = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : Dict = bbox[i, j, 3]
UpperCAmelCase_ : Optional[int] = bbox[i, j, 1]
UpperCAmelCase_ : Dict = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[Any] = bbox[i, j, 2]
UpperCAmelCase_ : Dict = bbox[i, j, 0]
UpperCAmelCase_ : Tuple = tmp_coordinate
UpperCAmelCase_ : str = tf.constant(lowerCAmelCase_ )
UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
UpperCAmelCase_ : Any = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
UpperCAmelCase_ : Union[str, Any] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = TFLayoutLMvaModel(config=lowerCAmelCase_ )
# text + image
UpperCAmelCase_ : Any = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , training=lowerCAmelCase_ , )
UpperCAmelCase_ : Dict = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
UpperCAmelCase_ : str = model(lowerCAmelCase_ , training=lowerCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
UpperCAmelCase_ : List[str] = model({"pixel_values": pixel_values} , training=lowerCAmelCase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> str:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : List[str] = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> str:
UpperCAmelCase_ : List[str] = self.num_labels
UpperCAmelCase_ : str = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> Any:
UpperCAmelCase_ : int = 2
UpperCAmelCase_ : Tuple = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , training=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE ( self : Any ) -> int:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = config_and_inputs
UpperCAmelCase_ : str = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class UpperCamelCase_ (UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__magic_name__ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> Optional[Any]:
return True
def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=False ) -> dict:
UpperCAmelCase_ : str = copy.deepcopy(lowerCAmelCase_ )
if model_class in get_values(lowerCAmelCase_ ):
UpperCAmelCase_ : Optional[Any] = {
k: tf.tile(tf.expand_dims(lowerCAmelCase_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(lowerCAmelCase_ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(lowerCAmelCase_ ):
UpperCAmelCase_ : Optional[int] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
UpperCAmelCase_ : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
UpperCAmelCase_ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
UpperCAmelCase_ : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(lowerCAmelCase_ ):
UpperCAmelCase_ : Any = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
UpperCAmelCase_ : Union[str, Any] = TFLayoutLMvaModelTester(self )
UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : str ) -> int:
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase_ )
if getattr(lowerCAmelCase_ , "hf_compute_loss" , lowerCAmelCase_ ):
# The number of elements in the loss should be the same as the number of elements in the label
UpperCAmelCase_ : int = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase_ )[0]
]
UpperCAmelCase_ : Optional[int] = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
UpperCAmelCase_ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = prepared_for_class.pop("input_ids" )
UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
UpperCAmelCase_ : Tuple = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = prepared_for_class.pop("input_ids" )
if "labels" in prepared_for_class:
UpperCAmelCase_ : Dict = prepared_for_class["labels"].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
UpperCAmelCase_ : Optional[Any] = -100
UpperCAmelCase_ : Any = tf.convert_to_tensor(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = model(lowerCAmelCase_ , **lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
UpperCAmelCase_ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = model(lowerCAmelCase_ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
UpperCAmelCase_ : List[Any] = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
# Get keys that were added with the _prepare_for_class function
UpperCAmelCase_ : List[str] = prepared_for_class.keys() - inputs_dict.keys()
UpperCAmelCase_ : int = inspect.signature(model.call ).parameters
UpperCAmelCase_ : Union[str, Any] = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
UpperCAmelCase_ : int = {0: "input_ids"}
for label_key in label_keys:
UpperCAmelCase_ : Dict = signature_names.index(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = label_key
UpperCAmelCase_ : Tuple = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
UpperCAmelCase_ : List[Any] = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
UpperCAmelCase_ : List[str] = prepared_for_class[value]
UpperCAmelCase_ : Tuple = tuple(lowerCAmelCase_ )
# Send to model
UpperCAmelCase_ : Optional[Any] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : List[str] = type
self.model_tester.create_and_check_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any:
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Any = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
def snake_case ( ):
UpperCAmelCase_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
class UpperCamelCase_ (unittest.TestCase ):
@cached_property
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]:
return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None
@slow
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> str:
UpperCAmelCase_ : Dict = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" )
UpperCAmelCase_ : Tuple = self.default_image_processor
UpperCAmelCase_ : int = prepare_img()
UpperCAmelCase_ : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ).pixel_values
UpperCAmelCase_ : Dict = tf.constant([[1, 2]] )
UpperCAmelCase_ : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
UpperCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , training=lowerCAmelCase_ )
# verify the logits
UpperCAmelCase_ : List[str] = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = tf.constant(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
| 268 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Dict = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''gptj'''
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = n_inner
__UpperCamelCase = rotary_dim
__UpperCamelCase = activation_function
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = attn_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
__UpperCamelCase = bos_token_id
__UpperCamelCase = eos_token_id
super().__init__(
bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]:
super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase )
if not getattr(self._config , """pad_token_id""" , lowercase ):
# TODO: how to do that better?
__UpperCamelCase = 0
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
__UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction="""inputs""" )
__UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_layer
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_head
def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase = super(lowercase , self ).generate_dummy_inputs(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__UpperCamelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers )
]
__UpperCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__UpperCamelCase = ordered_inputs["""attention_mask"""].dtype
__UpperCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
return ordered_inputs
@property
def __lowerCamelCase ( self ) -> int:
return 1_3
| 349 | 0 |
import string
# frequency taken from https://en.wikipedia.org/wiki/Letter_frequency
SCREAMING_SNAKE_CASE_:Union[str, Any] = {
'E': 12.70,
'T': 9.06,
'A': 8.17,
'O': 7.51,
'I': 6.97,
'N': 6.75,
'S': 6.33,
'H': 6.09,
'R': 5.99,
'D': 4.25,
'L': 4.03,
'C': 2.78,
'U': 2.76,
'M': 2.41,
'W': 2.36,
'F': 2.23,
'G': 2.02,
'Y': 1.97,
'P': 1.93,
'B': 1.29,
'V': 0.98,
'K': 0.77,
'J': 0.15,
'X': 0.15,
'Q': 0.10,
'Z': 0.07,
}
SCREAMING_SNAKE_CASE_:int = 'ETAOINSHRDLCUMWFGYPBVKJXQZ'
SCREAMING_SNAKE_CASE_:str = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]:
"""simple docstring"""
A : Optional[int] = {letter: 0 for letter in string.ascii_uppercase}
for letter in message.upper():
if letter in LETTERS:
letter_count[letter] += 1
return letter_count
def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple:
"""simple docstring"""
return x[0]
def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]:
"""simple docstring"""
A : int = get_letter_count(__A )
A : Tuple = {
freq: [] for letter, freq in letter_to_freq.items()
}
for letter in LETTERS:
freq_to_letter[letter_to_freq[letter]].append(__A )
A : str = {}
for freq in freq_to_letter:
freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__A )
A : Any = """""".join(freq_to_letter[freq] )
A : Tuple = list(freq_to_letter_str.items() )
freq_pairs.sort(key=__A , reverse=__A )
A : Any = [freq_pair[1] for freq_pair in freq_pairs]
return "".join(__A )
def __UpperCamelCase ( _lowerCAmelCase ) -> int:
"""simple docstring"""
A : Union[str, Any] = get_frequency_order(__A )
A : List[str] = 0
for common_letter in ETAOIN[:6]:
if common_letter in freq_order[:6]:
match_score += 1
for uncommon_letter in ETAOIN[-6:]:
if uncommon_letter in freq_order[-6:]:
match_score += 1
return match_score
if __name__ == "__main__":
import doctest
doctest.testmod()
| 116 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a__ : int = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['LayoutLMv3FeatureExtractor']
a__ : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def UpperCamelCase__ ( ) -> Optional[Any]:
snake_case__ : Dict = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
snake_case__ : Optional[Any] = Dataset.from_dict(__A )
return dataset
class __snake_case ( UpperCAmelCase_ ):
def __a ( self ) -> Dict:
'''simple docstring'''
snake_case__ : int = get_dataset()
snake_case__ : int = make_duplicate_clusters(__UpperCamelCase , 0.8_5 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def __a ( self ) -> Any:
'''simple docstring'''
snake_case__ : Optional[Any] = get_dataset()
snake_case__ , snake_case__ : int = deduplicate_dataset(__UpperCamelCase )
self.assertEqual(len(__UpperCamelCase ) , 2 )
print(__UpperCamelCase )
self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 )
self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , __UpperCamelCase )
| 143 |
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = len(__A )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
import numpy as np
def __lowerCamelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
a :Dict = int(np.ceil((x_end - xa) / h ) )
a :str = np.zeros((n + 1,) )
a :List[Any] = ya
a :int = xa
for k in range(__A ):
a :Tuple = f(__A , y[k] )
a :Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
a :Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
a :Any = f(x + h , y[k] + h * ka )
a :List[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 94 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
a__ : Any = get_logger(__name__)
class UpperCAmelCase__ :
def __init__( self , lowercase = None ) -> List[str]:
__UpperCamelCase = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__UpperCamelCase = Extractor
def __lowerCamelCase ( self , lowercase ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__UpperCamelCase = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def __lowerCamelCase ( self , lowercase , lowercase ) -> bool:
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str:
__UpperCamelCase = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
__UpperCamelCase = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
@abstractmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
...
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
...
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = []
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> int:
with open(lowercase , """rb""" ) as f:
return f.read(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if not magic_number:
__UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
__UpperCamelCase = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
return tarfile.is_tarfile(lowercase )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
__UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
__UpperCamelCase = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" )
else:
yield finfo
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x1F\x8B''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with gzip.open(lowercase , """rb""" ) as gzip_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , """rb""" ) as fp:
__UpperCamelCase = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
__UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , """r""" ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
__UpperCamelCase = zstd.ZstdDecompressor()
with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with bza.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , """r""" ) as archive:
archive.extractall(lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__SCREAMING_SNAKE_CASE = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def __lowerCamelCase ( cls ) -> Union[str, Any]:
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/>
__UpperCamelCase = cls._get_magic_number_max_length()
__UpperCamelCase = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
__UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format
else:
__UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 349 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : Any = logging.get_logger(__name__)
lowercase : int = {
'microsoft/trocr-base-handwritten': (
'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class A ( UpperCAmelCase_ ):
__magic_name__ = '''trocr'''
__magic_name__ = ['''past_key_values''']
__magic_name__ = {
'''num_attention_heads''': '''decoder_attention_heads''',
'''hidden_size''': '''d_model''',
'''num_hidden_layers''': '''decoder_layers''',
}
def __init__( self , SCREAMING_SNAKE_CASE=50265 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=4096 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , **SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
A : List[Any] = vocab_size
A : List[Any] = d_model
A : List[Any] = decoder_layers
A : Tuple = decoder_attention_heads
A : Any = decoder_ffn_dim
A : Tuple = activation_function
A : Union[str, Any] = max_position_embeddings
A : Tuple = dropout
A : List[Any] = attention_dropout
A : Union[str, Any] = activation_dropout
A : Optional[Any] = init_std
A : List[str] = decoder_layerdrop
A : Optional[Any] = use_cache
A : List[Any] = scale_embedding
A : int = use_learned_position_embeddings
A : List[str] = layernorm_embedding
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
| 3 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = FlaxPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = self._prepare_for_class(lowercase , lowercase )
__UpperCamelCase = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = model_class(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCamelCase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase )
__UpperCamelCase = np.ones((1, 1) )
__UpperCamelCase = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase )
__UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences
__UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded
| 349 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = StableDiffusionSAGPipeline
__UpperCAmelCase = TEXT_TO_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS
__UpperCAmelCase = False
def _lowerCAmelCase ( self : List[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,)
SCREAMING_SNAKE_CASE =DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=snake_case ,set_alpha_to_one=snake_case ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,)
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
SCREAMING_SNAKE_CASE =CLIPTextModel(snake_case )
SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE ={
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def _lowerCAmelCase ( self : Tuple ,snake_case : List[str] ,snake_case : Dict=0 ):
if str(snake_case ).startswith('mps' ):
SCREAMING_SNAKE_CASE =torch.manual_seed(snake_case )
else:
SCREAMING_SNAKE_CASE =torch.Generator(device=snake_case ).manual_seed(snake_case )
SCREAMING_SNAKE_CASE ={
'prompt': '.',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 1.0,
'sag_scale': 1.0,
'output_type': 'numpy',
}
return inputs
def _lowerCAmelCase ( self : Union[str, Any] ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Any ):
SCREAMING_SNAKE_CASE =StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
SCREAMING_SNAKE_CASE =sag_pipe.to(snake_case )
sag_pipe.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE ='.'
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sag_pipe(
[prompt] ,generator=snake_case ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='np' )
SCREAMING_SNAKE_CASE =output.images
SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE =np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
SCREAMING_SNAKE_CASE =sag_pipe.to(snake_case )
sag_pipe.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE ='.'
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sag_pipe(
[prompt] ,generator=snake_case ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='np' )
SCREAMING_SNAKE_CASE =output.images
SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE =np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
SCREAMING_SNAKE_CASE =sag_pipe.to(snake_case )
sag_pipe.set_progress_bar_config(disable=snake_case )
SCREAMING_SNAKE_CASE ='.'
SCREAMING_SNAKE_CASE =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE =sag_pipe(
[prompt] ,width=768 ,height=512 ,generator=snake_case ,guidance_scale=7.5 ,sag_scale=1.0 ,num_inference_steps=20 ,output_type='np' ,)
SCREAMING_SNAKE_CASE =output.images
assert image.shape == (1, 512, 768, 3)
| 334 |
'''simple docstring'''
import pytest
a__ : List[str] = '__dummy_dataset1__'
a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = dataset_loading_script_name
__UpperCamelCase = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=__A )
__UpperCamelCase = script_dir / f"{script_name}.py"
with open(__A ,"""w""" ) as f:
f.write(__A )
return str(__A )
| 349 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class A_ (UpperCAmelCase_ ):
UpperCAmelCase__ = 4_2
class A_ (UpperCAmelCase_ , UpperCAmelCase_ ):
@register_to_config
def __init__( self , _A = 3_2 , _A = 6_4 , _A = 2_0 , _A = 7_6_8 , _A=7_7 , _A=4 , _A = 0.0 , _A = "silu" , _A = None , _A = None , _A = "linear" , _A = "prd" , _A = None , _A = None , _A = None , ):
'''simple docstring'''
super().__init__()
UpperCAmelCase = num_attention_heads
UpperCAmelCase = attention_head_dim
UpperCAmelCase = num_attention_heads * attention_head_dim
UpperCAmelCase = additional_embeddings
UpperCAmelCase = time_embed_dim or inner_dim
UpperCAmelCase = embedding_proj_dim or embedding_dim
UpperCAmelCase = clip_embed_dim or embedding_dim
UpperCAmelCase = Timesteps(_A , _A , 0 )
UpperCAmelCase = TimestepEmbedding(_A , _A , out_dim=_A , act_fn=_A )
UpperCAmelCase = nn.Linear(_A , _A )
if embedding_proj_norm_type is None:
UpperCAmelCase = None
elif embedding_proj_norm_type == "layer":
UpperCAmelCase = nn.LayerNorm(_A )
else:
raise ValueError(F"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
UpperCAmelCase = nn.Linear(_A , _A )
if encoder_hid_proj_type is None:
UpperCAmelCase = None
elif encoder_hid_proj_type == "linear":
UpperCAmelCase = nn.Linear(_A , _A )
else:
raise ValueError(F"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
UpperCAmelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _A ) )
if added_emb_type == "prd":
UpperCAmelCase = nn.Parameter(torch.zeros(1 , 1 , _A ) )
elif added_emb_type is None:
UpperCAmelCase = None
else:
raise ValueError(
F"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
UpperCAmelCase = nn.ModuleList(
[
BasicTransformerBlock(
_A , _A , _A , dropout=_A , activation_fn='''gelu''' , attention_bias=_A , )
for d in range(_A )
] )
if norm_in_type == "layer":
UpperCAmelCase = nn.LayerNorm(_A )
elif norm_in_type is None:
UpperCAmelCase = None
else:
raise ValueError(F"""Unsupported norm_in_type: {norm_in_type}.""" )
UpperCAmelCase = nn.LayerNorm(_A )
UpperCAmelCase = nn.Linear(_A , _A )
UpperCAmelCase = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
UpperCAmelCase = causal_attention_mask[None, ...]
self.register_buffer('''causal_attention_mask''' , _A , persistent=_A )
UpperCAmelCase = nn.Parameter(torch.zeros(1 , _A ) )
UpperCAmelCase = nn.Parameter(torch.zeros(1 , _A ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = {}
def fn_recursive_add_processors(_A , _A , _A ):
if hasattr(_A , '''set_processor''' ):
UpperCAmelCase = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , _A , _A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_A , _A , _A )
return processors
def _lowercase ( self , _A ):
'''simple docstring'''
UpperCAmelCase = len(self.attn_processors.keys() )
if isinstance(_A , _A ) and len(_A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(_A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(_A , _A , _A ):
if hasattr(_A , '''set_processor''' ):
if not isinstance(_A , _A ):
module.set_processor(_A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , _A , _A )
for name, module in self.named_children():
fn_recursive_attn_processor(_A , _A , _A )
def _lowercase ( self ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def _lowercase ( self , _A , _A , _A , _A = None , _A = None , _A = True , ):
'''simple docstring'''
UpperCAmelCase = hidden_states.shape[0]
UpperCAmelCase = timestep
if not torch.is_tensor(_A ):
UpperCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0:
UpperCAmelCase = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCAmelCase = timesteps * torch.ones(_A , dtype=timesteps.dtype , device=timesteps.device )
UpperCAmelCase = self.time_proj(_A )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
UpperCAmelCase = timesteps_projected.to(dtype=self.dtype )
UpperCAmelCase = self.time_embedding(_A )
if self.embedding_proj_norm is not None:
UpperCAmelCase = self.embedding_proj_norm(_A )
UpperCAmelCase = self.embedding_proj(_A )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
UpperCAmelCase = self.encoder_hidden_states_proj(_A )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' )
UpperCAmelCase = self.proj_in(_A )
UpperCAmelCase = self.positional_embedding.to(hidden_states.dtype )
UpperCAmelCase = []
UpperCAmelCase = 0
if encoder_hidden_states is not None:
additional_embeds.append(_A )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
UpperCAmelCase = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
UpperCAmelCase = hidden_states[:, None, :]
UpperCAmelCase = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
UpperCAmelCase = self.prd_embedding.to(hidden_states.dtype ).expand(_A , -1 , -1 )
additional_embeds.append(_A )
UpperCAmelCase = torch.cat(
_A , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
UpperCAmelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
UpperCAmelCase = F.pad(
_A , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
UpperCAmelCase = hidden_states + positional_embeddings
if attention_mask is not None:
UpperCAmelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
UpperCAmelCase = F.pad(_A , (0, self.additional_embeddings) , value=0.0 )
UpperCAmelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
UpperCAmelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
UpperCAmelCase = self.norm_in(_A )
for block in self.transformer_blocks:
UpperCAmelCase = block(_A , attention_mask=_A )
UpperCAmelCase = self.norm_out(_A )
if self.prd_embedding is not None:
UpperCAmelCase = hidden_states[:, -1]
else:
UpperCAmelCase = hidden_states[:, additional_embeddings_len:]
UpperCAmelCase = self.proj_to_clip_embeddings(_A )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_A )
def _lowercase ( self , _A ):
'''simple docstring'''
UpperCAmelCase = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 273 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
a__ : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = {}
with open(__A ,"""r""" ) as file:
for line_number, line in enumerate(__A ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(__A ,__A ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = """.""".join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if """lm_head""" in full_key else value[0]
a__ : Dict = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _lowercase ( __A ,__A ,__A=None ,__A=None ):
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(__A )[0].split(""".""" )[-2]
__UpperCamelCase = mapped_key.replace("""*""" ,__A )
if "weight_g" in name:
__UpperCamelCase = """weight_g"""
elif "weight_v" in name:
__UpperCamelCase = """weight_v"""
elif "bias" in name:
__UpperCamelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = """weight"""
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(__A ,__A ,__A ,__A ,__A )
else:
set_recursively(__A ,__A ,__A ,__A ,__A )
return is_used
return is_used
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
__A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,)
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A )
if not is_used:
unused_weights.append(__A )
logger.warning(f"Unused weights: {unused_weights}" )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = full_name.split("""conv_layers.""" )[-1]
__UpperCamelCase = name.split(""".""" )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(__A )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(__A )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(__A )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(__A ,"""vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A ,exist_ok=__A )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(__A ,__A )
__UpperCamelCase = WavaVecaCTCTokenizer(
__A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,)
__UpperCamelCase = True if config.feat_extract_norm == """layer""" else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
__UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A )
processor.save_pretrained(__A )
__UpperCamelCase = WavaVecaForCTC(__A )
else:
__UpperCamelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" )
__UpperCamelCase = fairseq.tasks.setup_task(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A )
__UpperCamelCase = model[0].eval()
recursively_load_weights(__A ,__A ,not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
a__ : Optional[int] = parser.parse_args()
a__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 349 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Dict ='mra'
def __init__( self : Optional[Any] , __lowercase : Optional[int]=50265 , __lowercase : List[Any]=768 , __lowercase : Any=12 , __lowercase : Tuple=12 , __lowercase : int=3072 , __lowercase : Tuple="gelu" , __lowercase : List[Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Dict=512 , __lowercase : Any=1 , __lowercase : int=0.02 , __lowercase : List[Any]=1E-5 , __lowercase : List[str]="absolute" , __lowercase : Optional[Any]=4 , __lowercase : str="full" , __lowercase : Any=0 , __lowercase : int=0 , __lowercase : List[Any]=1 , __lowercase : str=0 , __lowercase : Dict=2 , **__lowercase : Any , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
__a = vocab_size
__a = max_position_embeddings
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = initializer_range
__a = type_vocab_size
__a = layer_norm_eps
__a = position_embedding_type
__a = block_per_row
__a = approx_mode
__a = initial_prior_first_n_blocks
__a = initial_prior_diagonal_n_blocks
| 302 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase__ :
def __init__( self , lowercase , ) -> Union[str, Any]:
__UpperCamelCase = parent
__UpperCamelCase = 1_3
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = 9_9
__UpperCamelCase = 3_2
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 3_7
__UpperCamelCase = """gelu"""
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 5_1_2
__UpperCamelCase = 1_6
__UpperCamelCase = 2
__UpperCamelCase = 0.02
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = None
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = TFDistilBertModel(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase )
__UpperCamelCase = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForSequenceClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFDistilBertForMultipleChoice(lowercase )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForTokenClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__SCREAMING_SNAKE_CASE = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 )
def __lowerCamelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def __lowerCamelCase ( self ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCamelCase = model(lowercase )[0]
__UpperCamelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowercase )
__UpperCamelCase = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
| 349 | 0 |
"""simple docstring"""
from __future__ import annotations
def __lowerCamelCase ( __UpperCamelCase ) -> List[Any]:
"""simple docstring"""
if not nums:
return 0
lowerCAmelCase_ : Tuple = nums[0]
lowerCAmelCase_ : Tuple = 0
for num in nums[1:]:
lowerCAmelCase_ , lowerCAmelCase_ : int = (
max_excluding + num,
max(__A , __A ),
)
return max(__A , __A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 241 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _lowercase ( __A ,__A ):
'''simple docstring'''
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
if dataset.ndim != value_array.ndim:
__UpperCamelCase = (
"""Wrong input data's dimensions... """
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
__UpperCamelCase = (
"""Wrong input data's shape... """
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("""Wrong shape""" )
if dataset.dtype != value_array.dtype:
__UpperCamelCase = (
"""Input data have different datatype... """
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(__A )
__UpperCamelCase = []
for value in value_array:
__UpperCamelCase = euclidean(__A ,dataset[0] )
__UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
__UpperCamelCase = euclidean(__A ,__A )
if dist > temp_dist:
__UpperCamelCase = temp_dist
__UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _lowercase ( __A ,__A ):
'''simple docstring'''
return np.dot(__A ,__A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> str:
'''simple docstring'''
if isinstance(UpperCAmelCase , UpperCAmelCase ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
__snake_case : List[str] = deepcopy(UpperCAmelCase )
elif os.path.exists(UpperCAmelCase ):
with io.open(UpperCAmelCase , "r" , encoding="utf-8" ) as f:
__snake_case : Optional[int] = json.load(UpperCAmelCase )
else:
try:
__snake_case : Dict = baseaa.urlsafe_baadecode(UpperCAmelCase ).decode("utf-8" )
__snake_case : Optional[Any] = json.loads(UpperCAmelCase )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" )
__snake_case : Optional[Any] = config
self.set_stage_and_offload()
def UpperCAmelCase ( self ) -> Dict:
'''simple docstring'''
__snake_case : List[Any] = self.get_value("zero_optimization.stage" , -1 )
# offload
__snake_case : List[str] = False
if self.is_zeroa() or self.is_zeroa():
__snake_case : Any = set(["cpu", "nvme"] )
__snake_case : int = set(
[
self.get_value("zero_optimization.offload_optimizer.device" ),
self.get_value("zero_optimization.offload_param.device" ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
__snake_case : str = True
def UpperCAmelCase ( self , UpperCAmelCase ) -> int:
'''simple docstring'''
__snake_case : Any = self.config
# find the config node of interest if it exists
__snake_case : Optional[Any] = ds_key_long.split("." )
__snake_case : str = nodes.pop()
for node in nodes:
__snake_case : Union[str, Any] = config.get(UpperCAmelCase )
if config is None:
return None, ds_key
return config, ds_key
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> int:
'''simple docstring'''
__snake_case , __snake_case : Dict = self.find_config_node(UpperCAmelCase )
if config is None:
return default
return config.get(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Dict:
'''simple docstring'''
__snake_case : Optional[Any] = self.config
# find the config node of interest if it exists
__snake_case : Dict = ds_key_long.split("." )
for node in nodes:
__snake_case : Union[str, Any] = config
__snake_case : Dict = config.get(UpperCAmelCase )
if config is None:
if must_exist:
raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> str:
'''simple docstring'''
__snake_case : List[Any] = self.get_value(UpperCAmelCase )
return False if value is None else bool(UpperCAmelCase )
def UpperCAmelCase ( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
__snake_case : Optional[Any] = self.get_value(UpperCAmelCase )
return False if value is None else not bool(UpperCAmelCase )
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return self._stage == 2
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
return self._stage == 3
def UpperCAmelCase ( self ) -> List[str]:
'''simple docstring'''
return self._offload
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__snake_case : List[str] = engine
def UpperCAmelCase ( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
self.engine.backward(UpperCAmelCase , **UpperCAmelCase )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class _lowerCamelCase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , UpperCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase , device_placement=UpperCAmelCase , scaler=UpperCAmelCase )
__snake_case : Optional[Any] = hasattr(self.optimizer , "overflow" )
def UpperCAmelCase ( self , UpperCAmelCase=None ) -> str:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def UpperCAmelCase ( self ) -> List[Any]:
'''simple docstring'''
if self.__has_overflow__:
return self.optimizer.overflow
return False
class _lowerCamelCase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
super().__init__(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=0.001 , UpperCAmelCase=0 , **UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__snake_case : List[Any] = params
__snake_case : Any = lr
__snake_case : List[str] = weight_decay
__snake_case : Dict = kwargs
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=0 , **UpperCAmelCase ) -> Optional[int]:
'''simple docstring'''
__snake_case : List[str] = optimizer
__snake_case : Optional[Any] = total_num_steps
__snake_case : Optional[int] = warmup_num_steps
__snake_case : Any = kwargs
| 326 |
'''simple docstring'''
from datetime import datetime
import requests
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
__UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(__A ).content
if __name__ == "__main__":
a__ : int = input('Enter Video/IGTV url: ').strip()
a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 349 | 0 |
"""simple docstring"""
import baseaa
def lowercase (snake_case__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return baseaa.baaencode(string.encode("""utf-8""" ) )
def lowercase (snake_case__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
return baseaa.baadecode(__A ).decode("""utf-8""" )
if __name__ == "__main__":
a = 'Hello World!'
a = baseaa_encode(test)
print(encoded)
a = baseaa_decode(encoded)
print(decoded)
| 155 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowercase ( __A ,__A=False ):
'''simple docstring'''
try:
__UpperCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__UpperCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__UpperCamelCase = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no." )
return _value
a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False)
a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False)
a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True)
a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
a__ : List[Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
a__ : str = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
a__ : str = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
a__ : Tuple = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowercase ( __A ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires faiss""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires regex""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TF_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires JAX""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
def _require_spacy_model(__A ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def _lowercase ( __A ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
__UpperCamelCase = unittest.skip("""test is slow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
__UpperCamelCase = unittest.skip("""test is local""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
__UpperCamelCase = unittest.skip("""test is packaged""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
__UpperCamelCase = unittest.skip("""test requires remote""" )(__A )
return test_case
def _lowercase ( *__A ):
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("""test""" ):
for decorator in decorators:
__UpperCamelCase = decorator(__A )
setattr(cls ,__A ,__A )
return cls
return decorate
class UpperCAmelCase__ ( UpperCAmelCase_):
pass
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
@contextmanager
def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ):
'''simple docstring'''
__UpperCamelCase = requests.Session().request
def timeout_request(__A ,__A ,__A ,**__A ):
# Change the url to an invalid url so that the connection hangs
__UpperCamelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
__UpperCamelCase = timeout
try:
return online_request(__A ,__A ,**__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__UpperCamelCase = url
__UpperCamelCase = e.args[0]
__UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),)
__UpperCamelCase = (max_retry_error,)
raise
def raise_connection_error(__A ,__A ,**__A ):
raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" ,__A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" ,__A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _lowercase ( *__A ,**__A ):
'''simple docstring'''
__UpperCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowercase ( __A ,__A ):
'''simple docstring'''
return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist()
def _lowercase ( __A ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__A ,*__A ,**__A ):
try:
return func(*__A ,**__A )
except HTTPError as err:
if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper ,__A )
class UpperCAmelCase__ :
def __init__( self , lowercase , lowercase , lowercase ) -> str:
__UpperCamelCase = returncode
__UpperCamelCase = stdout
__UpperCamelCase = stderr
async def _lowercase ( __A ,__A ):
'''simple docstring'''
while True:
__UpperCamelCase = await stream.readline()
if line:
callback(__A )
else:
break
async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ ,""" """.join(__A ) )
__UpperCamelCase = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__UpperCamelCase = []
__UpperCamelCase = []
def tee(__A ,__A ,__A ,__A="" ):
__UpperCamelCase = line.decode("""utf-8""" ).rstrip()
sink.append(__A )
if not quiet:
print(__A ,__A ,file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ),
_read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ),
] ,timeout=__A ,)
return _RunOutput(await p.wait() ,__A ,__A )
def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ):
'''simple docstring'''
__UpperCamelCase = asyncio.get_event_loop()
__UpperCamelCase = loop.run_until_complete(
_stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) )
__UpperCamelCase = """ """.join(__A )
if result.returncode > 0:
__UpperCamelCase = """\n""".join(result.stderr )
raise RuntimeError(
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
f"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"'{cmd_str}' produced no output." )
return result
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" )
__UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M )
return int(__A )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = 29_500
__UpperCamelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 349 | 0 |
"""simple docstring"""
from math import factorial
def snake_case ( A__ = 20 ):
UpperCAmelCase_ : List[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase_ : Any = n // 2
return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCamelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number.''')
| 268 |
'''simple docstring'''
import re
def _lowercase ( __A ):
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
try:
__UpperCamelCase = split_input(__A )
if upper:
__UpperCamelCase = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__UpperCamelCase = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _lowercase ( __A ):
'''simple docstring'''
return to_simple_case(__A )
def _lowercase ( __A ):
'''simple docstring'''
try:
__UpperCamelCase = to_simple_case(__A )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""_""" )
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""-""" )
if __name__ == "__main__":
__import__('doctest').testmod()
| 349 | 0 |
SCREAMING_SNAKE_CASE_:List[str] = tuple[float, float, float]
SCREAMING_SNAKE_CASE_:Any = tuple[float, float, float]
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int:
"""simple docstring"""
A : Optional[int] = end_pointa[0] - end_pointa[0]
A : List[str] = end_pointa[1] - end_pointa[1]
A : Optional[int] = end_pointa[2] - end_pointa[2]
return (x, y, z)
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str:
"""simple docstring"""
A : Optional[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i
A : Any = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
A : List[Any] = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
"""simple docstring"""
return tuple(round(__A , __A ) for x in vector ) == (0, 0, 0)
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 10 ) -> int:
"""simple docstring"""
A : Any = create_vector(__A , __A )
A : List[str] = create_vector(__A , __A )
return is_zero_vector(get_ad_vectors_cross(__A , __A ) , __A )
| 116 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (3_2, 3_2)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase )
return image
@property
def __lowerCamelCase ( self ) -> Dict:
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def __lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __lowerCamelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowercase )
@property
def __lowerCamelCase ( self ) -> Tuple:
def extract(*lowercase , **lowercase ):
class UpperCAmelCase__ :
def __init__( self ) -> Tuple:
__UpperCamelCase = torch.ones([0] )
def __lowerCamelCase ( self , lowercase ) -> List[str]:
self.pixel_values.to(lowercase )
return self
return Out()
return extract
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase )
assert isinstance(lowercase , lowercase )
assert isinstance(pipe.scheduler , lowercase )
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCamelCase = 4_0_0_3_6_6_0_3_4_6
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCamelCase = 2_7_3_4_9_7_1_7_5_5
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCamelCase = 1_0_4_4_3_5_5_2_3_4
__UpperCamelCase = 1_2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 349 | 0 |
import logging
import os
from .state import PartialState
class __snake_case ( logging.LoggerAdapter ):
@staticmethod
def __a ( __UpperCamelCase ) -> Dict:
'''simple docstring'''
snake_case__ : List[str] = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __a ( self , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) -> List[str]:
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
snake_case__ : Dict = kwargs.pop('main_process_only' , __UpperCamelCase )
snake_case__ : str = kwargs.pop('in_order' , __UpperCamelCase )
if self.isEnabledFor(__UpperCamelCase ):
if self._should_log(__UpperCamelCase ):
snake_case__ , snake_case__ : List[Any] = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
elif in_order:
snake_case__ : int = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
snake_case__ , snake_case__ : Dict = self.process(__UpperCamelCase , __UpperCamelCase )
self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
state.wait_for_everyone()
def UpperCamelCase__ ( A__ , A__ = None ) -> Optional[int]:
if log_level is None:
snake_case__ : Optional[int] = os.environ.get('ACCELERATE_LOG_LEVEL' , __A )
snake_case__ : int = logging.getLogger(__A )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__A , {} )
| 143 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Dict:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
| 349 | 0 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
snake_case : str = logging.get_logger(__name__)
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
a :int = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(__A ) == len(__A ), F'''{len(__A )} != {len(__A )}'''
dest_layers.load_state_dict(layers_to_copy.state_dict() )
snake_case : Optional[int] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
snake_case : Union[str, Any] = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ):
"""simple docstring"""
try:
a :Union[str, Any] = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
F''' {n_student}''' )
return list(range(__A ) )
def __lowerCamelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] ):
"""simple docstring"""
if n_student > n_teacher:
raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' )
elif n_teacher == n_student:
return list(range(__A ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] = "student" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : str=False , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Dict , ):
"""simple docstring"""
a :Optional[int] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'''
assert (e is not None) or (d is not None), _msg
if isinstance(__A , __A ):
AutoTokenizer.from_pretrained(__A ).save_pretrained(__A ) # purely for convenience
a :Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(__A ).eval()
else:
assert isinstance(__A , __A ), F'''teacher must be a model or string got type {type(__A )}'''
a :List[str] = teacher.config.to_diff_dict()
try:
a , a :Dict = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
a :Union[str, Any] = teacher_e
if d is None:
a :Optional[Any] = teacher_d
init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} )
except AttributeError: # T5
if hasattr(teacher.config , '''num_encoder_layers''' ):
a , a :List[str] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
a , a :Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
a :str = teacher_e
if d is None:
a :List[str] = teacher_d
if hasattr(teacher.config , '''num_encoder_layers''' ):
init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} )
else:
init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(__A )
# Copy weights
a :Any = teacher.config_class(**__A )
a :str = AutoModelForSeqaSeqLM.from_config(__A )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
a :Optional[int] = student.load_state_dict(teacher.state_dict() , strict=__A )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
a , a :Optional[int] = list(range(__A ) ), list(range(__A ) )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
F''' {save_path}''' )
student.save_pretrained(__A )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
a :Dict = pick_layers_to_copy(__A , __A )
if d_layers_to_copy is None:
a :Tuple = pick_layers_to_copy(__A , __A )
try:
if hasattr(
__A , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __A )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __A )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __A )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __A )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , __A )
copy_layers(teacher.decoder.block , student.decoder.block , __A )
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' )
a :Optional[Any] = {
'''teacher_type''': teacher.config.model_type,
'''copied_encoder_layers''': e_layers_to_copy,
'''copied_decoder_layers''': d_layers_to_copy,
}
student.save_pretrained(__A )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 94 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class UpperCAmelCase__ ( logging.LoggerAdapter):
@staticmethod
def __lowerCamelCase ( lowercase ) -> Dict:
__UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]:
if PartialState._shared_state == {}:
raise RuntimeError(
"""You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" )
__UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase )
__UpperCamelCase = kwargs.pop("""in_order""" , lowercase )
if self.isEnabledFor(lowercase ):
if self._should_log(lowercase ):
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
elif in_order:
__UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
state.wait_for_everyone()
def _lowercase ( __A ,__A = None ):
'''simple docstring'''
if log_level is None:
__UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A )
__UpperCamelCase = logging.getLogger(__A )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__A ,{} )
| 349 | 0 |
'''simple docstring'''
from statistics import mean, stdev
def lowerCAmelCase_ ( snake_case__ , snake_case__ = 3 ):
'''simple docstring'''
A : Optional[int] = min(__A )
A : Optional[int] = max(__A )
# normalize data
return [round((x - x_min) / (x_max - x_min) , __A ) for x in data]
def lowerCAmelCase_ ( snake_case__ , snake_case__ = 3 ):
'''simple docstring'''
A : List[Any] = mean(__A )
A : List[Any] = stdev(__A )
# standardize data
return [round((x - mu) / (sigma) , __A ) for x in data]
| 3 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
a__ : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase__ :
def __init__( self ) -> Any:
__UpperCamelCase = False
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str:
if not self.initialized:
__UpperCamelCase = RagRetriever(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = True
def __lowerCamelCase ( self ) -> Optional[Any]:
self.retriever.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict:
__UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]:
if index is not None and index.is_initialized() and len(lowercase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase )
for worker in self.retrieval_workers
] )
def __lowerCamelCase ( self ) -> Dict:
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) )
else:
__UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any:
return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int:
__UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase )
__UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
__UpperCamelCase = rag_tokenizer.question_encoder
__UpperCamelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCamelCase = """custom"""
__UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase )
else:
__UpperCamelCase = cls._build_index(lowercase )
return cls(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
| 349 | 0 |
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
_lowerCamelCase =abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
config.addinivalue_line(
'markers', 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' )
config.addinivalue_line(
'markers', 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' )
config.addinivalue_line('markers', 'is_pipeline_test: mark test to run only when pipelines are tested' )
config.addinivalue_line('markers', 'is_staging_test: mark test to run only in the staging environment' )
config.addinivalue_line('markers', 'accelerate_tests: mark test that require accelerate' )
config.addinivalue_line('markers', 'tool_tests: mark the tool tests that are run on their specific schedule' )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__A )
def snake_case__ ( lowerCAmelCase_ ):
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE =terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(__A, id=__A )
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
if exitstatus == 5:
SCREAMING_SNAKE_CASE =0
# Doctest custom flag to ignore output.
_lowerCamelCase =doctest.register_optionflag("IGNORE_RESULT")
_lowerCamelCase =doctest.OutputChecker
class a_ ( UpperCAmelCase_ ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Any ,snake_case : str ,snake_case : int ):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self ,snake_case ,snake_case ,snake_case )
_lowerCamelCase =CustomOutputChecker
_lowerCamelCase =HfDoctestModule
_lowerCamelCase =HfDocTestParser
| 334 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a__ : Any = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': 5_1_2,
'squeezebert/squeezebert-mnli': 5_1_2,
'squeezebert/squeezebert-mnli-headless': 5_1_2,
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = SqueezeBertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple:
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**lowercase )
__UpperCamelCase = do_lower_case
def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple:
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]:
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]:
__UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase )
| 349 | 0 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (UpperCAmelCase_ , unittest.TestCase ):
UpperCAmelCase__ = LEDTokenizer
UpperCAmelCase__ = LEDTokenizerFast
UpperCAmelCase__ = True
def _lowercase ( self ):
'''simple docstring'''
super().setUp()
UpperCAmelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
UpperCAmelCase = dict(zip(_A , range(len(_A ) ) ) )
UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCAmelCase = {'''unk_token''': '''<unk>'''}
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_A ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_A ) )
def _lowercase ( self , **_A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def _lowercase ( self , **_A ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A )
def _lowercase ( self , _A ):
'''simple docstring'''
return "lower newer", "lower newer"
@cached_property
def _lowercase ( self ):
'''simple docstring'''
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def _lowercase ( self ):
'''simple docstring'''
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
UpperCAmelCase = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' )
self.assertIsInstance(_A , _A )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
UpperCAmelCase = batch.input_ids.tolist()[0]
self.assertListEqual(_A , _A )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(_A , padding=_A , return_tensors='''pt''' )
self.assertIn('''input_ids''' , _A )
self.assertIn('''attention_mask''' , _A )
self.assertNotIn('''labels''' , _A )
self.assertNotIn('''decoder_attention_mask''' , _A )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(text_target=_A , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(3_2 , targets['''input_ids'''].shape[1] )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(
['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' )
self.assertIsInstance(_A , _A )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = ['''A long paragraph for summarization.''']
UpperCAmelCase = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = tokenizer(_A , return_tensors='''pt''' )
UpperCAmelCase = tokenizer(text_target=_A , return_tensors='''pt''' )
UpperCAmelCase = inputs['''input_ids''']
UpperCAmelCase = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _lowercase ( self ):
'''simple docstring'''
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
UpperCAmelCase = ['''Summary of the text.''', '''Another summary.''']
UpperCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
UpperCAmelCase = tokenizer(_A , padding=_A )
UpperCAmelCase = [[0] * len(_A ) for x in encoded_output['''input_ids''']]
UpperCAmelCase = tokenizer.pad(_A )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A )
def _lowercase ( self ):
'''simple docstring'''
pass
def _lowercase ( self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_A , **_A )
UpperCAmelCase = self.tokenizer_class.from_pretrained(_A , **_A )
UpperCAmelCase = '''A, <mask> AllenNLP sentence.'''
UpperCAmelCase = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A )
UpperCAmelCase = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
_A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
_A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 273 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a__ : str = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Optional[Any] =42
class SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[Any] , __lowercase : Union[str, Any]=3 , __lowercase : Optional[int]=3 , __lowercase : Optional[Any]=("DownEncoderBlock2D",) , __lowercase : List[str]=(64,) , __lowercase : Any=2 , __lowercase : int=32 , __lowercase : Optional[Any]="silu" , __lowercase : Dict=True , ):
'''simple docstring'''
super().__init__()
__a = layers_per_block
__a = torch.nn.Convad(
__lowercase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
__a = None
__a = nn.ModuleList([] )
# down
__a = block_out_channels[0]
for i, down_block_type in enumerate(__lowercase ):
__a = output_channel
__a = block_out_channels[i]
__a = i == len(__lowercase ) - 1
__a = get_down_block(
__lowercase , num_layers=self.layers_per_block , in_channels=__lowercase , out_channels=__lowercase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__lowercase , resnet_groups=__lowercase , attention_head_dim=__lowercase , temb_channels=__lowercase , )
self.down_blocks.append(__lowercase )
# mid
__a = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__lowercase , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__lowercase , temb_channels=__lowercase , )
# out
__a = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__lowercase , eps=1E-6 )
__a = nn.SiLU()
__a = 2 * out_channels if double_z else out_channels
__a = nn.Convad(block_out_channels[-1] , __lowercase , 3 , padding=1 )
__a = False
def UpperCamelCase_ ( self : List[str] , __lowercase : Optional[Any] ):
'''simple docstring'''
__a = x
__a = self.conv_in(__lowercase )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__lowercase : Any ):
def custom_forward(*__lowercase : Any ):
return module(*__lowercase )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
__a = torch.utils.checkpoint.checkpoint(
create_custom_forward(__lowercase ) , __lowercase , use_reentrant=__lowercase )
# middle
__a = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __lowercase , use_reentrant=__lowercase )
else:
for down_block in self.down_blocks:
__a = torch.utils.checkpoint.checkpoint(create_custom_forward(__lowercase ) , __lowercase )
# middle
__a = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __lowercase )
else:
# down
for down_block in self.down_blocks:
__a = down_block(__lowercase )
# middle
__a = self.mid_block(__lowercase )
# post-process
__a = self.conv_norm_out(__lowercase )
__a = self.conv_act(__lowercase )
__a = self.conv_out(__lowercase )
return sample
class SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : str , __lowercase : Optional[int]=3 , __lowercase : List[str]=3 , __lowercase : Union[str, Any]=("UpDecoderBlock2D",) , __lowercase : List[Any]=(64,) , __lowercase : Tuple=2 , __lowercase : List[Any]=32 , __lowercase : str="silu" , __lowercase : Union[str, Any]="group" , ):
'''simple docstring'''
super().__init__()
__a = layers_per_block
__a = nn.Convad(
__lowercase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
__a = None
__a = nn.ModuleList([] )
__a = in_channels if norm_type == """spatial""" else None
# mid
__a = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__lowercase , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__lowercase , temb_channels=__lowercase , )
# up
__a = list(reversed(__lowercase ) )
__a = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__lowercase ):
__a = output_channel
__a = reversed_block_out_channels[i]
__a = i == len(__lowercase ) - 1
__a = get_up_block(
__lowercase , num_layers=self.layers_per_block + 1 , in_channels=__lowercase , out_channels=__lowercase , prev_output_channel=__lowercase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__lowercase , resnet_groups=__lowercase , attention_head_dim=__lowercase , temb_channels=__lowercase , resnet_time_scale_shift=__lowercase , )
self.up_blocks.append(__lowercase )
__a = output_channel
# out
if norm_type == "spatial":
__a = SpatialNorm(block_out_channels[0] , __lowercase )
else:
__a = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__lowercase , eps=1E-6 )
__a = nn.SiLU()
__a = nn.Convad(block_out_channels[0] , __lowercase , 3 , padding=1 )
__a = False
def UpperCamelCase_ ( self : List[Any] , __lowercase : str , __lowercase : Union[str, Any]=None ):
'''simple docstring'''
__a = z
__a = self.conv_in(__lowercase )
__a = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__lowercase : Union[str, Any] ):
def custom_forward(*__lowercase : str ):
return module(*__lowercase )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
__a = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __lowercase , __lowercase , use_reentrant=__lowercase )
__a = sample.to(__lowercase )
# up
for up_block in self.up_blocks:
__a = torch.utils.checkpoint.checkpoint(
create_custom_forward(__lowercase ) , __lowercase , __lowercase , use_reentrant=__lowercase )
else:
# middle
__a = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __lowercase , __lowercase )
__a = sample.to(__lowercase )
# up
for up_block in self.up_blocks:
__a = torch.utils.checkpoint.checkpoint(create_custom_forward(__lowercase ) , __lowercase , __lowercase )
else:
# middle
__a = self.mid_block(__lowercase , __lowercase )
__a = sample.to(__lowercase )
# up
for up_block in self.up_blocks:
__a = up_block(__lowercase , __lowercase )
# post-process
if latent_embeds is None:
__a = self.conv_norm_out(__lowercase )
else:
__a = self.conv_norm_out(__lowercase , __lowercase )
__a = self.conv_act(__lowercase )
__a = self.conv_out(__lowercase )
return sample
class SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Any , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Optional[int]=None , __lowercase : Tuple="random" , __lowercase : str=False , __lowercase : List[str]=True ):
'''simple docstring'''
super().__init__()
__a = n_e
__a = vq_embed_dim
__a = beta
__a = legacy
__a = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
__a = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
__a = self.used.shape[0]
__a = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__a = self.re_embed
__a = self.re_embed + 1
print(
F"Remapping {self.n_e} indices to {self.re_embed} indices. "
F"Using {self.unknown_index} for unknown indices." )
else:
__a = n_e
__a = sane_index_shape
def UpperCamelCase_ ( self : List[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = inds.shape
assert len(__lowercase ) > 1
__a = inds.reshape(ishape[0] , -1 )
__a = self.used.to(__lowercase )
__a = (inds[:, :, None] == used[None, None, ...]).long()
__a = match.argmax(-1 )
__a = match.sum(2 ) < 1
if self.unknown_index == "random":
__a = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
__a = self.unknown_index
return new.reshape(__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : Dict ):
'''simple docstring'''
__a = inds.shape
assert len(__lowercase ) > 1
__a = inds.reshape(ishape[0] , -1 )
__a = self.used.to(__lowercase )
if self.re_embed > self.used.shape[0]: # extra token
__a = 0 # simply set to zero
__a = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __lowercase )
return back.reshape(__lowercase )
def UpperCamelCase_ ( self : int , __lowercase : int ):
'''simple docstring'''
# reshape z -> (batch, height, width, channel) and flatten
__a = z.permute(0 , 2 , 3 , 1 ).contiguous()
__a = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__a = torch.argmin(torch.cdist(__lowercase , self.embedding.weight ) , dim=1 )
__a = self.embedding(__lowercase ).view(z.shape )
__a = None
__a = None
# compute loss for embedding
if not self.legacy:
__a = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__a = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__a = z + (z_q - z).detach()
# reshape back to match original input shape
__a = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
__a = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
__a = self.remap_to_used(__lowercase )
__a = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
__a = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def UpperCamelCase_ ( self : str , __lowercase : Optional[Any] , __lowercase : Optional[Any] ):
'''simple docstring'''
# shape specifying (batch, height, width, channel)
if self.remap is not None:
__a = indices.reshape(shape[0] , -1 ) # add batch axis
__a = self.unmap_to_all(__lowercase )
__a = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__a = self.embedding(__lowercase )
if shape is not None:
__a = z_q.view(__lowercase )
# reshape back to match original input shape
__a = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
def __init__( self : Dict , __lowercase : Dict , __lowercase : str=False ):
'''simple docstring'''
__a = parameters
__a , __a = torch.chunk(__lowercase , 2 , dim=1 )
__a = torch.clamp(self.logvar , -30.0 , 20.0 )
__a = deterministic
__a = torch.exp(0.5 * self.logvar )
__a = torch.exp(self.logvar )
if self.deterministic:
__a = __a = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] = None ):
'''simple docstring'''
# make sure sample is on the same device as the parameters and has same dtype
__a = randn_tensor(
self.mean.shape , generator=__lowercase , device=self.parameters.device , dtype=self.parameters.dtype )
__a = self.mean + self.std * sample
return x
def UpperCamelCase_ ( self : List[Any] , __lowercase : Dict=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def UpperCamelCase_ ( self : Tuple , __lowercase : List[Any] , __lowercase : Optional[int]=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__a = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__lowercase )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return self.mean
| 302 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a__ : Union[str, Any] = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''albert'''
def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any:
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
__UpperCamelCase = vocab_size
__UpperCamelCase = embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_hidden_groups
__UpperCamelCase = num_attention_heads
__UpperCamelCase = inner_group_num
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = classifier_dropout_prob
__UpperCamelCase = position_embedding_type
class UpperCAmelCase__ ( UpperCAmelCase_):
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : Optional[Any] = """gptj"""
a_ : Any = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Tuple , a_ : int=5_04_00 , a_ : Union[str, Any]=20_48 , a_ : List[Any]=40_96 , a_ : Any=28 , a_ : str=16 , a_ : Any=64 , a_ : str=None , a_ : Any="gelu_new" , a_ : Optional[Any]=0.0 , a_ : Dict=0.0 , a_ : Tuple=0.0 , a_ : List[str]=1e-5 , a_ : Any=0.02 , a_ : Optional[Any]=True , a_ : Dict=5_02_56 , a_ : Tuple=5_02_56 , a_ : Optional[Any]=False , **a_ : int , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : List[Any] = n_embd
lowerCAmelCase_ : Union[str, Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : List[str] = n_inner
lowerCAmelCase_ : Optional[int] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : Any = resid_pdrop
lowerCAmelCase_ : Optional[Any] = embd_pdrop
lowerCAmelCase_ : Tuple = attn_pdrop
lowerCAmelCase_ : Tuple = layer_norm_epsilon
lowerCAmelCase_ : Dict = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : str = bos_token_id
lowerCAmelCase_ : Optional[Any] = eos_token_id
super().__init__(
bos_token_id=a_ , eos_token_id=a_ , tie_word_embeddings=a_ , **a_ )
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , a_ : Optional[int] , a_ : int = "default" , a_ : int = None , a_ : List[str] = False , ):
super().__init__(a_ , task=a_ , patching_specs=a_ , use_past=a_ )
if not getattr(self._config , "pad_token_id" , a_ ):
# TODO: how to do that better?
lowerCAmelCase_ : Tuple = 0
@property
def lowerCamelCase ( self : str ):
lowerCAmelCase_ : str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(a_ , direction="inputs" )
lowerCAmelCase_ : Optional[Any] = {0: "batch", 1: "past_sequence + sequence"}
else:
lowerCAmelCase_ : Optional[Any] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def lowerCamelCase ( self : str ):
return self._config.n_layer
@property
def lowerCamelCase ( self : Dict ):
return self._config.n_head
def lowerCamelCase ( self : Any , a_ : int , a_ : List[str] = -1 , a_ : Optional[int] = -1 , a_ : Optional[int] = False , a_ : Dict = None , ):
lowerCAmelCase_ : Union[str, Any] = super(a_ , self ).generate_dummy_inputs(
a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : Dict = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : Dict = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : str = seqlen + 2
lowerCAmelCase_ : Tuple = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : int = [
(torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["attention_mask"]
if self.use_past:
lowerCAmelCase_ : List[str] = ordered_inputs["attention_mask"].dtype
lowerCAmelCase_ : Union[str, Any] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 )
return ordered_inputs
@property
def lowerCamelCase ( self : Optional[Any] ):
return 13
| 241 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _lowercase ( __A ):
'''simple docstring'''
return (data["data"], data["target"])
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__A ,__A )
# Predict target for test data
__UpperCamelCase = xgb.predict(__A )
__UpperCamelCase = predictions.reshape(len(__A ) ,1 )
return predictions
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = fetch_california_housing()
__UpperCamelCase , __UpperCamelCase = data_handling(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(
__A ,__A ,test_size=0.25 ,random_state=1 )
__UpperCamelCase = xgboost(__A ,__A ,__A )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" )
print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 349 | 0 |
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
_UpperCamelCase = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class _lowerCamelCase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self , UpperCAmelCase = 101 ) -> Optional[Any]:
'''simple docstring'''
__snake_case : str = length
def __len__( self ) -> int:
'''simple docstring'''
return self.length
def __getitem__( self , UpperCAmelCase ) -> int:
'''simple docstring'''
return i
class _lowerCamelCase :
"""simple docstring"""
def __call__( self , UpperCAmelCase ) -> Any:
'''simple docstring'''
return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )}
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> Any:
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
__snake_case : Dict = nn.Linear(120 , 80 )
def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Dict:
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class _lowerCamelCase ( UpperCAmelCase_ ):
"""simple docstring"""
@require_torch_neuroncore
def UpperCAmelCase ( self ) -> int:
'''simple docstring'''
__snake_case : str = F"""--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split()
__snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir()
__snake_case : int = F"""--output_dir {output_dir}""".split()
__snake_case : Dict = ["torchrun"] + distributed_args + args
execute_subprocess_async(UpperCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class _lowerCamelCase ( UpperCAmelCase_ ):
"""simple docstring"""
@require_torch_multi_gpu
def UpperCAmelCase ( self ) -> Tuple:
'''simple docstring'''
__snake_case : Union[str, Any] = F"""--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n """.split()
__snake_case : List[Any] = self.get_auto_remove_tmp_dir()
__snake_case : Tuple = F"""--output_dir {output_dir}""".split()
__snake_case : List[str] = ["torchrun"] + distributed_args + args
execute_subprocess_async(UpperCAmelCase , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
_UpperCamelCase = HfArgumentParser((TrainingArguments,))
_UpperCamelCase = parser.parse_args_into_dataclasses()[0]
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, '''
F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}'''
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
_UpperCamelCase = DummyDataset(dataset_length)
def lowerCAmelCase__( lowercase : Tuple ) -> Dict:
__snake_case : List[Any] = list(range(len(__A ) ) )
__snake_case : List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
"Predictions and/or labels do not match expected results:\n - predictions: "
f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" )
return {"success": success}
_UpperCamelCase = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
_UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_UpperCamelCase = 2
_UpperCamelCase = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
_UpperCamelCase = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
_UpperCamelCase = None
| 326 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder()
__UpperCamelCase = inputs_dict["""input_ids"""]
__UpperCamelCase = input_ids[:1, :]
__UpperCamelCase = inputs_dict["""attention_mask"""][:1, :]
__UpperCamelCase = inputs_dict["""head_mask"""]
__UpperCamelCase = 1
# first forward pass
__UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase = model(lowercase , attention_mask=lowercase )[0]
__UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
__SCREAMING_SNAKE_CASE = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__SCREAMING_SNAKE_CASE = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__SCREAMING_SNAKE_CASE = '''google/pegasus-xsum'''
@cached_property
def __lowerCamelCase ( self ) -> int:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCamelCase ( self , **lowercase ) -> Optional[int]:
__UpperCamelCase = self.translate_src_text(**lowercase )
assert self.expected_text == generated_words
def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]:
__UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" )
__UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , )
__UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )
return generated_words
@slow
def __lowerCamelCase ( self ) -> Dict:
self._assert_generated_batch_equal_expected()
| 349 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
a = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
def __init__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple ):
super().__init__()
self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase )
@torch.no_grad()
def __call__( self : int , lowerCAmelCase : Dict = 1 , lowerCAmelCase : Tuple = 100 , lowerCAmelCase : Tuple = None , lowerCAmelCase : List[Any] = None , lowerCAmelCase : int = True , ):
if audio_length_in_s is None:
lowerCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate
lowerCAmelCase = audio_length_in_s * self.unet.config.sample_rate
lowerCAmelCase = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowerCAmelCase = int(lowerCAmelCase )
if sample_size % down_scale_factor != 0:
lowerCAmelCase = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowerCAmelCase = int(lowerCAmelCase )
lowerCAmelCase = next(iter(self.unet.parameters() ) ).dtype
lowerCAmelCase = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase )
# set step values
self.scheduler.set_timesteps(lowerCAmelCase , device=audio.device )
lowerCAmelCase = self.scheduler.timesteps.to(lowerCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
lowerCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample
lowerCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowerCAmelCase = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowerCAmelCase )
| 155 |
'''simple docstring'''
import string
def _lowercase ( __A ):
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(__A )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = input("""Encrypted message: """ )
__UpperCamelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 349 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCamelCase_ = {
'configuration_conditional_detr': [
'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ConditionalDetrConfig',
'ConditionalDetrOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = ['ConditionalDetrFeatureExtractor']
lowerCamelCase_ = ['ConditionalDetrImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConditionalDetrForObjectDetection',
'ConditionalDetrForSegmentation',
'ConditionalDetrModel',
'ConditionalDetrPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 268 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Dict = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''gptj'''
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = n_inner
__UpperCamelCase = rotary_dim
__UpperCamelCase = activation_function
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = attn_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
__UpperCamelCase = bos_token_id
__UpperCamelCase = eos_token_id
super().__init__(
bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]:
super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase )
if not getattr(self._config , """pad_token_id""" , lowercase ):
# TODO: how to do that better?
__UpperCamelCase = 0
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
__UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction="""inputs""" )
__UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_layer
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_head
def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase = super(lowercase , self ).generate_dummy_inputs(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__UpperCamelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers )
]
__UpperCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__UpperCamelCase = ordered_inputs["""attention_mask"""].dtype
__UpperCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
return ordered_inputs
@property
def __lowerCamelCase ( self ) -> int:
return 1_3
| 349 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE_:str = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE_:Union[str, Any] = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE_:Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 116 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a__ : int = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['LayoutLMv3FeatureExtractor']
a__ : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
from __future__ import annotations
def UpperCamelCase__ ( A__ ) -> str:
if len(__A ) == 0:
return array
snake_case__ , snake_case__ : Dict = min(__A ), max(__A )
# Compute the variables
snake_case__ : Optional[int] = _max - _min + 1
snake_case__ , snake_case__ : int = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
snake_case__ : Optional[Any] = i - _min
snake_case__ : Tuple = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
snake_case__ : List[Any] = 0
for i in range(__A ):
while holes_repeat[i] > 0:
snake_case__ : Any = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase__ : Optional[Any] = input('''Enter numbers separated by comma:\n''')
lowerCAmelCase__ : List[str] = [int(x) for x in user_input.split(''',''')]
print(pigeon_sort(unsorted))
| 143 |
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = len(__A )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any = 0 , UpperCAmelCase_ : Optional[int] = 0 ):
"""simple docstring"""
a :Union[str, Any] = right or len(__A ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(__A , __A , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 94 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
a__ : Any = get_logger(__name__)
class UpperCAmelCase__ :
def __init__( self , lowercase = None ) -> List[str]:
__UpperCamelCase = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__UpperCamelCase = Extractor
def __lowerCamelCase ( self , lowercase ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__UpperCamelCase = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def __lowerCamelCase ( self , lowercase , lowercase ) -> bool:
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str:
__UpperCamelCase = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
__UpperCamelCase = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
@abstractmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
...
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
...
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = []
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> int:
with open(lowercase , """rb""" ) as f:
return f.read(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if not magic_number:
__UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
__UpperCamelCase = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
return tarfile.is_tarfile(lowercase )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
__UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
__UpperCamelCase = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" )
else:
yield finfo
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x1F\x8B''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with gzip.open(lowercase , """rb""" ) as gzip_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , """rb""" ) as fp:
__UpperCamelCase = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
__UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , """r""" ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
__UpperCamelCase = zstd.ZstdDecompressor()
with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with bza.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , """r""" ) as archive:
archive.extractall(lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__SCREAMING_SNAKE_CASE = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def __lowerCamelCase ( cls ) -> Union[str, Any]:
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/>
__UpperCamelCase = cls._get_magic_number_max_length()
__UpperCamelCase = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
__UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format
else:
__UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 349 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__A , __A ) ) )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
if dataset.ndim != value_array.ndim:
A : str = (
'''Wrong input data\'s dimensions... '''
F'dataset : {dataset.ndim}, value_array : {value_array.ndim}'
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
A : Optional[Any] = (
'''Wrong input data\'s shape... '''
F'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
A : str = (
'''Input data have different datatype... '''
F'dataset : {dataset.dtype}, value_array : {value_array.dtype}'
)
raise TypeError(__A )
A : List[Any] = []
for value in value_array:
A : List[str] = euclidean(__A , dataset[0] )
A : Optional[int] = dataset[0].tolist()
for dataset_value in dataset[1:]:
A : str = euclidean(__A , __A )
if dist > temp_dist:
A : Tuple = temp_dist
A : Any = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return np.dot(__A , __A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 3 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = FlaxPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = self._prepare_for_class(lowercase , lowercase )
__UpperCamelCase = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = model_class(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCamelCase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase )
__UpperCamelCase = np.ones((1, 1) )
__UpperCamelCase = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase )
__UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences
__UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded
| 349 | 0 |
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class a_ :
"""simple docstring"""
def __init__( self : Dict ,snake_case : Dict ):
SCREAMING_SNAKE_CASE =data
SCREAMING_SNAKE_CASE =[0X67_452_301, 0XEF_CDA_B89, 0X98_BAD_CFE, 0X10_325_476, 0XC3_D2E_1F0]
@staticmethod
def _lowerCAmelCase ( snake_case : Dict ,snake_case : Optional[int] ):
return ((n << b) | (n >> (32 - b))) & 0XFF_FFF_FFF
def _lowerCAmelCase ( self : Optional[int] ):
SCREAMING_SNAKE_CASE =B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64)
SCREAMING_SNAKE_CASE =self.data + padding + struct.pack('>Q' ,8 * len(self.data ) )
return padded_data
def _lowerCAmelCase ( self : List[Any] ):
return [
self.padded_data[i : i + 64] for i in range(0 ,len(self.padded_data ) ,64 )
]
def _lowerCAmelCase ( self : List[str] ,snake_case : Any ):
SCREAMING_SNAKE_CASE =list(struct.unpack('>16L' ,snake_case ) ) + [0] * 64
for i in range(16 ,80 ):
SCREAMING_SNAKE_CASE =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) ,1 )
return w
def _lowerCAmelCase ( self : int ):
SCREAMING_SNAKE_CASE =self.padding()
SCREAMING_SNAKE_CASE =self.split_blocks()
for block in self.blocks:
SCREAMING_SNAKE_CASE =self.expand_block(snake_case )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self.h
for i in range(0 ,80 ):
if 0 <= i < 20:
SCREAMING_SNAKE_CASE =(b & c) | ((~b) & d)
SCREAMING_SNAKE_CASE =0X5A_827_999
elif 20 <= i < 40:
SCREAMING_SNAKE_CASE =b ^ c ^ d
SCREAMING_SNAKE_CASE =0X6E_D9E_BA1
elif 40 <= i < 60:
SCREAMING_SNAKE_CASE =(b & c) | (b & d) | (c & d)
SCREAMING_SNAKE_CASE =0X8F_1BB_CDC
elif 60 <= i < 80:
SCREAMING_SNAKE_CASE =b ^ c ^ d
SCREAMING_SNAKE_CASE =0XCA_62C_1D6
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =(
self.rotate(snake_case ,5 ) + f + e + k + expanded_block[i] & 0XFF_FFF_FFF,
a,
self.rotate(snake_case ,30 ),
c,
d,
)
SCREAMING_SNAKE_CASE =(
self.h[0] + a & 0XFF_FFF_FFF,
self.h[1] + b & 0XFF_FFF_FFF,
self.h[2] + c & 0XFF_FFF_FFF,
self.h[3] + d & 0XFF_FFF_FFF,
self.h[4] + e & 0XFF_FFF_FFF,
)
return ("{:08x}" * 5).format(*self.h )
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =b'Test String'
assert SHAaHash(__A ).final_hash() == hashlib.shaa(__A ).hexdigest() # noqa: S324
def snake_case__ ( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE =argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string', dest='input_string', default='Hello World!! Welcome to Cryptography', help='Hash the string', )
parser.add_argument('--file', dest='input_file', help='Hash contents of a file' )
SCREAMING_SNAKE_CASE =parser.parse_args()
SCREAMING_SNAKE_CASE =args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file, 'rb' ) as f:
SCREAMING_SNAKE_CASE =f.read()
else:
SCREAMING_SNAKE_CASE =bytes(__A, 'utf-8' )
print(SHAaHash(__A ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 334 |
'''simple docstring'''
import pytest
a__ : List[str] = '__dummy_dataset1__'
a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = dataset_loading_script_name
__UpperCamelCase = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=__A )
__UpperCamelCase = script_dir / f"{script_name}.py"
with open(__A ,"""w""" ) as f:
f.write(__A )
return str(__A )
| 349 | 0 |
import argparse
import copy
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase = {}
with open(__A ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
UpperCAmelCase = []
_list.append([line.split()[1], line.split()[2]] )
UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
UpperCAmelCase = []
_list.append([line.split()[0], line.split()[2]] )
UpperCAmelCase = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
'''simple docstring'''
with open(__A ) as f:
UpperCAmelCase = f.read(1 )
UpperCAmelCase = start_node
UpperCAmelCase = []
UpperCAmelCase = start_node
UpperCAmelCase = 0
while visiting not in first_solution:
UpperCAmelCase = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(__A ) and k[0] not in first_solution:
UpperCAmelCase = k[1]
UpperCAmelCase = k[0]
first_solution.append(__A )
UpperCAmelCase = distance_of_first_solution + int(__A )
UpperCAmelCase = best_node
first_solution.append(__A )
UpperCAmelCase = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
UpperCAmelCase = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0000
)
return first_solution, distance_of_first_solution
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase = []
for n in solution[1:-1]:
UpperCAmelCase = solution.index(__A )
for kn in solution[1:-1]:
UpperCAmelCase = solution.index(__A )
if n == kn:
continue
UpperCAmelCase = copy.deepcopy(__A )
UpperCAmelCase = kn
UpperCAmelCase = n
UpperCAmelCase = 0
for k in _tmp[:-1]:
UpperCAmelCase = _tmp[_tmp.index(__A ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
UpperCAmelCase = distance + int(i[1] )
_tmp.append(__A )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
UpperCAmelCase = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda UpperCamelCase__ : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any:
'''simple docstring'''
UpperCAmelCase = 1
UpperCAmelCase = first_solution
UpperCAmelCase = []
UpperCAmelCase = distance_of_first_solution
UpperCAmelCase = solution
while count <= iters:
UpperCAmelCase = find_neighborhood(__A , __A )
UpperCAmelCase = 0
UpperCAmelCase = neighborhood[index_of_best_solution]
UpperCAmelCase = len(__A ) - 1
UpperCAmelCase = False
while not found:
UpperCAmelCase = 0
while i < len(__A ):
if best_solution[i] != solution[i]:
UpperCAmelCase = best_solution[i]
UpperCAmelCase = solution[i]
break
UpperCAmelCase = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
UpperCAmelCase = True
UpperCAmelCase = best_solution[:-1]
UpperCAmelCase = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
UpperCAmelCase = cost
UpperCAmelCase = solution
else:
UpperCAmelCase = index_of_best_solution + 1
UpperCAmelCase = neighborhood[index_of_best_solution]
if len(__A ) >= size:
tabu_list.pop(0 )
UpperCAmelCase = count + 1
return best_solution_ever, best_cost
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__=None ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase = generate_neighbours(args.File )
UpperCAmelCase , UpperCAmelCase = generate_first_solution(
args.File , __A )
UpperCAmelCase , UpperCAmelCase = tabu_search(
__A , __A , __A , args.Iterations , args.Size , )
print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" )
if __name__ == "__main__":
__A : str = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 273 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
a__ : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = {}
with open(__A ,"""r""" ) as file:
for line_number, line in enumerate(__A ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(__A ,__A ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = """.""".join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if """lm_head""" in full_key else value[0]
a__ : Dict = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _lowercase ( __A ,__A ,__A=None ,__A=None ):
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(__A )[0].split(""".""" )[-2]
__UpperCamelCase = mapped_key.replace("""*""" ,__A )
if "weight_g" in name:
__UpperCamelCase = """weight_g"""
elif "weight_v" in name:
__UpperCamelCase = """weight_v"""
elif "bias" in name:
__UpperCamelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = """weight"""
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(__A ,__A ,__A ,__A ,__A )
else:
set_recursively(__A ,__A ,__A ,__A ,__A )
return is_used
return is_used
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
__A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,)
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A )
if not is_used:
unused_weights.append(__A )
logger.warning(f"Unused weights: {unused_weights}" )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = full_name.split("""conv_layers.""" )[-1]
__UpperCamelCase = name.split(""".""" )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(__A )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(__A )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(__A )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(__A ,"""vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A ,exist_ok=__A )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(__A ,__A )
__UpperCamelCase = WavaVecaCTCTokenizer(
__A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,)
__UpperCamelCase = True if config.feat_extract_norm == """layer""" else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
__UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A )
processor.save_pretrained(__A )
__UpperCamelCase = WavaVecaForCTC(__A )
else:
__UpperCamelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" )
__UpperCamelCase = fairseq.tasks.setup_task(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A )
__UpperCamelCase = model[0].eval()
recursively_load_weights(__A ,__A ,not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
a__ : Optional[int] = parser.parse_args()
a__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 349 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase__ = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ['LayoutLMv3FeatureExtractor']
lowerCamelCase__ = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 302 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase__ :
def __init__( self , lowercase , ) -> Union[str, Any]:
__UpperCamelCase = parent
__UpperCamelCase = 1_3
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = 9_9
__UpperCamelCase = 3_2
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 3_7
__UpperCamelCase = """gelu"""
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 5_1_2
__UpperCamelCase = 1_6
__UpperCamelCase = 2
__UpperCamelCase = 0.02
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = None
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = TFDistilBertModel(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase )
__UpperCamelCase = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForSequenceClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFDistilBertForMultipleChoice(lowercase )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForTokenClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__SCREAMING_SNAKE_CASE = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 )
def __lowerCamelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def __lowerCamelCase ( self ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCamelCase = model(lowercase )[0]
__UpperCamelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowercase )
__UpperCamelCase = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
| 349 | 0 |
"""simple docstring"""
import requests
lowercase__ = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='
def __lowerCamelCase ( __UpperCamelCase ) -> int:
"""simple docstring"""
lowerCAmelCase_ : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["articles"] , 1 ):
print(f'''{i}.) {article["title"]}''' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
| 241 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _lowercase ( __A ,__A ):
'''simple docstring'''
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
if dataset.ndim != value_array.ndim:
__UpperCamelCase = (
"""Wrong input data's dimensions... """
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
__UpperCamelCase = (
"""Wrong input data's shape... """
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("""Wrong shape""" )
if dataset.dtype != value_array.dtype:
__UpperCamelCase = (
"""Input data have different datatype... """
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(__A )
__UpperCamelCase = []
for value in value_array:
__UpperCamelCase = euclidean(__A ,dataset[0] )
__UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
__UpperCamelCase = euclidean(__A ,__A )
if dist > temp_dist:
__UpperCamelCase = temp_dist
__UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _lowercase ( __A ,__A ):
'''simple docstring'''
return np.dot(__A ,__A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
from datetime import datetime
import requests
def lowerCAmelCase__( lowercase : Optional[int] ) -> List[str]:
__snake_case : Dict = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url="
__snake_case : Optional[int] = requests.get(base_url + url ).json()[0]["urls"][0]["src"]
return requests.get(__A ).content
if __name__ == "__main__":
_UpperCamelCase = input('''Enter Video/IGTV url: ''').strip()
_UpperCamelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, '''wb''') as fp:
fp.write(download_video(url))
print(F'''Done. Video saved to disk as {file_name}.''')
| 326 |
'''simple docstring'''
from datetime import datetime
import requests
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
__UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(__A ).content
if __name__ == "__main__":
a__ : int = input('Enter Video/IGTV url: ').strip()
a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 349 | 0 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
_a = 'segformer'
def __init__( self : int , lowerCAmelCase : Any=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Union[str, Any]=[8, 4, 2, 1] , lowerCAmelCase : Union[str, Any]=[32, 64, 160, 256] , lowerCAmelCase : int=[7, 3, 3, 3] , lowerCAmelCase : List[Any]=[4, 2, 2, 2] , lowerCAmelCase : Optional[int]=[1, 2, 5, 8] , lowerCAmelCase : Union[str, Any]=[4, 4, 4, 4] , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : int=0.02 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=1e-6 , lowerCAmelCase : Any=256 , lowerCAmelCase : Any=255 , **lowerCAmelCase : Any , ):
super().__init__(**lowerCAmelCase )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , lowerCAmelCase , )
lowerCAmelCase = num_channels
lowerCAmelCase = num_encoder_blocks
lowerCAmelCase = depths
lowerCAmelCase = sr_ratios
lowerCAmelCase = hidden_sizes
lowerCAmelCase = patch_sizes
lowerCAmelCase = strides
lowerCAmelCase = mlp_ratios
lowerCAmelCase = num_attention_heads
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = classifier_dropout_prob
lowerCAmelCase = initializer_range
lowerCAmelCase = drop_path_rate
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = decoder_hidden_size
lowerCAmelCase = kwargs.get("""reshape_last_stage""" , lowerCAmelCase )
lowerCAmelCase = semantic_loss_ignore_index
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
_a = version.parse('1.11' )
@property
def __lowercase ( self : Optional[int] ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __lowercase ( self : Dict ):
return 1e-4
@property
def __lowercase ( self : Tuple ):
return 12
| 155 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowercase ( __A ,__A=False ):
'''simple docstring'''
try:
__UpperCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__UpperCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__UpperCamelCase = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no." )
return _value
a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False)
a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False)
a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True)
a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
a__ : List[Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
a__ : str = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
a__ : str = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
a__ : Tuple = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowercase ( __A ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires faiss""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires regex""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TF_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires JAX""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
def _require_spacy_model(__A ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def _lowercase ( __A ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
__UpperCamelCase = unittest.skip("""test is slow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
__UpperCamelCase = unittest.skip("""test is local""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
__UpperCamelCase = unittest.skip("""test is packaged""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
__UpperCamelCase = unittest.skip("""test requires remote""" )(__A )
return test_case
def _lowercase ( *__A ):
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("""test""" ):
for decorator in decorators:
__UpperCamelCase = decorator(__A )
setattr(cls ,__A ,__A )
return cls
return decorate
class UpperCAmelCase__ ( UpperCAmelCase_):
pass
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
@contextmanager
def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ):
'''simple docstring'''
__UpperCamelCase = requests.Session().request
def timeout_request(__A ,__A ,__A ,**__A ):
# Change the url to an invalid url so that the connection hangs
__UpperCamelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
__UpperCamelCase = timeout
try:
return online_request(__A ,__A ,**__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__UpperCamelCase = url
__UpperCamelCase = e.args[0]
__UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),)
__UpperCamelCase = (max_retry_error,)
raise
def raise_connection_error(__A ,__A ,**__A ):
raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" ,__A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" ,__A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _lowercase ( *__A ,**__A ):
'''simple docstring'''
__UpperCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowercase ( __A ,__A ):
'''simple docstring'''
return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist()
def _lowercase ( __A ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__A ,*__A ,**__A ):
try:
return func(*__A ,**__A )
except HTTPError as err:
if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper ,__A )
class UpperCAmelCase__ :
def __init__( self , lowercase , lowercase , lowercase ) -> str:
__UpperCamelCase = returncode
__UpperCamelCase = stdout
__UpperCamelCase = stderr
async def _lowercase ( __A ,__A ):
'''simple docstring'''
while True:
__UpperCamelCase = await stream.readline()
if line:
callback(__A )
else:
break
async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ ,""" """.join(__A ) )
__UpperCamelCase = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__UpperCamelCase = []
__UpperCamelCase = []
def tee(__A ,__A ,__A ,__A="" ):
__UpperCamelCase = line.decode("""utf-8""" ).rstrip()
sink.append(__A )
if not quiet:
print(__A ,__A ,file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ),
_read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ),
] ,timeout=__A ,)
return _RunOutput(await p.wait() ,__A ,__A )
def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ):
'''simple docstring'''
__UpperCamelCase = asyncio.get_event_loop()
__UpperCamelCase = loop.run_until_complete(
_stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) )
__UpperCamelCase = """ """.join(__A )
if result.returncode > 0:
__UpperCamelCase = """\n""".join(result.stderr )
raise RuntimeError(
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
f"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"'{cmd_str}' produced no output." )
return result
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" )
__UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M )
return int(__A )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = 29_500
__UpperCamelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 349 | 0 |
"""simple docstring"""
from argparse import ArgumentParser
from .env import EnvironmentCommand
def snake_case ( ):
UpperCAmelCase_ : Optional[Any] = ArgumentParser("Diffusers CLI tool" ,usage="diffusers-cli <command> [<args>]" )
UpperCAmelCase_ : Dict = parser.add_subparsers(help="diffusers-cli command helpers" )
# Register commands
EnvironmentCommand.register_subcommand(__A )
# Let's go
UpperCAmelCase_ : List[Any] = parser.parse_args()
if not hasattr(__A ,"func" ):
parser.print_help()
exit(1 )
# Run
UpperCAmelCase_ : Tuple = args.func(__A )
service.run()
if __name__ == "__main__":
main()
| 268 |
'''simple docstring'''
import re
def _lowercase ( __A ):
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
try:
__UpperCamelCase = split_input(__A )
if upper:
__UpperCamelCase = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__UpperCamelCase = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _lowercase ( __A ):
'''simple docstring'''
return to_simple_case(__A )
def _lowercase ( __A ):
'''simple docstring'''
try:
__UpperCamelCase = to_simple_case(__A )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""_""" )
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""-""" )
if __name__ == "__main__":
__import__('doctest').testmod()
| 349 | 0 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
"""simple docstring"""
A : Optional[Any] = MobileBertConfig.from_json_file(__A )
print(f'''Building PyTorch model from configuration: {config}''' )
A : Optional[int] = MobileBertForPreTraining(__A )
# Load weights from tf checkpoint
A : int = load_tf_weights_in_mobilebert(__A , __A , __A )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , __A )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_:Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--mobilebert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained MobileBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE_:Any = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 116 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (3_2, 3_2)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase )
return image
@property
def __lowerCamelCase ( self ) -> Dict:
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def __lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __lowerCamelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowercase )
@property
def __lowerCamelCase ( self ) -> Tuple:
def extract(*lowercase , **lowercase ):
class UpperCAmelCase__ :
def __init__( self ) -> Tuple:
__UpperCamelCase = torch.ones([0] )
def __lowerCamelCase ( self , lowercase ) -> List[str]:
self.pixel_values.to(lowercase )
return self
return Out()
return extract
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase )
assert isinstance(lowercase , lowercase )
assert isinstance(pipe.scheduler , lowercase )
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCamelCase = 4_0_0_3_6_6_0_3_4_6
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCamelCase = 2_7_3_4_9_7_1_7_5_5
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCamelCase = 1_0_4_4_3_5_5_2_3_4
__UpperCamelCase = 1_2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 349 | 0 |
def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> Dict:
if index == number_of_items:
return 0
snake_case__ : List[str] = 0
snake_case__ : Dict = 0
snake_case__ : Dict = knapsack(__A , __A , __A , __A , index + 1 )
if weights[index] <= max_weight:
snake_case__ : int = values[index] + knapsack(
__A , __A , __A , max_weight - weights[index] , index + 1 )
return max(__A , __A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 143 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Dict:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
| 349 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
snake_case : Dict = logging.get_logger(__name__)
snake_case : Tuple = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class _snake_case ( UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = 'bert'
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ):
super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase )
a :Union[str, Any] = vocab_size
a :Optional[int] = hidden_size
a :Optional[Any] = num_hidden_layers
a :Union[str, Any] = num_attention_heads
a :List[Any] = hidden_act
a :Tuple = intermediate_size
a :Any = hidden_dropout_prob
a :Tuple = attention_probs_dropout_prob
a :List[Any] = max_position_embeddings
a :Optional[Any] = type_vocab_size
a :Any = initializer_range
a :Optional[int] = layer_norm_eps
a :Optional[int] = position_embedding_type
a :Optional[int] = use_cache
a :Tuple = classifier_dropout
class _snake_case ( UpperCAmelCase_ ):
@property
def SCREAMING_SNAKE_CASE__ ( self ):
if self.task == "multiple-choice":
a :Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
a :List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 94 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class UpperCAmelCase__ ( logging.LoggerAdapter):
@staticmethod
def __lowerCamelCase ( lowercase ) -> Dict:
__UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]:
if PartialState._shared_state == {}:
raise RuntimeError(
"""You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" )
__UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase )
__UpperCamelCase = kwargs.pop("""in_order""" , lowercase )
if self.isEnabledFor(lowercase ):
if self._should_log(lowercase ):
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
elif in_order:
__UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
state.wait_for_everyone()
def _lowercase ( __A ,__A = None ):
'''simple docstring'''
if log_level is None:
__UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A )
__UpperCamelCase = logging.getLogger(__A )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__A ,{} )
| 349 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
if isinstance(__A , __A ) and isinstance(__A , __A ):
A : Tuple = len(set_a.intersection(__A ) )
if alternative_union:
A : int = len(__A ) + len(__A )
else:
A : Optional[Any] = len(set_a.union(__A ) )
return intersection / union
if isinstance(__A , (list, tuple) ) and isinstance(__A , (list, tuple) ):
A : Tuple = [element for element in set_a if element in set_b]
if alternative_union:
A : Tuple = len(__A ) + len(__A )
return len(__A ) / union
else:
A : List[str] = set_a + [element for element in set_b if element not in set_a]
return len(__A ) / len(__A )
return len(__A ) / len(__A )
return None
if __name__ == "__main__":
lowercase : List[Any] = {'a', 'b', 'c', 'd', 'e'}
lowercase : List[str] = {'c', 'd', 'e', 'f', 'h', 'i'}
print(jaccard_similarity(set_a, set_b))
| 3 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
a__ : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase__ :
def __init__( self ) -> Any:
__UpperCamelCase = False
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str:
if not self.initialized:
__UpperCamelCase = RagRetriever(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = True
def __lowerCamelCase ( self ) -> Optional[Any]:
self.retriever.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict:
__UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]:
if index is not None and index.is_initialized() and len(lowercase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase )
for worker in self.retrieval_workers
] )
def __lowerCamelCase ( self ) -> Dict:
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) )
else:
__UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any:
return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int:
__UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase )
__UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
__UpperCamelCase = rag_tokenizer.question_encoder
__UpperCamelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCamelCase = """custom"""
__UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase )
else:
__UpperCamelCase = cls._build_index(lowercase )
return cls(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
| 349 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_lowerCamelCase ={
'configuration_roberta_prelayernorm': [
'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP',
'RobertaPreLayerNormConfig',
'RobertaPreLayerNormOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaPreLayerNormForCausalLM',
'RobertaPreLayerNormForMaskedLM',
'RobertaPreLayerNormForMultipleChoice',
'RobertaPreLayerNormForQuestionAnswering',
'RobertaPreLayerNormForSequenceClassification',
'RobertaPreLayerNormForTokenClassification',
'RobertaPreLayerNormModel',
'RobertaPreLayerNormPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaPreLayerNormForCausalLM',
'TFRobertaPreLayerNormForMaskedLM',
'TFRobertaPreLayerNormForMultipleChoice',
'TFRobertaPreLayerNormForQuestionAnswering',
'TFRobertaPreLayerNormForSequenceClassification',
'TFRobertaPreLayerNormForTokenClassification',
'TFRobertaPreLayerNormMainLayer',
'TFRobertaPreLayerNormModel',
'TFRobertaPreLayerNormPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
'FlaxRobertaPreLayerNormForCausalLM',
'FlaxRobertaPreLayerNormForMaskedLM',
'FlaxRobertaPreLayerNormForMultipleChoice',
'FlaxRobertaPreLayerNormForQuestionAnswering',
'FlaxRobertaPreLayerNormForSequenceClassification',
'FlaxRobertaPreLayerNormForTokenClassification',
'FlaxRobertaPreLayerNormModel',
'FlaxRobertaPreLayerNormPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a__ : Any = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': 5_1_2,
'squeezebert/squeezebert-mnli': 5_1_2,
'squeezebert/squeezebert-mnli-headless': 5_1_2,
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = SqueezeBertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple:
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**lowercase )
__UpperCamelCase = do_lower_case
def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple:
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]:
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]:
__UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase )
| 349 | 0 |
from __future__ import annotations
import bisect
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ) -> str:
'''simple docstring'''
if hi < 0:
UpperCAmelCase = len(__A )
while lo < hi:
UpperCAmelCase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
UpperCAmelCase = mid + 1
else:
UpperCAmelCase = mid
return lo
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ) -> Optional[Any]:
'''simple docstring'''
if hi < 0:
UpperCAmelCase = len(__A )
while lo < hi:
UpperCAmelCase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
UpperCAmelCase = mid + 1
else:
UpperCAmelCase = mid
return lo
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ) -> List[Any]:
'''simple docstring'''
sorted_collection.insert(bisect_left(__A , __A , __A , __A ) , __A )
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0 , UpperCamelCase__ = -1 ) -> int:
'''simple docstring'''
sorted_collection.insert(bisect_right(__A , __A , __A , __A ) , __A )
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict:
'''simple docstring'''
UpperCAmelCase = 0
UpperCAmelCase = len(__A ) - 1
while left <= right:
UpperCAmelCase = left + (right - left) // 2
UpperCAmelCase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
UpperCAmelCase = midpoint - 1
else:
UpperCAmelCase = midpoint + 1
return None
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
'''simple docstring'''
UpperCAmelCase = bisect.bisect_left(__A , __A )
if index != len(__A ) and sorted_collection[index] == item:
return index
return None
def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]:
'''simple docstring'''
if right < left:
return None
UpperCAmelCase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(__A , __A , __A , midpoint - 1 )
else:
return binary_search_by_recursion(__A , __A , midpoint + 1 , __A )
if __name__ == "__main__":
__A : Optional[Any] = input("Enter numbers separated by comma:\n").strip()
__A : Any = sorted(int(item) for item in user_input.split(","))
__A : str = int(input("Enter a single number to be found in the list:\n"))
__A : Union[str, Any] = binary_search(collection, target)
if result is None:
print(F'{target} was not found in {collection}.')
else:
print(F'{target} was found at position {result} in {collection}.')
| 273 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a__ : str = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
def __init__( self : Optional[int] , __lowercase : Tuple , __lowercase : Any=None , __lowercase : Dict=True , __lowercase : List[Any]=None , **__lowercase : List[str] ):
'''simple docstring'''
__a = parent
__a = config_class
__a = has_text_modality
__a = kwargs
__a = common_properties
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
__a = (
["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["""vocab_size"""] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(__lowercase , __lowercase ) , msg=F"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(__lowercase ):
try:
setattr(__lowercase , __lowercase , __lowercase )
self.parent.assertEqual(
getattr(__lowercase , __lowercase ) , __lowercase , msg=F"`{name} value {idx} expected, but was {getattr(__lowercase , __lowercase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(__lowercase ):
try:
__a = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(__lowercase , __lowercase ) , __lowercase , msg=F"`{name} value {idx} expected, but was {getattr(__lowercase , __lowercase )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
__a = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , __lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__a = os.path.join(__lowercase , """config.json""" )
config_first.to_json_file(__lowercase )
__a = self.config_class.from_json_file(__lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(__lowercase )
__a = self.config_class.from_pretrained(__lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict )
__a = """test"""
with tempfile.TemporaryDirectory() as tmpdirname:
__a = os.path.join(__lowercase , __lowercase )
config_first.save_pretrained(__lowercase )
__a = self.config_class.from_pretrained(__lowercase , subfolder=__lowercase )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
__a = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
if self.config_class.is_composition:
return
__a = self.config_class()
self.parent.assertIsNotNone(__lowercase )
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
__a = copy.deepcopy(__lowercase )
__a = self.config_class(**__lowercase )
__a = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) )
elif getattr(__lowercase , __lowercase ) != value:
wrong_values.append((key, getattr(__lowercase , __lowercase ), value) )
if len(__lowercase ) > 0:
__a = """\n""".join([F"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(F"The following keys were not properly set in the config:\n{errors}" )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 302 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a__ : Union[str, Any] = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''albert'''
def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any:
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
__UpperCamelCase = vocab_size
__UpperCamelCase = embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_hidden_groups
__UpperCamelCase = num_attention_heads
__UpperCamelCase = inner_group_num
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = classifier_dropout_prob
__UpperCamelCase = position_embedding_type
class UpperCAmelCase__ ( UpperCAmelCase_):
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 0 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
lowercase__ = logging.getLogger(__name__)
@dataclass(frozen=UpperCAmelCase_ )
class __lowerCamelCase :
'''simple docstring'''
a_ : int = 42
a_ : List[str] = 42
a_ : Dict = None
a_ : Any = None
a_ : Tuple = None
@dataclass(frozen=UpperCAmelCase_ )
class __lowerCamelCase :
'''simple docstring'''
a_ : Dict = 42
a_ : Union[str, Any] = None
a_ : List[Any] = None
a_ : Optional[Any] = None
a_ : Optional[int] = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : str = 42
def __init__( self : Optional[Any] , a_ : Any , a_ : str , a_ : Union[str, Any] , a_ : Any = None , a_ : Optional[Any]=False , a_ : List[str] = False , ):
lowerCAmelCase_ : int = hans_processors[task]()
lowerCAmelCase_ : List[str] = os.path.join(
a_ , "cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
lowerCAmelCase_ : Optional[Any] = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = label_list[2], label_list[1]
lowerCAmelCase_ : Union[str, Any] = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase_ : Optional[Any] = cached_features_file + ".lock"
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f'''Loading features from cached file {cached_features_file}''' )
lowerCAmelCase_ : List[Any] = torch.load(a_ )
else:
logger.info(f'''Creating features from dataset file at {data_dir}''' )
lowerCAmelCase_ : Union[str, Any] = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info("Training examples: %s" , len(a_ ) )
lowerCAmelCase_ : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info("Saving features into cached file %s" , a_ )
torch.save(self.features , a_ )
def __len__( self : List[str] ):
return len(self.features )
def __getitem__( self : List[str] , a_ : Dict ):
return self.features[i]
def lowerCamelCase ( self : Any ):
return self.label_list
if is_tf_available():
import tensorflow as tf
class __lowerCamelCase :
'''simple docstring'''
a_ : Dict = 42
def __init__( self : str , a_ : str , a_ : List[Any] , a_ : Any , a_ : List[str] = 1_28 , a_ : List[Any]=False , a_ : Dict = False , ):
lowerCAmelCase_ : Tuple = hans_processors[task]()
lowerCAmelCase_ : List[Any] = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = label_list[2], label_list[1]
lowerCAmelCase_ : int = label_list
lowerCAmelCase_ : Tuple = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
lowerCAmelCase_ : Any = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ):
if ex_index % 1_00_00 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
lowerCAmelCase_ : Optional[int] = tf.data.Dataset.from_generator(
a_ , (
{
"example_id": tf.intaa,
"input_ids": tf.intaa,
"attention_mask": tf.intaa,
"token_type_ids": tf.intaa,
},
tf.intaa,
) , (
{
"example_id": tf.TensorShape([] ),
"input_ids": tf.TensorShape([None, None] ),
"attention_mask": tf.TensorShape([None, None] ),
"token_type_ids": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def lowerCamelCase ( self : Optional[int] ):
return self.dataset
def __len__( self : Tuple ):
return len(self.features )
def __getitem__( self : List[Any] , a_ : Dict ):
return self.features[i]
def lowerCamelCase ( self : Any ):
return self.label_list
class __lowerCamelCase ( UpperCAmelCase_ ):
'''simple docstring'''
def lowerCamelCase ( self : Dict , a_ : Optional[Any] ):
return self._create_examples(self._read_tsv(os.path.join(a_ , "heuristics_train_set.txt" ) ) , "train" )
def lowerCamelCase ( self : Dict , a_ : Union[str, Any] ):
return self._create_examples(self._read_tsv(os.path.join(a_ , "heuristics_evaluation_set.txt" ) ) , "dev" )
def lowerCamelCase ( self : List[str] ):
return ["contradiction", "entailment", "neutral"]
def lowerCamelCase ( self : str , a_ : Dict , a_ : Union[str, Any] ):
lowerCAmelCase_ : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
lowerCAmelCase_ : int = "%s-%s" % (set_type, line[0])
lowerCAmelCase_ : int = line[5]
lowerCAmelCase_ : Optional[Any] = line[6]
lowerCAmelCase_ : str = line[7][2:] if line[7].startswith("ex" ) else line[7]
lowerCAmelCase_ : Dict = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase_ : int = {label: i for i, label in enumerate(__A )}
lowerCAmelCase_ : List[str] = []
for ex_index, example in tqdm.tqdm(enumerate(__A ) , desc="convert examples to features" ):
if ex_index % 10000 == 0:
logger.info("Writing example %d" % (ex_index) )
lowerCAmelCase_ : Any = tokenizer(
example.text_a , example.text_b , add_special_tokens=__A , max_length=__A , padding="max_length" , truncation=__A , return_overflowing_tokens=__A , )
lowerCAmelCase_ : List[Any] = label_map[example.label] if example.label in label_map else 0
lowerCAmelCase_ : str = int(example.pairID )
features.append(InputFeatures(**__A , label=__A , pairID=__A ) )
for i, example in enumerate(examples[:5] ):
logger.info("*** Example ***" )
logger.info(f'''guid: {example}''' )
logger.info(f'''features: {features[i]}''' )
return features
lowercase__ = {
'hans': 3,
}
lowercase__ = {
'hans': HansProcessor,
}
| 241 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _lowercase ( __A ):
'''simple docstring'''
return (data["data"], data["target"])
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__A ,__A )
# Predict target for test data
__UpperCamelCase = xgb.predict(__A )
__UpperCamelCase = predictions.reshape(len(__A ) ,1 )
return predictions
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = fetch_california_housing()
__UpperCamelCase , __UpperCamelCase = data_handling(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(
__A ,__A ,test_size=0.25 ,random_state=1 )
__UpperCamelCase = xgboost(__A ,__A ,__A )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" )
print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 349 | 0 |
import requests
_UpperCamelCase = 'YOUR API KEY'
def lowerCAmelCase__( lowercase : int , lowercase : Optional[Any] = giphy_api_key ) -> List[str]:
__snake_case : Optional[int] = "+".join(query.split() )
__snake_case : Tuple = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}"""
__snake_case : Optional[int] = requests.get(__A ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('''\n'''.join(get_gifs('''space ship''')))
| 326 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder()
__UpperCamelCase = inputs_dict["""input_ids"""]
__UpperCamelCase = input_ids[:1, :]
__UpperCamelCase = inputs_dict["""attention_mask"""][:1, :]
__UpperCamelCase = inputs_dict["""head_mask"""]
__UpperCamelCase = 1
# first forward pass
__UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase = model(lowercase , attention_mask=lowercase )[0]
__UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
__SCREAMING_SNAKE_CASE = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__SCREAMING_SNAKE_CASE = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__SCREAMING_SNAKE_CASE = '''google/pegasus-xsum'''
@cached_property
def __lowerCamelCase ( self ) -> int:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCamelCase ( self , **lowercase ) -> Optional[int]:
__UpperCamelCase = self.translate_src_text(**lowercase )
assert self.expected_text == generated_words
def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]:
__UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" )
__UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , )
__UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )
return generated_words
@slow
def __lowerCamelCase ( self ) -> Dict:
self._assert_generated_batch_equal_expected()
| 349 | 0 |
"""simple docstring"""
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
@slow
@require_torch
def __lowercase ( self : Union[str, Any] ):
lowerCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
lowerCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" )
lowerCAmelCase = bertabert.config.encoder.vocab_size
lowerCAmelCase = tokenizer.sep_token_id
lowerCAmelCase = tokenizer.cls_token_id
lowerCAmelCase = 128
lowerCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
lowerCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
lowerCAmelCase = train_dataset.select(range(32 ) )
lowerCAmelCase = val_dataset.select(range(16 ) )
lowerCAmelCase = 4
def _map_to_encoder_decoder_inputs(lowerCAmelCase : List[str] ):
# Tokenizer will automatically set [BOS] <text> [EOS]
lowerCAmelCase = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase , max_length=512 )
lowerCAmelCase = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase , max_length=128 )
lowerCAmelCase = inputs.input_ids
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = outputs.input_ids
lowerCAmelCase = outputs.input_ids.copy()
lowerCAmelCase = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
lowerCAmelCase = outputs.attention_mask
assert all(len(lowerCAmelCase ) == 512 for x in inputs.input_ids )
assert all(len(lowerCAmelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(lowerCAmelCase : Tuple ):
lowerCAmelCase = pred.label_ids
lowerCAmelCase = pred.predictions
# all unnecessary tokens are removed
lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase )
lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase )
lowerCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase ) )] ) / len(lowerCAmelCase )
return {"accuracy": accuracy}
# map train dataset
lowerCAmelCase = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
lowerCAmelCase = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase , batch_size=lowerCAmelCase , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
lowerCAmelCase = self.get_auto_remove_tmp_dir()
lowerCAmelCase = SeqaSeqTrainingArguments(
output_dir=lowerCAmelCase , per_device_train_batch_size=lowerCAmelCase , per_device_eval_batch_size=lowerCAmelCase , predict_with_generate=lowerCAmelCase , evaluation_strategy="""steps""" , do_train=lowerCAmelCase , do_eval=lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
lowerCAmelCase = SeqaSeqTrainer(
model=lowerCAmelCase , args=lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , tokenizer=lowerCAmelCase , )
# start training
trainer.train()
| 155 |
'''simple docstring'''
import string
def _lowercase ( __A ):
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(__A )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = input("""Encrypted message: """ )
__UpperCamelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 349 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class UpperCamelCase_ (UpperCAmelCase_ ):
__magic_name__ = '''dpr'''
def __init__( self : Tuple , lowerCAmelCase_ : Any=30_522 , lowerCAmelCase_ : Tuple=768 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : Tuple=3_072 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Tuple=512 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : int=0.0_2 , lowerCAmelCase_ : List[Any]=1e-12 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Union[str, Any]="absolute" , lowerCAmelCase_ : List[Any] = 0 , **lowerCAmelCase_ : List[Any] , ) -> int:
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = vocab_size
UpperCAmelCase_ : Tuple = hidden_size
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Optional[int] = num_attention_heads
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : Optional[Any] = type_vocab_size
UpperCAmelCase_ : Dict = initializer_range
UpperCAmelCase_ : Optional[Any] = layer_norm_eps
UpperCAmelCase_ : Optional[int] = projection_dim
UpperCAmelCase_ : Union[str, Any] = position_embedding_type
| 268 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Dict = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''gptj'''
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = n_inner
__UpperCamelCase = rotary_dim
__UpperCamelCase = activation_function
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = attn_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
__UpperCamelCase = bos_token_id
__UpperCamelCase = eos_token_id
super().__init__(
bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]:
super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase )
if not getattr(self._config , """pad_token_id""" , lowercase ):
# TODO: how to do that better?
__UpperCamelCase = 0
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
__UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction="""inputs""" )
__UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_layer
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_head
def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase = super(lowercase , self ).generate_dummy_inputs(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__UpperCamelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers )
]
__UpperCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__UpperCamelCase = ordered_inputs["""attention_mask"""].dtype
__UpperCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
return ordered_inputs
@property
def __lowerCamelCase ( self ) -> int:
return 1_3
| 349 | 0 |
from argparse import ArgumentParser
from . import BaseTransformersCLICommand
def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]:
"""simple docstring"""
return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code )
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
'''simple docstring'''
@staticmethod
def _lowerCAmelCase ( lowerCamelCase__ ):
A : int = parser.add_parser("""download""" )
download_parser.add_argument(
"""--cache-dir""", type=lowerCamelCase__, default=lowerCamelCase__, help="""Path to location to store the models""" )
download_parser.add_argument(
"""--force""", action="""store_true""", help="""Force the model to be download even if already in cache-dir""" )
download_parser.add_argument(
"""--trust-remote-code""", action="""store_true""", help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""", )
download_parser.add_argument("""model""", type=lowerCamelCase__, help="""Name of the model to download""" )
download_parser.set_defaults(func=lowerCamelCase__ )
def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
A : Any = model
A : Optional[Any] = cache
A : int = force
A : Any = trust_remote_code
def _lowerCAmelCase ( self ):
from ..models.auto import AutoModel, AutoTokenizer
AutoModel.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
AutoTokenizer.from_pretrained(
self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
| 116 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a__ : int = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['LayoutLMv3FeatureExtractor']
a__ : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def UpperCamelCase__ ( A__ = "isbn/0140328726" ) -> str:
snake_case__ : Optional[int] = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes
if new_olid.count('/' ) != 1:
snake_case__ : List[str] = F"""{olid} is not a valid Open Library olid"""
raise ValueError(__A )
return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json()
def UpperCamelCase__ ( A__ ) -> Optional[Any]:
snake_case__ : Union[str, Any] = {
'title': 'Title',
'publish_date': 'Publish date',
'authors': 'Authors',
'number_of_pages': 'Number of pages:',
'first_sentence': 'First sentence',
'isbn_10': 'ISBN (10)',
'isbn_13': 'ISBN (13)',
}
snake_case__ : Tuple = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
snake_case__ : Optional[Any] = [
get_openlibrary_data(author['key'] )['name'] for author in data['Authors']
]
snake_case__ : Optional[Any] = data['First sentence']['value']
for key, value in data.items():
if isinstance(__A , __A ):
snake_case__ : str = ', '.join(__A )
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
lowerCAmelCase__ : Tuple = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''')
continue
print(F'''\nSearching Open Library for ISBN: {isbn}...\n''')
try:
lowerCAmelCase__ : str = summarize_book(get_openlibrary_data(F'''isbn/{isbn}'''))
print('''\n'''.join(F'''{key}: {value}''' for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(F'''Sorry, there are no results for ISBN: {isbn}.''')
| 143 |
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = len(__A )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
snake_case : List[Any] = '0.21.0'
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 94 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
a__ : Any = get_logger(__name__)
class UpperCAmelCase__ :
def __init__( self , lowercase = None ) -> List[str]:
__UpperCamelCase = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__UpperCamelCase = Extractor
def __lowerCamelCase ( self , lowercase ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__UpperCamelCase = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def __lowerCamelCase ( self , lowercase , lowercase ) -> bool:
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str:
__UpperCamelCase = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
__UpperCamelCase = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
@abstractmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
...
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
...
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = []
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> int:
with open(lowercase , """rb""" ) as f:
return f.read(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if not magic_number:
__UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
__UpperCamelCase = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
return tarfile.is_tarfile(lowercase )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
__UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
__UpperCamelCase = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" )
else:
yield finfo
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x1F\x8B''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with gzip.open(lowercase , """rb""" ) as gzip_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , """rb""" ) as fp:
__UpperCamelCase = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
__UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , """r""" ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
__UpperCamelCase = zstd.ZstdDecompressor()
with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with bza.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , """r""" ) as archive:
archive.extractall(lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__SCREAMING_SNAKE_CASE = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def __lowerCamelCase ( cls ) -> Union[str, Any]:
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/>
__UpperCamelCase = cls._get_magic_number_max_length()
__UpperCamelCase = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
__UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format
else:
__UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 349 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : Tuple = {
'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json',
'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json',
'kssteven/ibert-roberta-large-mnli': (
'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json'
),
}
class A ( UpperCAmelCase_ ):
__magic_name__ = '''ibert'''
def __init__( self , SCREAMING_SNAKE_CASE=30522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-12 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="none" , **SCREAMING_SNAKE_CASE , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
A : Any = vocab_size
A : int = hidden_size
A : Optional[int] = num_hidden_layers
A : List[str] = num_attention_heads
A : Any = hidden_act
A : Tuple = intermediate_size
A : Optional[Any] = hidden_dropout_prob
A : Optional[Any] = attention_probs_dropout_prob
A : List[str] = max_position_embeddings
A : Tuple = type_vocab_size
A : List[str] = initializer_range
A : int = layer_norm_eps
A : str = position_embedding_type
A : int = quant_mode
A : Optional[Any] = force_dequant
class A ( UpperCAmelCase_ ):
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
A : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Any = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 3 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = FlaxPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = self._prepare_for_class(lowercase , lowercase )
__UpperCamelCase = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = model_class(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCamelCase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase )
__UpperCamelCase = np.ones((1, 1) )
__UpperCamelCase = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase )
__UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences
__UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded
| 349 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_lowerCamelCase =logging.get_logger(__name__)
if is_vision_available():
import PIL
class a_ ( UpperCAmelCase_ ):
"""simple docstring"""
__UpperCAmelCase = ['pixel_values']
def __init__( self : Dict ,snake_case : List[str] = True ,snake_case : List[Any] = None ,snake_case : int = PILImageResampling.BICUBIC ,snake_case : int = True ,snake_case : Optional[Any] = None ,snake_case : Tuple = True ,snake_case : List[Any] = 1 / 255 ,snake_case : Dict = True ,snake_case : Optional[Any] = None ,snake_case : List[Any] = None ,snake_case : Union[str, Any] = True ,**snake_case : Optional[int] ,):
super().__init__(**snake_case )
SCREAMING_SNAKE_CASE =size if size is not None else {'shortest_edge': 224}
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case ,param_name='crop_size' )
SCREAMING_SNAKE_CASE =do_resize
SCREAMING_SNAKE_CASE =size
SCREAMING_SNAKE_CASE =resample
SCREAMING_SNAKE_CASE =do_center_crop
SCREAMING_SNAKE_CASE =crop_size
SCREAMING_SNAKE_CASE =do_rescale
SCREAMING_SNAKE_CASE =rescale_factor
SCREAMING_SNAKE_CASE =do_normalize
SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE =image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE =do_convert_rgb
def _lowerCAmelCase ( self : Dict ,snake_case : List[Any] ,snake_case : Optional[Any] ,snake_case : List[Any] = PILImageResampling.BICUBIC ,snake_case : Union[str, Any] = None ,**snake_case : int ,):
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,default_to_square=snake_case )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
SCREAMING_SNAKE_CASE =get_resize_output_image_size(snake_case ,size=size['shortest_edge'] ,default_to_square=snake_case )
return resize(snake_case ,size=snake_case ,resample=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Tuple ,snake_case : int ,snake_case : Optional[Any] ,snake_case : Dict = None ,**snake_case : Tuple ,):
SCREAMING_SNAKE_CASE =get_size_dict(snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(snake_case ,size=(size['height'], size['width']) ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Optional[int] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[str] = None ,**snake_case : Optional[int] ,):
return rescale(snake_case ,scale=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Any ,snake_case : Dict ,snake_case : Tuple ,snake_case : List[str] ,snake_case : int = None ,**snake_case : Optional[Any] ,):
return normalize(snake_case ,mean=snake_case ,std=snake_case ,data_format=snake_case ,**snake_case )
def _lowerCAmelCase ( self : Any ,snake_case : Dict ,snake_case : Tuple = None ,snake_case : str = None ,snake_case : int = None ,snake_case : str = None ,snake_case : Tuple = None ,snake_case : Tuple = None ,snake_case : Tuple = None ,snake_case : Any = None ,snake_case : Union[str, Any] = None ,snake_case : List[str] = None ,snake_case : Any = None ,snake_case : List[Any] = None ,snake_case : List[Any] = ChannelDimension.FIRST ,**snake_case : Optional[Any] ,):
SCREAMING_SNAKE_CASE =do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE =size if size is not None else self.size
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='size' ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE =resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE =do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE =get_size_dict(snake_case ,param_name='crop_size' ,default_to_square=snake_case )
SCREAMING_SNAKE_CASE =do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE =rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE =do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE =image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE =image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE =make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE =[convert_to_rgb(snake_case ) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE =[to_numpy_array(snake_case ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE =[self.resize(image=snake_case ,size=snake_case ,resample=snake_case ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE =[self.center_crop(image=snake_case ,size=snake_case ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE =[self.rescale(image=snake_case ,scale=snake_case ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE =[self.normalize(image=snake_case ,mean=snake_case ,std=snake_case ) for image in images]
SCREAMING_SNAKE_CASE =[to_channel_dimension_format(snake_case ,snake_case ) for image in images]
SCREAMING_SNAKE_CASE ={'pixel_values': images}
return BatchFeature(data=snake_case ,tensor_type=snake_case )
| 334 |
'''simple docstring'''
import pytest
a__ : List[str] = '__dummy_dataset1__'
a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = dataset_loading_script_name
__UpperCamelCase = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=__A )
__UpperCamelCase = script_dir / f"{script_name}.py"
with open(__A ,"""w""" ) as f:
f.write(__A )
return str(__A )
| 349 | 0 |
import re
import subprocess
import sys
__A : Optional[int] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
__A : str = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode("utf-8").split()
__A : List[str] = '|'.join(sys.argv[1:])
__A : List[str] = re.compile(RF'^({joined_dirs}).*?\.py$')
__A : int = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 273 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
a__ : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = {}
with open(__A ,"""r""" ) as file:
for line_number, line in enumerate(__A ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(__A ,__A ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = """.""".join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if """lm_head""" in full_key else value[0]
a__ : Dict = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _lowercase ( __A ,__A ,__A=None ,__A=None ):
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(__A )[0].split(""".""" )[-2]
__UpperCamelCase = mapped_key.replace("""*""" ,__A )
if "weight_g" in name:
__UpperCamelCase = """weight_g"""
elif "weight_v" in name:
__UpperCamelCase = """weight_v"""
elif "bias" in name:
__UpperCamelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = """weight"""
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(__A ,__A ,__A ,__A ,__A )
else:
set_recursively(__A ,__A ,__A ,__A ,__A )
return is_used
return is_used
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
__A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,)
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A )
if not is_used:
unused_weights.append(__A )
logger.warning(f"Unused weights: {unused_weights}" )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = full_name.split("""conv_layers.""" )[-1]
__UpperCamelCase = name.split(""".""" )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(__A )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(__A )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(__A )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(__A ,"""vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A ,exist_ok=__A )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(__A ,__A )
__UpperCamelCase = WavaVecaCTCTokenizer(
__A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,)
__UpperCamelCase = True if config.feat_extract_norm == """layer""" else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
__UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A )
processor.save_pretrained(__A )
__UpperCamelCase = WavaVecaForCTC(__A )
else:
__UpperCamelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" )
__UpperCamelCase = fairseq.tasks.setup_task(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A )
__UpperCamelCase = model[0].eval()
recursively_load_weights(__A ,__A ,not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
a__ : Optional[int] = parser.parse_args()
a__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 349 | 0 |
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ):
"""simple docstring"""
__a , __a = len(__A ), len(grid[0] )
if (
min(__A , __A ) < 0
or row == row_length
or col == col_length
or (row, col) in visit
or grid[row][col] == 1
):
return 0
if row == row_length - 1 and col == col_length - 1:
return 1
visit.add((row, col) )
__a = 0
count += depth_first_search(__A , row + 1 , __A , __A )
count += depth_first_search(__A , row - 1 , __A , __A )
count += depth_first_search(__A , __A , col + 1 , __A )
count += depth_first_search(__A , __A , col - 1 , __A )
visit.remove((row, col) )
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 302 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class UpperCAmelCase__ :
def __init__( self , lowercase , ) -> Union[str, Any]:
__UpperCamelCase = parent
__UpperCamelCase = 1_3
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = True
__UpperCamelCase = 9_9
__UpperCamelCase = 3_2
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 3_7
__UpperCamelCase = """gelu"""
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 5_1_2
__UpperCamelCase = 1_6
__UpperCamelCase = 2
__UpperCamelCase = 0.02
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = None
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = TFDistilBertModel(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase )
__UpperCamelCase = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForSequenceClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int:
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFDistilBertForMultipleChoice(lowercase )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFDistilBertForTokenClassification(lowercase )
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
__UpperCamelCase = model(lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
__SCREAMING_SNAKE_CASE = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = TFDistilBertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 )
def __lowerCamelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase )
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase )
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase )
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase )
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase )
@slow
def __lowerCamelCase ( self ) -> Tuple:
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
__UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
@slow
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" )
__UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__UpperCamelCase = model(lowercase )[0]
__UpperCamelCase = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowercase )
__UpperCamelCase = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
| 349 | 0 |
"""simple docstring"""
def __lowerCamelCase ( __UpperCamelCase ) -> str:
"""simple docstring"""
lowerCAmelCase_ : Tuple = abs(__A )
lowerCAmelCase_ : Union[str, Any] = 0
while n > 0:
res += n % 10
n //= 10
return res
def __lowerCamelCase ( __UpperCamelCase ) -> Tuple:
"""simple docstring"""
lowerCAmelCase_ : Any = abs(__A )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def __lowerCamelCase ( __UpperCamelCase ) -> List[str]:
"""simple docstring"""
return sum(int(__A ) for c in str(abs(__A ) ) )
def __lowerCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) -> None:
lowerCAmelCase_ : Dict = f'''{func.__name__}({value})'''
lowerCAmelCase_ : List[Any] = timeit(f'''__main__.{call}''' , setup="import __main__" )
print(f'''{call:56} = {func(__A )} -- {timing:.4f} seconds''' )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__A , __A )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 241 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _lowercase ( __A ,__A ):
'''simple docstring'''
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) )
def _lowercase ( __A ,__A ):
'''simple docstring'''
if dataset.ndim != value_array.ndim:
__UpperCamelCase = (
"""Wrong input data's dimensions... """
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
__UpperCamelCase = (
"""Wrong input data's shape... """
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("""Wrong shape""" )
if dataset.dtype != value_array.dtype:
__UpperCamelCase = (
"""Input data have different datatype... """
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(__A )
__UpperCamelCase = []
for value in value_array:
__UpperCamelCase = euclidean(__A ,dataset[0] )
__UpperCamelCase = dataset[0].tolist()
for dataset_value in dataset[1:]:
__UpperCamelCase = euclidean(__A ,__A )
if dist > temp_dist:
__UpperCamelCase = temp_dist
__UpperCamelCase = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _lowercase ( __A ,__A ):
'''simple docstring'''
return np.dot(__A ,__A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
from __future__ import annotations
_UpperCamelCase = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def lowerCAmelCase__( lowercase : List[Any] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : str , lowercase : Union[str, Any] , ) -> Optional[Any]:
__snake_case : List[str] = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__A ) )
] # the reference grid
__snake_case : Any = 1
__snake_case : Any = [
[0 for col in range(len(grid[0] ) )] for row in range(len(__A ) )
] # the action grid
__snake_case : int = init[0]
__snake_case : Dict = init[1]
__snake_case : int = 0
__snake_case : Any = g + heuristic[x][y] # cost from starting cell to destination cell
__snake_case : str = [[f, g, x, y]]
__snake_case : Any = False # flag that is set when search is complete
__snake_case : int = False # flag set if we can't find expand
while not found and not resign:
if len(__A ) == 0:
raise ValueError("Algorithm is unable to find solution" )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
__snake_case : Optional[Any] = cell.pop()
__snake_case : Union[str, Any] = next_cell[2]
__snake_case : Optional[int] = next_cell[3]
__snake_case : Any = next_cell[1]
if x == goal[0] and y == goal[1]:
__snake_case : Any = True
else:
for i in range(len(__A ) ): # to try out different valid actions
__snake_case : Dict = x + DIRECTIONS[i][0]
__snake_case : List[Any] = y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__A ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
__snake_case : Any = g + cost
__snake_case : List[str] = ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
__snake_case : Optional[Any] = 1
__snake_case : List[str] = i
__snake_case : str = []
__snake_case : Union[str, Any] = goal[0]
__snake_case : List[str] = goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
__snake_case : List[str] = x - DIRECTIONS[action[x][y]][0]
__snake_case : List[str] = y - DIRECTIONS[action[x][y]][1]
__snake_case : Any = xa
__snake_case : Tuple = ya
invpath.append([x, y] )
__snake_case : str = []
for i in range(len(__A ) ):
path.append(invpath[len(__A ) - 1 - i] )
return path, action
if __name__ == "__main__":
_UpperCamelCase = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
_UpperCamelCase = [0, 0]
# all coordinates are given in format [y,x]
_UpperCamelCase = [len(grid) - 1, len(grid[0]) - 1]
_UpperCamelCase = 1
# the cost map which pushes the path closer to the goal
_UpperCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
_UpperCamelCase = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
_UpperCamelCase = 99
_UpperCamelCase = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 326 |
'''simple docstring'''
from datetime import datetime
import requests
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url="""
__UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""]
return requests.get(__A ).content
if __name__ == "__main__":
a__ : int = input('Enter Video/IGTV url: ').strip()
a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'''
with open(file_name, 'wb') as fp:
fp.write(download_video(url))
print(f'''Done. Video saved to disk as {file_name}.''')
| 349 | 0 |
"""simple docstring"""
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
a = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
_a = 'AutoTokenizer'
_a = ['tokenizer']
_a = {
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None ):
super().__init__(lowerCAmelCase )
lowerCAmelCase = speaker_embeddings
@classmethod
def __lowercase ( cls : Dict , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]="speaker_embeddings_path.json" , **lowerCAmelCase : List[str] ):
if speaker_embeddings_dict_path is not None:
lowerCAmelCase = get_file_from_repo(
lowerCAmelCase , lowerCAmelCase , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase ) , revision=kwargs.pop("""revision""" , lowerCAmelCase ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(lowerCAmelCase , lowerCAmelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
lowerCAmelCase = None
else:
with open(lowerCAmelCase ) as speaker_embeddings_json:
lowerCAmelCase = json.load(lowerCAmelCase )
else:
lowerCAmelCase = None
lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase , **lowerCAmelCase )
return cls(tokenizer=lowerCAmelCase , speaker_embeddings=lowerCAmelCase )
def __lowercase ( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str="speaker_embeddings_path.json" , lowerCAmelCase : List[str]="speaker_embeddings" , lowerCAmelCase : str = False , **lowerCAmelCase : Any , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(lowerCAmelCase , lowerCAmelCase , """v2""" ) , exist_ok=lowerCAmelCase )
lowerCAmelCase = {}
lowerCAmelCase = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowerCAmelCase = self._load_voice_preset(lowerCAmelCase )
lowerCAmelCase = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , lowerCAmelCase , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=lowerCAmelCase , )
lowerCAmelCase = os.path.join(lowerCAmelCase , f'''{prompt_key}_{key}.npy''' )
lowerCAmelCase = tmp_dict
with open(os.path.join(lowerCAmelCase , lowerCAmelCase ) , """w""" ) as fp:
json.dump(lowerCAmelCase , lowerCAmelCase )
super().save_pretrained(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase )
def __lowercase ( self : Optional[int] , lowerCAmelCase : Optional[Any] = None , **lowerCAmelCase : Optional[Any] ):
lowerCAmelCase = self.speaker_embeddings[voice_preset]
lowerCAmelCase = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
lowerCAmelCase = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase ) , revision=kwargs.pop("""revision""" , lowerCAmelCase ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.''' )
lowerCAmelCase = np.load(lowerCAmelCase )
return voice_preset_dict
def __lowercase ( self : int , lowerCAmelCase : str = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self : List[Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]="pt" , lowerCAmelCase : List[str]=256 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=False , **lowerCAmelCase : Optional[Any] , ):
if voice_preset is not None and not isinstance(lowerCAmelCase , lowerCAmelCase ):
if (
isinstance(lowerCAmelCase , lowerCAmelCase )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowerCAmelCase = self._load_voice_preset(lowerCAmelCase )
else:
if isinstance(lowerCAmelCase , lowerCAmelCase ) and not voice_preset.endswith(""".npz""" ):
lowerCAmelCase = voice_preset + """.npz"""
lowerCAmelCase = np.load(lowerCAmelCase )
if voice_preset is not None:
self._validate_voice_preset_dict(lowerCAmelCase , **lowerCAmelCase )
lowerCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
lowerCAmelCase = self.tokenizer(
lowerCAmelCase , return_tensors=lowerCAmelCase , padding="""max_length""" , max_length=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , add_special_tokens=lowerCAmelCase , **lowerCAmelCase , )
if voice_preset is not None:
lowerCAmelCase = voice_preset
return encoded_text
| 155 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _lowercase ( __A ,__A=False ):
'''simple docstring'''
try:
__UpperCamelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
__UpperCamelCase = default
else:
# KEY is set, convert it to True or False.
try:
__UpperCamelCase = strtobool(__A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no." )
return _value
a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False)
a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False)
a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True)
a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
a__ : List[Any] = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
a__ : str = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
a__ : str = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
a__ : Tuple = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _lowercase ( __A ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires faiss""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires regex""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
__UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.TF_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires JAX""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
__UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
def _require_spacy_model(__A ):
try:
import spacy # noqa F401
spacy.load(__A )
except ImportError:
return unittest.skip("""test requires spacy""" )(__A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A )
else:
return test_case
return _require_spacy_model
def _lowercase ( __A ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(__A )
else:
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
__UpperCamelCase = unittest.skip("""test is slow""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
__UpperCamelCase = unittest.skip("""test is local""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
__UpperCamelCase = unittest.skip("""test is packaged""" )(__A )
return test_case
def _lowercase ( __A ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
__UpperCamelCase = unittest.skip("""test requires remote""" )(__A )
return test_case
def _lowercase ( *__A ):
'''simple docstring'''
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(__A ) and name.startswith("""test""" ):
for decorator in decorators:
__UpperCamelCase = decorator(__A )
setattr(cls ,__A ,__A )
return cls
return decorate
class UpperCAmelCase__ ( UpperCAmelCase_):
pass
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 1
__SCREAMING_SNAKE_CASE = 2
@contextmanager
def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ):
'''simple docstring'''
__UpperCamelCase = requests.Session().request
def timeout_request(__A ,__A ,__A ,**__A ):
# Change the url to an invalid url so that the connection hangs
__UpperCamelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
__UpperCamelCase = timeout
try:
return online_request(__A ,__A ,**__A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
__UpperCamelCase = url
__UpperCamelCase = e.args[0]
__UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),)
__UpperCamelCase = (max_retry_error,)
raise
def raise_connection_error(__A ,__A ,**__A ):
raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" ,__A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" ,__A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _lowercase ( *__A ,**__A ):
'''simple docstring'''
__UpperCamelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir:
try:
os.chdir(__A )
yield
finally:
os.chdir(__A )
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _lowercase ( ):
'''simple docstring'''
import gc
gc.collect()
__UpperCamelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _lowercase ( __A ,__A ):
'''simple docstring'''
return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist()
def _lowercase ( __A ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__A ,*__A ,**__A ):
try:
return func(*__A ,**__A )
except HTTPError as err:
if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ):
pytest.xfail(str(__A ) )
raise err
return decorator.decorator(_wrapper ,__A )
class UpperCAmelCase__ :
def __init__( self , lowercase , lowercase , lowercase ) -> str:
__UpperCamelCase = returncode
__UpperCamelCase = stdout
__UpperCamelCase = stderr
async def _lowercase ( __A ,__A ):
'''simple docstring'''
while True:
__UpperCamelCase = await stream.readline()
if line:
callback(__A )
else:
break
async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ ,""" """.join(__A ) )
__UpperCamelCase = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
__UpperCamelCase = []
__UpperCamelCase = []
def tee(__A ,__A ,__A ,__A="" ):
__UpperCamelCase = line.decode("""utf-8""" ).rstrip()
sink.append(__A )
if not quiet:
print(__A ,__A ,file=__A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ),
_read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ),
] ,timeout=__A ,)
return _RunOutput(await p.wait() ,__A ,__A )
def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ):
'''simple docstring'''
__UpperCamelCase = asyncio.get_event_loop()
__UpperCamelCase = loop.run_until_complete(
_stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) )
__UpperCamelCase = """ """.join(__A )
if result.returncode > 0:
__UpperCamelCase = """\n""".join(result.stderr )
raise RuntimeError(
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
f"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(f"'{cmd_str}' produced no output." )
return result
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" )
__UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M )
return int(__A )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = 29_500
__UpperCamelCase = pytest_xdist_worker_id()
return port + uniq_delta
| 349 | 0 |
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {'vocab_file': 'vocab.txt'}
lowerCamelCase_ = {
'vocab_file': {
'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt',
},
}
lowerCamelCase_ = {
'openbmb/cpm-ant-10b': 1024,
}
def snake_case ( A__ ):
UpperCAmelCase_ : int = collections.OrderedDict()
with open(__A ,"r" ,encoding="utf-8" ) as reader:
UpperCAmelCase_ : List[Any] = reader.readlines()
for index, token in enumerate(__A ):
UpperCAmelCase_ : List[Any] = token.rstrip("\n" )
UpperCAmelCase_ : Dict = index
return vocab
class UpperCamelCase_ (UpperCAmelCase_ ):
def __init__( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple="<unk>" , lowerCAmelCase_ : Union[str, Any]=200 ) -> Dict:
UpperCAmelCase_ : Dict = vocab
UpperCAmelCase_ : Optional[int] = unk_token
UpperCAmelCase_ : List[str] = max_input_chars_per_word
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = list(lowerCAmelCase_ )
if len(lowerCAmelCase_ ) > self.max_input_chars_per_word:
return [self.unk_token]
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[Any] = []
while start < len(lowerCAmelCase_ ):
UpperCAmelCase_ : List[str] = len(lowerCAmelCase_ )
UpperCAmelCase_ : List[str] = None
while start < end:
UpperCAmelCase_ : List[str] = "".join(chars[start:end] )
if substr in self.vocab:
UpperCAmelCase_ : Dict = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = end
return sub_tokens
class UpperCamelCase_ (UpperCAmelCase_ ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ['''input_ids''', '''attention_mask''']
__magic_name__ = False
def __init__( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]="<d>" , lowerCAmelCase_ : Optional[Any]="</d>" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : str="<unk>" , lowerCAmelCase_ : Any="</n>" , lowerCAmelCase_ : Optional[Any]="</_>" , lowerCAmelCase_ : Tuple="left" , **lowerCAmelCase_ : Union[str, Any] , ) -> Tuple:
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=lowerCAmelCase_ , eod_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , line_token=lowerCAmelCase_ , space_token=lowerCAmelCase_ , padding_side=lowerCAmelCase_ , **lowerCAmelCase_ , )
UpperCAmelCase_ : Union[str, Any] = bod_token
UpperCAmelCase_ : Tuple = eod_token
UpperCAmelCase_ : Optional[Any] = load_vocab(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = self.encoder[space_token]
UpperCAmelCase_ : List[str] = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
UpperCAmelCase_ : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase_ : x[1] ) )
UpperCAmelCase_ : Any = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : List[str] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
return self.encoder[self.bod_token]
@property
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
return self.encoder[self.eod_token]
@property
def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
return self.encoder["\n"]
@property
def _SCREAMING_SNAKE_CASE ( self : int ) -> int:
return len(self.encoder )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
return dict(self.encoder , **self.added_tokens_encoder )
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Dict ) -> List[Any]:
UpperCAmelCase_ : Dict = []
for x in jieba.cut(lowerCAmelCase_ , cut_all=lowerCAmelCase_ ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase_ ) )
return output_tokens
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = [i for i in token_ids if i >= 0]
UpperCAmelCase_ : str = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(lowerCAmelCase_ , **lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> int:
return token in self.encoder
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str ) -> str:
return "".join(lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Optional[int] ) -> Dict:
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] ) -> str:
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] = None ) -> Tuple[str]:
if os.path.isdir(lowerCAmelCase_ ):
UpperCAmelCase_ : Optional[Any] = os.path.join(
lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
UpperCAmelCase_ : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory
UpperCAmelCase_ : Dict = 0
if " " in self.encoder:
UpperCAmelCase_ : List[Any] = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
UpperCAmelCase_ : Dict = self.encoder["\n"]
del self.encoder["\n"]
UpperCAmelCase_ : str = collections.OrderedDict(sorted(self.encoder.items() , key=lambda lowerCAmelCase_ : x[1] ) )
with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
" Please check that the vocabulary is not corrupted!" )
UpperCAmelCase_ : Optional[int] = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] = None ) -> List[int]:
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : List[str] = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ ))
return [1] + ([0] * len(lowerCAmelCase_ ))
| 268 |
'''simple docstring'''
import re
def _lowercase ( __A ):
'''simple docstring'''
return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = split_input(str_ )
return "".join(
["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
try:
__UpperCamelCase = split_input(__A )
if upper:
__UpperCamelCase = """""".join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__UpperCamelCase = """""".join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def _lowercase ( __A ):
'''simple docstring'''
return to_simple_case(__A )
def _lowercase ( __A ):
'''simple docstring'''
try:
__UpperCamelCase = to_simple_case(__A )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""_""" )
def _lowercase ( __A ,__A ):
'''simple docstring'''
return to_complex_case(__A ,__A ,"""-""" )
if __name__ == "__main__":
__import__('doctest').testmod()
| 349 | 0 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self, **lowerCamelCase__ ):
super().__init__(**lowerCamelCase__ )
requires_backends(self, """vision""" )
requires_backends(self, """torch""" )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
self.check_model_type(lowerCamelCase__ )
def _lowerCAmelCase ( self, **lowerCamelCase__ ):
A : int = {}
A : Any = {}
A : Optional[Any] = {}
# preprocess args
if "points_per_batch" in kwargs:
A : Dict = kwargs["""points_per_batch"""]
if "points_per_crop" in kwargs:
A : Union[str, Any] = kwargs["""points_per_crop"""]
if "crops_n_layers" in kwargs:
A : Dict = kwargs["""crops_n_layers"""]
if "crop_overlap_ratio" in kwargs:
A : Optional[int] = kwargs["""crop_overlap_ratio"""]
if "crop_n_points_downscale_factor" in kwargs:
A : Dict = kwargs["""crop_n_points_downscale_factor"""]
# postprocess args
if "pred_iou_thresh" in kwargs:
A : List[Any] = kwargs["""pred_iou_thresh"""]
if "stability_score_offset" in kwargs:
A : Optional[int] = kwargs["""stability_score_offset"""]
if "mask_threshold" in kwargs:
A : List[Any] = kwargs["""mask_threshold"""]
if "stability_score_thresh" in kwargs:
A : List[str] = kwargs["""stability_score_thresh"""]
if "crops_nms_thresh" in kwargs:
A : List[str] = kwargs["""crops_nms_thresh"""]
if "output_rle_mask" in kwargs:
A : Optional[Any] = kwargs["""output_rle_mask"""]
if "output_bboxes_mask" in kwargs:
A : Any = kwargs["""output_bboxes_mask"""]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self, lowerCamelCase__, *lowerCamelCase__, lowerCamelCase__=None, lowerCamelCase__=None, **lowerCamelCase__ ):
return super().__call__(lowerCamelCase__, *lowerCamelCase__, num_workers=lowerCamelCase__, batch_size=lowerCamelCase__, **lowerCamelCase__ )
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=64, lowerCamelCase__ = 0, lowerCamelCase__ = 512 / 1500, lowerCamelCase__ = 32, lowerCamelCase__ = 1, ):
A : Any = load_image(lowerCamelCase__ )
A : List[Any] = self.image_processor.size["""longest_edge"""]
A , A , A , A : Dict = self.image_processor.generate_crop_boxes(
lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
A : Optional[Any] = self.image_processor(images=lowerCamelCase__, return_tensors="""pt""" )
with self.device_placement():
if self.framework == "pt":
A : Optional[Any] = self.get_inference_context()
with inference_context():
A : List[str] = self._ensure_tensor_on_device(lowerCamelCase__, device=self.device )
A : List[Any] = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) )
A : Dict = image_embeddings
A : Any = grid_points.shape[1]
A : int = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"""Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """
"""To return all points at once, set points_per_batch to None""" )
for i in range(0, lowerCamelCase__, lowerCamelCase__ ):
A : Optional[int] = grid_points[:, i : i + points_per_batch, :, :]
A : Optional[Any] = input_labels[:, i : i + points_per_batch]
A : Optional[int] = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=0.88, lowerCamelCase__=0.95, lowerCamelCase__=0, lowerCamelCase__=1, ):
A : Union[str, Any] = model_inputs.pop("""input_boxes""" )
A : int = model_inputs.pop("""is_last""" )
A : List[str] = model_inputs.pop("""original_sizes""" ).tolist()
A : List[str] = model_inputs.pop("""reshaped_input_sizes""" ).tolist()
A : List[str] = self.model(**lowerCamelCase__ )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
A : Tuple = model_outputs["""pred_masks"""]
A : Optional[Any] = self.image_processor.post_process_masks(
lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, binarize=lowerCamelCase__ )
A : List[Any] = model_outputs["""iou_scores"""]
A , A , A : Optional[Any] = self.image_processor.filter_masks(
masks[0], iou_scores[0], original_sizes[0], input_boxes[0], lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=0.7, ):
A : Dict = []
A : Dict = []
A : str = []
for model_output in model_outputs:
all_scores.append(model_output.pop("""iou_scores""" ) )
all_masks.extend(model_output.pop("""masks""" ) )
all_boxes.append(model_output.pop("""boxes""" ) )
A : int = torch.cat(lowerCamelCase__ )
A : Dict = torch.cat(lowerCamelCase__ )
A , A , A , A : Tuple = self.image_processor.post_process_for_mask_generation(
lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
A : str = defaultdict(lowerCamelCase__ )
for output in model_outputs:
for k, v in output.items():
extra[k].append(lowerCamelCase__ )
A : str = {}
if output_rle_mask:
A : Tuple = rle_mask
if output_bboxes_mask:
A : Optional[int] = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 116 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __lowerCamelCase ( self ) -> int:
__UpperCamelCase = 1
__UpperCamelCase = 3
__UpperCamelCase = (3_2, 3_2)
__UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase )
return image
@property
def __lowerCamelCase ( self ) -> Dict:
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
return model
@property
def __lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def __lowerCamelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowercase )
@property
def __lowerCamelCase ( self ) -> Tuple:
def extract(*lowercase , **lowercase ):
class UpperCAmelCase__ :
def __init__( self ) -> Tuple:
__UpperCamelCase = torch.ones([0] )
def __lowerCamelCase ( self , lowercase ) -> List[str]:
self.pixel_values.to(lowercase )
return self
return Out()
return extract
def __lowerCamelCase ( self ) -> Any:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
__UpperCamelCase = output.images
__UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0]
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
__UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Union[str, Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase )
assert isinstance(lowercase , lowercase )
assert isinstance(pipe.scheduler , lowercase )
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowercase )
__UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
__UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __lowerCamelCase ( self ) -> Optional[int]:
__UpperCamelCase = self.dummy_cond_unet
__UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase )
__UpperCamelCase = self.dummy_vae
__UpperCamelCase = self.dummy_text_encoder
__UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
__UpperCamelCase = unet.half()
__UpperCamelCase = vae.half()
__UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
__UpperCamelCase = StableDiffusionPipeline(
unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """A painting of a squirrel eating a burger"""
__UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class UpperCAmelCase__ ( unittest.TestCase):
def __lowerCamelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
__UpperCamelCase = 4_0_0_3_6_6_0_3_4_6
__UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase )
__UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity"""
__UpperCamelCase = 2_7_3_4_9_7_1_7_5_5
__UpperCamelCase = 7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
__UpperCamelCase = sd_pipe.to(lowercase )
sd_pipe.set_progress_bar_config(disable=lowercase )
__UpperCamelCase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
__UpperCamelCase = 1_0_4_4_3_5_5_2_3_4
__UpperCamelCase = 1_2
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
__UpperCamelCase = torch.manual_seed(lowercase )
__UpperCamelCase = sd_pipe(
[prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
__UpperCamelCase = output.images
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 349 | 0 |
from __future__ import annotations
class __snake_case :
def __init__( self , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
snake_case__ , snake_case__ : Optional[Any] = text, pattern
snake_case__ , snake_case__ : Any = len(__UpperCamelCase ), len(__UpperCamelCase )
def __a ( self , __UpperCamelCase ) -> int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def __a ( self , __UpperCamelCase ) -> int:
'''simple docstring'''
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def __a ( self ) -> list[int]:
'''simple docstring'''
snake_case__ : int = []
for i in range(self.textLen - self.patLen + 1 ):
snake_case__ : Dict = self.mismatch_in_text(__UpperCamelCase )
if mismatch_index == -1:
positions.append(__UpperCamelCase )
else:
snake_case__ : Optional[int] = self.match_in_pattern(self.text[mismatch_index] )
snake_case__ : Tuple = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
lowerCAmelCase__ : Tuple = 'ABAABA'
lowerCAmelCase__ : Any = 'AB'
lowerCAmelCase__ : Tuple = BoyerMooreSearch(text, pattern)
lowerCAmelCase__ : Any = bms.bad_character_heuristic()
if len(positions) == 0:
print('''No match found''')
else:
print('''Pattern found in following positions: ''')
print(positions)
| 143 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> str:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Dict:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> List[Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> int:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Optional[int]:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]:
requires_backends(cls , ["""flax"""] )
class UpperCAmelCase__ ( metaclass=UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = ['''flax''']
def __init__( self , *lowercase , **lowercase ) -> Any:
requires_backends(self , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple:
requires_backends(cls , ["""flax"""] )
@classmethod
def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]:
requires_backends(cls , ["""flax"""] )
| 349 | 0 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class _snake_case ( UpperCAmelCase_ ):
def __get__( self , _lowerCamelCase , _lowerCamelCase=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError('''unreadable attribute''' )
a :Union[str, Any] = '''__cached_''' + self.fget.__name__
a :int = getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if cached is None:
a :Union[str, Any] = self.fget(_lowerCamelCase )
setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return cached
def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] ):
"""simple docstring"""
a :List[Any] = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(F'''invalid truth value {val!r}''' )
def __lowerCamelCase ( UpperCAmelCase_ : str ):
"""simple docstring"""
if is_torch_fx_proxy(__A ):
return True
if is_torch_available():
import torch
if isinstance(__A , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(__A , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(__A , (jnp.ndarray, Tracer) ):
return True
return isinstance(__A , np.ndarray )
def __lowerCamelCase ( UpperCAmelCase_ : Tuple ):
"""simple docstring"""
return isinstance(__A , np.ndarray )
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ):
"""simple docstring"""
return _is_numpy(__A )
def __lowerCamelCase ( UpperCAmelCase_ : Dict ):
"""simple docstring"""
import torch
return isinstance(__A , torch.Tensor )
def __lowerCamelCase ( UpperCAmelCase_ : List[str] ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch(__A )
def __lowerCamelCase ( UpperCAmelCase_ : str ):
"""simple docstring"""
import torch
return isinstance(__A , torch.device )
def __lowerCamelCase ( UpperCAmelCase_ : Tuple ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch_device(__A )
def __lowerCamelCase ( UpperCAmelCase_ : Any ):
"""simple docstring"""
import torch
if isinstance(__A , __A ):
if hasattr(__A , __A ):
a :str = getattr(__A , __A )
else:
return False
return isinstance(__A , torch.dtype )
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch_dtype(__A )
def __lowerCamelCase ( UpperCAmelCase_ : int ):
"""simple docstring"""
import tensorflow as tf
return isinstance(__A , tf.Tensor )
def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
return False if not is_tf_available() else _is_tensorflow(__A )
def __lowerCamelCase ( UpperCAmelCase_ : Any ):
"""simple docstring"""
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(__A , '''is_symbolic_tensor''' ):
return tf.is_symbolic_tensor(__A )
return type(__A ) == tf.Tensor
def __lowerCamelCase ( UpperCAmelCase_ : str ):
"""simple docstring"""
return False if not is_tf_available() else _is_tf_symbolic_tensor(__A )
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ):
"""simple docstring"""
import jax.numpy as jnp # noqa: F811
return isinstance(__A , jnp.ndarray )
def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] ):
"""simple docstring"""
return False if not is_flax_available() else _is_jax(__A )
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] ):
"""simple docstring"""
if isinstance(__A , (dict, UserDict) ):
return {k: to_py_obj(__A ) for k, v in obj.items()}
elif isinstance(__A , (list, tuple) ):
return [to_py_obj(__A ) for o in obj]
elif is_tf_tensor(__A ):
return obj.numpy().tolist()
elif is_torch_tensor(__A ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(__A ):
return np.asarray(__A ).tolist()
elif isinstance(__A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] ):
"""simple docstring"""
if isinstance(__A , (dict, UserDict) ):
return {k: to_numpy(__A ) for k, v in obj.items()}
elif isinstance(__A , (list, tuple) ):
return np.array(__A )
elif is_tf_tensor(__A ):
return obj.numpy()
elif is_torch_tensor(__A ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(__A ):
return np.asarray(__A )
else:
return obj
class _snake_case ( UpperCAmelCase_ ):
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = fields(self )
# Safety and consistency checks
if not len(_lowerCamelCase ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
a :Tuple = getattr(self , class_fields[0].name )
a :Union[str, Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(_lowerCamelCase ):
if isinstance(_lowerCamelCase , _lowerCamelCase ):
a :Union[str, Any] = first_field.items()
a :Optional[int] = True
else:
try:
a :str = iter(_lowerCamelCase )
a :Any = True
except TypeError:
a :str = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(_lowerCamelCase ):
if (
not isinstance(_lowerCamelCase , (list, tuple) )
or not len(_lowerCamelCase ) == 2
or not isinstance(element[0] , _lowerCamelCase )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
a :List[Any] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
a :str = element[1]
elif first_field is not None:
a :Optional[Any] = first_field
else:
for field in class_fields:
a :str = getattr(self , field.name )
if v is not None:
a :Any = v
def __delitem__( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ):
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self , _lowerCamelCase ):
if isinstance(_lowerCamelCase , _lowerCamelCase ):
a :Tuple = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , _lowerCamelCase , _lowerCamelCase ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(_lowerCamelCase , _lowerCamelCase )
super().__setattr__(_lowerCamelCase , _lowerCamelCase )
def __setitem__( self , _lowerCamelCase , _lowerCamelCase ):
# Will raise a KeyException if needed
super().__setitem__(_lowerCamelCase , _lowerCamelCase )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(_lowerCamelCase , _lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
return tuple(self[k] for k in self.keys() )
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase ):
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class _snake_case ( UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = 'longest'
SCREAMING_SNAKE_CASE__ = 'max_length'
SCREAMING_SNAKE_CASE__ = 'do_not_pad'
class _snake_case ( UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = 'pt'
SCREAMING_SNAKE_CASE__ = 'tf'
SCREAMING_SNAKE_CASE__ = 'np'
SCREAMING_SNAKE_CASE__ = 'jax'
class _snake_case :
def __init__( self , _lowerCamelCase ):
a :Optional[Any] = context_managers
a :str = ExitStack()
def __enter__( self ):
for context_manager in self.context_managers:
self.stack.enter_context(_lowerCamelCase )
def __exit__( self , *_lowerCamelCase , **_lowerCamelCase ):
self.stack.__exit__(*_lowerCamelCase , **_lowerCamelCase )
def __lowerCamelCase ( UpperCAmelCase_ : int ):
"""simple docstring"""
a :Tuple = infer_framework(__A )
if framework == "tf":
a :Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
a :Optional[int] = inspect.signature(model_class.forward ) # PyTorch models
else:
a :Tuple = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] ):
"""simple docstring"""
a :int = model_class.__name__
a :Tuple = infer_framework(__A )
if framework == "tf":
a :List[Any] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
a :Optional[int] = inspect.signature(model_class.forward ) # PyTorch models
else:
a :Tuple = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] = "" , UpperCAmelCase_ : str = "." ):
"""simple docstring"""
def _flatten_dict(UpperCAmelCase_ : str , UpperCAmelCase_ : Dict="" , UpperCAmelCase_ : Any="." ):
for k, v in d.items():
a :Any = str(__A ) + delimiter + str(__A ) if parent_key else k
if v and isinstance(__A , __A ):
yield from flatten_dict(__A , __A , delimiter=__A ).items()
else:
yield key, v
return dict(_flatten_dict(__A , __A , __A ) )
@contextmanager
def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] = False ):
"""simple docstring"""
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def __lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict=None ):
"""simple docstring"""
if is_numpy_array(__A ):
return np.transpose(__A , axes=__A )
elif is_torch_tensor(__A ):
return array.T if axes is None else array.permute(*__A )
elif is_tf_tensor(__A ):
import tensorflow as tf
return tf.transpose(__A , perm=__A )
elif is_jax_tensor(__A ):
return jnp.transpose(__A , axes=__A )
else:
raise ValueError(F'''Type not supported for transpose: {type(__A )}.''' )
def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ):
"""simple docstring"""
if is_numpy_array(__A ):
return np.reshape(__A , __A )
elif is_torch_tensor(__A ):
return array.reshape(*__A )
elif is_tf_tensor(__A ):
import tensorflow as tf
return tf.reshape(__A , __A )
elif is_jax_tensor(__A ):
return jnp.reshape(__A , __A )
else:
raise ValueError(F'''Type not supported for reshape: {type(__A )}.''' )
def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple=None ):
"""simple docstring"""
if is_numpy_array(__A ):
return np.squeeze(__A , axis=__A )
elif is_torch_tensor(__A ):
return array.squeeze() if axis is None else array.squeeze(dim=__A )
elif is_tf_tensor(__A ):
import tensorflow as tf
return tf.squeeze(__A , axis=__A )
elif is_jax_tensor(__A ):
return jnp.squeeze(__A , axis=__A )
else:
raise ValueError(F'''Type not supported for squeeze: {type(__A )}.''' )
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
if is_numpy_array(__A ):
return np.expand_dims(__A , __A )
elif is_torch_tensor(__A ):
return array.unsqueeze(dim=__A )
elif is_tf_tensor(__A ):
import tensorflow as tf
return tf.expand_dims(__A , axis=__A )
elif is_jax_tensor(__A ):
return jnp.expand_dims(__A , axis=__A )
else:
raise ValueError(F'''Type not supported for expand_dims: {type(__A )}.''' )
def __lowerCamelCase ( UpperCAmelCase_ : Any ):
"""simple docstring"""
if is_numpy_array(__A ):
return np.size(__A )
elif is_torch_tensor(__A ):
return array.numel()
elif is_tf_tensor(__A ):
import tensorflow as tf
return tf.size(__A )
elif is_jax_tensor(__A ):
return array.size
else:
raise ValueError(F'''Type not supported for expand_dims: {type(__A )}.''' )
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple ):
"""simple docstring"""
for key, value in auto_map.items():
if isinstance(__A , (tuple, list) ):
a :Any = [F'''{repo_id}--{v}''' if (v is not None and '''--''' not in v) else v for v in value]
elif value is not None and "--" not in value:
a :Union[str, Any] = F'''{repo_id}--{value}'''
return auto_map
def __lowerCamelCase ( UpperCAmelCase_ : List[Any] ):
"""simple docstring"""
for base_class in inspect.getmro(__A ):
a :Optional[int] = base_class.__module__
a :str = base_class.__name__
if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('''torch''' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(F'''Could not infer framework from class {model_class}.''' )
| 94 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class UpperCAmelCase__ ( logging.LoggerAdapter):
@staticmethod
def __lowerCamelCase ( lowercase ) -> Dict:
__UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]:
if PartialState._shared_state == {}:
raise RuntimeError(
"""You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" )
__UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase )
__UpperCamelCase = kwargs.pop("""in_order""" , lowercase )
if self.isEnabledFor(lowercase ):
if self._should_log(lowercase ):
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
elif in_order:
__UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase )
self.logger.log(lowercase , lowercase , *lowercase , **lowercase )
state.wait_for_everyone()
def _lowercase ( __A ,__A = None ):
'''simple docstring'''
if log_level is None:
__UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A )
__UpperCamelCase = logging.getLogger(__A )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(__A ,{} )
| 349 | 0 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=14 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=0.02 , ) -> Optional[int]:
"""simple docstring"""
A : Dict = parent
A : int = batch_size
A : Dict = seq_length
A : Optional[int] = is_training
A : Tuple = use_input_mask
A : Union[str, Any] = use_token_type_ids
A : Optional[int] = use_labels
A : Tuple = vocab_size
A : Dict = hidden_size
A : str = rotary_dim
A : str = num_hidden_layers
A : Any = num_attention_heads
A : Union[str, Any] = intermediate_size
A : Dict = hidden_act
A : str = hidden_dropout_prob
A : List[str] = attention_probs_dropout_prob
A : List[str] = max_position_embeddings
A : str = initializer_range
A : Optional[Any] = None
A : List[Any] = vocab_size - 1
A : Tuple = vocab_size - 1
A : Optional[Any] = vocab_size - 1
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict = None
if self.use_input_mask:
A : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A : Optional[Any] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : List[Any] = self.prepare_config_and_inputs()
A, A, A : Optional[int] = config_and_inputs
A : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
A : Tuple = 20
A : Optional[Any] = model_class_name(SCREAMING_SNAKE_CASE )
A : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE )
A : Optional[int] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
A : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
A : Optional[int] = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , )
A : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
A : List[str] = model(
input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE , )
A : int = model(SCREAMING_SNAKE_CASE )
A : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
A : Dict = 20
A : int = model_class_name(SCREAMING_SNAKE_CASE )
A : Dict = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
A : Optional[Any] = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE )
A : List[str] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
A : Dict = model(
input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , )
A : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
A : Dict = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE , position_ids=SCREAMING_SNAKE_CASE , )
A : int = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE )
A : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__magic_name__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__magic_name__ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def __lowerCAmelCase ( self ) -> int:
"""simple docstring"""
A : Any = FlaxGPTJModelTester(self )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
A, A, A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
A, A, A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@tooslow
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : str = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
A : Optional[int] = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE )
A : int = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
A : str = False
A : Tuple = model.config.eos_token_id
A : str = jax.jit(model.generate )
A : Union[str, Any] = jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
A : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )
A : List[Any] = [
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@is_pt_flax_cross_test
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A, A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
A : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
A : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning
A : Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A, A : Union[str, Any] = pt_inputs['''input_ids'''].shape
A : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ):
A : int = 0
A : Any = 1
A : Optional[int] = 0
A : Any = 1
A : Dict = pt_model_class(SCREAMING_SNAKE_CASE ).eval()
A : Any = model_class(SCREAMING_SNAKE_CASE , dtype=jnp.floataa )
A : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE )
A : Dict = fx_state
with torch.no_grad():
A : Dict = pt_model(**SCREAMING_SNAKE_CASE ).to_tuple()
A : Union[str, Any] = fx_model(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE )
A : List[Any] = model_class.from_pretrained(SCREAMING_SNAKE_CASE , from_pt=SCREAMING_SNAKE_CASE )
A : str = fx_model_loaded(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A, A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
A : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
A : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning
A : List[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Optional[int] = pt_model_class(SCREAMING_SNAKE_CASE ).eval()
A : Optional[int] = model_class(SCREAMING_SNAKE_CASE , dtype=jnp.floataa )
A : Optional[int] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , fx_model.params )
A, A : List[Any] = pt_inputs['''input_ids'''].shape
A : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ):
A : Any = 0
A : int = 1
A : Optional[int] = 0
A : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
A : Tuple = pt_model(**SCREAMING_SNAKE_CASE ).to_tuple()
A : Optional[int] = fx_model(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE )
A : Optional[int] = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE , from_flax=SCREAMING_SNAKE_CASE )
with torch.no_grad():
A : str = pt_model_loaded(**SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(
len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
A : Optional[Any] = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
A : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
| 3 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
a__ : Optional[Any] = logging.getLogger(__name__)
class UpperCAmelCase__ :
def __init__( self ) -> Any:
__UpperCamelCase = False
def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str:
if not self.initialized:
__UpperCamelCase = RagRetriever(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = True
def __lowerCamelCase ( self ) -> Optional[Any]:
self.retriever.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict:
__UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase )
return doc_ids, retrieved_doc_embeds
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]:
if index is not None and index.is_initialized() and len(lowercase ) > 0:
raise ValueError(
"""When using Ray for distributed fine-tuning, """
"""you'll need to provide the paths instead, """
"""as the dataset and the index are loaded """
"""separately. More info in examples/rag/use_own_knowledge_dataset.py """ )
super().__init__(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , )
__UpperCamelCase = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase )
for worker in self.retrieval_workers
] )
def __lowerCamelCase ( self ) -> Dict:
logger.info("""initializing retrieval""" )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) )
else:
__UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any:
return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int:
__UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase )
__UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase )
__UpperCamelCase = rag_tokenizer.question_encoder
__UpperCamelCase = rag_tokenizer.generator
if indexed_dataset is not None:
__UpperCamelCase = """custom"""
__UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase )
else:
__UpperCamelCase = cls._build_index(lowercase )
return cls(
lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
| 349 | 0 |
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ):
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def snake_case__ ( ):
"""simple docstring"""
assert nand_gate(0, 0 ) == 1
assert nand_gate(0, 1 ) == 1
assert nand_gate(1, 0 ) == 1
assert nand_gate(1, 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 334 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a__ : Any = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': 5_1_2,
'squeezebert/squeezebert-mnli': 5_1_2,
'squeezebert/squeezebert-mnli-headless': 5_1_2,
}
a__ : Optional[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE = SqueezeBertTokenizer
def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple:
super().__init__(
lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , )
__UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars
):
__UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) )
__UpperCamelCase = do_lower_case
__UpperCamelCase = strip_accents
__UpperCamelCase = tokenize_chinese_chars
__UpperCamelCase = normalizer_class(**lowercase )
__UpperCamelCase = do_lower_case
def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple:
__UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]:
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]:
__UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase )
return tuple(lowercase )
| 349 | 0 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
__A : List[str] = logging.getLogger(__name__)
class A_ (UpperCAmelCase_ ):
def __init__( self , _A=-1 ):
'''simple docstring'''
UpperCAmelCase = label_idx
def _lowercase ( self , _A , _A ):
'''simple docstring'''
if isinstance(_A , _A ):
UpperCAmelCase = mode.value
UpperCAmelCase = os.path.join(_A , F"""{mode}.txt""" )
UpperCAmelCase = 1
UpperCAmelCase = []
with open(_A , encoding='''utf-8''' ) as f:
UpperCAmelCase = []
UpperCAmelCase = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
guid_index += 1
UpperCAmelCase = []
UpperCAmelCase = []
else:
UpperCAmelCase = line.split(''' ''' )
words.append(splits[0] )
if len(_A ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
return examples
def _lowercase ( self , _A , _A , _A ):
'''simple docstring'''
UpperCAmelCase = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(_A )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
UpperCAmelCase = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(_A )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def _lowercase ( self , _A ):
'''simple docstring'''
if path:
with open(_A , '''r''' ) as f:
UpperCAmelCase = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class A_ (UpperCAmelCase_ ):
def __init__( self ):
'''simple docstring'''
super().__init__(label_idx=-2 )
def _lowercase ( self , _A ):
'''simple docstring'''
if path:
with open(_A , '''r''' ) as f:
UpperCAmelCase = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class A_ (UpperCAmelCase_ ):
def _lowercase ( self , _A , _A ):
'''simple docstring'''
if isinstance(_A , _A ):
UpperCAmelCase = mode.value
UpperCAmelCase = os.path.join(_A , F"""{mode}.txt""" )
UpperCAmelCase = 1
UpperCAmelCase = []
with open(_A , encoding='''utf-8''' ) as f:
for sentence in parse_incr(_A ):
UpperCAmelCase = []
UpperCAmelCase = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(_A ) == len(_A )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_A , labels=_A ) )
guid_index += 1
return examples
def _lowercase ( self , _A , _A , _A ):
'''simple docstring'''
UpperCAmelCase = 0
for sentence in parse_incr(_A ):
UpperCAmelCase = preds_list[example_id]
UpperCAmelCase = ''''''
for token in sentence:
out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_A )
example_id += 1
def _lowercase ( self , _A ):
'''simple docstring'''
if path:
with open(_A , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 273 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
a__ : str = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
lowerCamelCase__ = logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : Optional[int] =42
__lowerCamelCase : Union[str, Any] =42
__lowerCamelCase : Optional[Any] =42
@dataclass
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : str =42
__lowerCamelCase : Optional[int] =42
__lowerCamelCase : Union[str, Any] =None
__lowerCamelCase : str =None
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] ='train'
__lowerCamelCase : str ='dev'
__lowerCamelCase : List[str] ='test'
class SCREAMING_SNAKE_CASE :
@staticmethod
def UpperCamelCase_ ( __lowercase : Tuple , __lowercase : str ):
'''simple docstring'''
raise NotImplementedError
@staticmethod
def UpperCamelCase_ ( __lowercase : int ):
'''simple docstring'''
raise NotImplementedError
@staticmethod
def UpperCamelCase_ ( __lowercase : str , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : List[Any]=False , __lowercase : Optional[Any]="[CLS]" , __lowercase : List[Any]=1 , __lowercase : List[str]="[SEP]" , __lowercase : Optional[Any]=False , __lowercase : Any=False , __lowercase : Optional[Any]=0 , __lowercase : Dict=0 , __lowercase : str=-100 , __lowercase : Dict=0 , __lowercase : List[str]=True , ):
'''simple docstring'''
__a = {label: i for i, label in enumerate(__lowercase )}
__a = []
for ex_index, example in enumerate(__lowercase ):
if ex_index % 10000 == 0:
logger.info("""Writing example %d of %d""" , __lowercase , len(__lowercase ) )
__a = []
__a = []
for word, label in zip(example.words , example.labels ):
__a = tokenizer.tokenize(__lowercase )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(__lowercase ) > 0:
tokens.extend(__lowercase )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__lowercase ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
__a = tokenizer.num_special_tokens_to_add()
if len(__lowercase ) > max_seq_length - special_tokens_count:
__a = tokens[: (max_seq_length - special_tokens_count)]
__a = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
__a = [sequence_a_segment_id] * len(__lowercase )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
__a = [cls_token] + tokens
__a = [pad_token_label_id] + label_ids
__a = [cls_token_segment_id] + segment_ids
__a = tokenizer.convert_tokens_to_ids(__lowercase )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
__a = [1 if mask_padding_with_zero else 0] * len(__lowercase )
# Zero-pad up to the sequence length.
__a = max_seq_length - len(__lowercase )
if pad_on_left:
__a = ([pad_token] * padding_length) + input_ids
__a = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
__a = ([pad_token_segment_id] * padding_length) + segment_ids
__a = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(__lowercase ) == max_seq_length
assert len(__lowercase ) == max_seq_length
assert len(__lowercase ) == max_seq_length
assert len(__lowercase ) == max_seq_length
if ex_index < 5:
logger.info("""*** Example ***""" )
logger.info("""guid: %s""" , example.guid )
logger.info("""tokens: %s""" , """ """.join([str(__lowercase ) for x in tokens] ) )
logger.info("""input_ids: %s""" , """ """.join([str(__lowercase ) for x in input_ids] ) )
logger.info("""input_mask: %s""" , """ """.join([str(__lowercase ) for x in input_mask] ) )
logger.info("""segment_ids: %s""" , """ """.join([str(__lowercase ) for x in segment_ids] ) )
logger.info("""label_ids: %s""" , """ """.join([str(__lowercase ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
__a = None
features.append(
InputFeatures(
input_ids=__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , label_ids=__lowercase ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ):
__lowerCamelCase : Union[str, Any] =42
__lowerCamelCase : str =nn.CrossEntropyLoss().ignore_index
def __init__( self : List[Any] , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : str , __lowercase : str , __lowercase : Optional[int] , __lowercase : Optional[Any] = None , __lowercase : Optional[Any]=False , __lowercase : List[Any] = Split.train , ):
'''simple docstring'''
# Load data features from cache or dataset file
__a = os.path.join(
__lowercase , """cached_{}_{}_{}""".format(mode.value , tokenizer.__class__.__name__ , str(__lowercase ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__a = cached_features_file + """.lock"""
with FileLock(__lowercase ):
if os.path.exists(__lowercase ) and not overwrite_cache:
logger.info(F"Loading features from cached file {cached_features_file}" )
__a = torch.load(__lowercase )
else:
logger.info(F"Creating features from dataset file at {data_dir}" )
__a = token_classification_task.read_examples_from_file(__lowercase , __lowercase )
# TODO clean up all this to leverage built-in features of tokenizers
__a = token_classification_task.convert_examples_to_features(
__lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F"Saving features into cached file {cached_features_file}" )
torch.save(self.features , __lowercase )
def __len__( self : Dict ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : Tuple , __lowercase : int ):
'''simple docstring'''
return self.features[i]
if is_tf_available():
import tensorflow as tf
class SCREAMING_SNAKE_CASE :
__lowerCamelCase : Dict =42
__lowerCamelCase : int =-100
def __init__( self : Optional[Any] , __lowercase : Any , __lowercase : str , __lowercase : Tuple , __lowercase : Any , __lowercase : str , __lowercase : Dict = None , __lowercase : List[Any]=False , __lowercase : Any = Split.train , ):
'''simple docstring'''
__a = token_classification_task.read_examples_from_file(__lowercase , __lowercase )
# TODO clean up all this to leverage built-in features of tokenizers
__a = token_classification_task.convert_examples_to_features(
__lowercase , __lowercase , __lowercase , __lowercase , cls_token_at_end=bool(model_type in ["""xlnet"""] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["""xlnet"""] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__lowercase , pad_on_left=bool(tokenizer.padding_side == """left""" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
__a = tf.data.Dataset.from_generator(
__lowercase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa}, tf.intaa) , (
{"""input_ids""": tf.TensorShape([None] ), """attention_mask""": tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
__a = tf.data.Dataset.from_generator(
__lowercase , ({"""input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa}, tf.intaa) , (
{
"""input_ids""": tf.TensorShape([None] ),
"""attention_mask""": tf.TensorShape([None] ),
"""token_type_ids""": tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self : Optional[int] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : Optional[int] , __lowercase : Any ):
'''simple docstring'''
return self.features[i]
| 302 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
a__ : Union[str, Any] = {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''albert'''
def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any:
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
__UpperCamelCase = vocab_size
__UpperCamelCase = embedding_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_hidden_groups
__UpperCamelCase = num_attention_heads
__UpperCamelCase = inner_group_num
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = classifier_dropout_prob
__UpperCamelCase = position_embedding_type
class UpperCAmelCase__ ( UpperCAmelCase_):
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 349 | 0 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowerCamelCase ( self : Any ):
lowerCAmelCase_ : List[str] = tempfile.mkdtemp()
lowerCAmelCase_ : Union[str, Any] = BlipImageProcessor()
lowerCAmelCase_ : str = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
lowerCAmelCase_ : str = BlipaProcessor(a_ , a_ )
processor.save_pretrained(self.tmpdirname )
def lowerCamelCase ( self : List[str] , **a_ : Tuple ):
return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).tokenizer
def lowerCamelCase ( self : List[Any] , **a_ : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor
def lowerCamelCase ( self : str ):
shutil.rmtree(self.tmpdirname )
def lowerCamelCase ( self : Optional[Any] ):
lowerCAmelCase_ : Dict = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowerCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCamelCase ( self : Optional[int] ):
lowerCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowerCAmelCase_ : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCAmelCase_ : Any = self.get_image_processor(do_normalize=a_ , padding_value=1.0 )
lowerCAmelCase_ : List[Any] = BlipaProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=a_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , a_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , a_ )
def lowerCamelCase ( self : List[str] ):
lowerCAmelCase_ : Tuple = self.get_image_processor()
lowerCAmelCase_ : List[str] = self.get_tokenizer()
lowerCAmelCase_ : Optional[int] = BlipaProcessor(tokenizer=a_ , image_processor=a_ )
lowerCAmelCase_ : List[str] = self.prepare_image_inputs()
lowerCAmelCase_ : Tuple = image_processor(a_ , return_tensors="np" )
lowerCAmelCase_ : Dict = processor(images=a_ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def lowerCamelCase ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = self.get_image_processor()
lowerCAmelCase_ : Tuple = self.get_tokenizer()
lowerCAmelCase_ : Any = BlipaProcessor(tokenizer=a_ , image_processor=a_ )
lowerCAmelCase_ : Optional[Any] = "lower newer"
lowerCAmelCase_ : str = processor(text=a_ )
lowerCAmelCase_ : Optional[Any] = tokenizer(a_ , return_token_type_ids=a_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCamelCase ( self : int ):
lowerCAmelCase_ : str = self.get_image_processor()
lowerCAmelCase_ : List[Any] = self.get_tokenizer()
lowerCAmelCase_ : str = BlipaProcessor(tokenizer=a_ , image_processor=a_ )
lowerCAmelCase_ : Tuple = "lower newer"
lowerCAmelCase_ : Any = self.prepare_image_inputs()
lowerCAmelCase_ : List[str] = processor(text=a_ , images=a_ )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(a_ ):
processor()
def lowerCamelCase ( self : str ):
lowerCAmelCase_ : int = self.get_image_processor()
lowerCAmelCase_ : List[str] = self.get_tokenizer()
lowerCAmelCase_ : Union[str, Any] = BlipaProcessor(tokenizer=a_ , image_processor=a_ )
lowerCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCAmelCase_ : Optional[int] = processor.batch_decode(a_ )
lowerCAmelCase_ : Dict = tokenizer.batch_decode(a_ )
self.assertListEqual(a_ , a_ )
def lowerCamelCase ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = self.get_image_processor()
lowerCAmelCase_ : Any = self.get_tokenizer()
lowerCAmelCase_ : Any = BlipaProcessor(tokenizer=a_ , image_processor=a_ )
lowerCAmelCase_ : Optional[int] = "lower newer"
lowerCAmelCase_ : str = self.prepare_image_inputs()
lowerCAmelCase_ : Optional[Any] = processor(text=a_ , images=a_ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 241 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def _lowercase ( __A ):
'''simple docstring'''
return (data["data"], data["target"])
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__A ,__A )
# Predict target for test data
__UpperCamelCase = xgb.predict(__A )
__UpperCamelCase = predictions.reshape(len(__A ) ,1 )
return predictions
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = fetch_california_housing()
__UpperCamelCase , __UpperCamelCase = data_handling(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split(
__A ,__A ,test_size=0.25 ,random_state=1 )
__UpperCamelCase = xgboost(__A ,__A ,__A )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" )
print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 349 | 0 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def lowerCAmelCase__( ) -> Union[str, Any]:
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(__A ):
requests.request("GET" , "https://huggingface.co" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("GET" , "https://huggingface.co" , timeout=1.0 )
@pytest.mark.integration
def lowerCAmelCase__( ) -> Optional[int]:
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("GET" , "https://huggingface.co" )
def lowerCAmelCase__( ) -> Dict:
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(__A ):
http_head("https://huggingface.co" )
| 326 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> Dict:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]:
__UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder()
__UpperCamelCase = inputs_dict["""input_ids"""]
__UpperCamelCase = input_ids[:1, :]
__UpperCamelCase = inputs_dict["""attention_mask"""][:1, :]
__UpperCamelCase = inputs_dict["""head_mask"""]
__UpperCamelCase = 1
# first forward pass
__UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase )
__UpperCamelCase , __UpperCamelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__UpperCamelCase = model(lowercase , attention_mask=lowercase )[0]
__UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx]
__UpperCamelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta )
if decoder_attention_mask is None:
__UpperCamelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ),
] ,axis=-1 ,)
if head_mask is None:
__UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
__SCREAMING_SNAKE_CASE = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> Tuple:
__UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase )
@require_sentencepiece
@require_tokenizers
@require_tf
class UpperCAmelCase__ ( unittest.TestCase):
__SCREAMING_SNAKE_CASE = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
__SCREAMING_SNAKE_CASE = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
__SCREAMING_SNAKE_CASE = '''google/pegasus-xsum'''
@cached_property
def __lowerCamelCase ( self ) -> int:
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __lowerCamelCase ( self , **lowercase ) -> Optional[int]:
__UpperCamelCase = self.translate_src_text(**lowercase )
assert self.expected_text == generated_words
def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]:
__UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" )
__UpperCamelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , )
__UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase )
return generated_words
@slow
def __lowerCamelCase ( self ) -> Dict:
self._assert_generated_batch_equal_expected()
| 349 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 155 |
'''simple docstring'''
import string
def _lowercase ( __A ):
'''simple docstring'''
for key in range(len(string.ascii_uppercase ) ):
__UpperCamelCase = """"""
for symbol in message:
if symbol in string.ascii_uppercase:
__UpperCamelCase = string.ascii_uppercase.find(__A )
__UpperCamelCase = num - key
if num < 0:
__UpperCamelCase = num + len(string.ascii_uppercase )
__UpperCamelCase = translated + string.ascii_uppercase[num]
else:
__UpperCamelCase = translated + symbol
print(f"Decryption using Key #{key}: {translated}" )
def _lowercase ( ):
'''simple docstring'''
__UpperCamelCase = input("""Encrypted message: """ )
__UpperCamelCase = message.upper()
decrypt(__A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 349 | 0 |
"""simple docstring"""
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
lowerCamelCase_ = 'CompVis/stable-diffusion-v1-1'
lowerCamelCase_ = 'CompVis/stable-diffusion-v1-2'
lowerCamelCase_ = 'CompVis/stable-diffusion-v1-3'
lowerCamelCase_ = 'CompVis/stable-diffusion-v1-4'
class UpperCamelCase_ (UpperCAmelCase_ ):
def __init__( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int = True , ) -> Tuple:
super()._init_()
UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline(
vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , requires_safety_checker=lowerCAmelCase_ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict[str, Any]:
return {k: getattr(self , lowerCAmelCase_ ) for k in self.config.keys() if not k.startswith("_" )}
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int = "auto" ) -> Optional[Any]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]:
self.enable_attention_slicing(lowerCAmelCase_ )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[Any] = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = 1 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : int = "pil" , lowerCAmelCase_ : str = True , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : List[Any] = 1 , **lowerCAmelCase_ : Any , ) -> int:
return self.pipea(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str = 512 , lowerCAmelCase_ : int = 512 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : List[Any] = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = 1 , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Any = "pil" , lowerCAmelCase_ : Union[str, Any] = True , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Dict = 1 , **lowerCAmelCase_ : Tuple , ) -> Dict:
return self.pipea(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] = 512 , lowerCAmelCase_ : Tuple = 512 , lowerCAmelCase_ : Optional[Any] = 50 , lowerCAmelCase_ : Dict = 7.5 , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Any = 1 , lowerCAmelCase_ : Optional[int] = 0.0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : int = "pil" , lowerCAmelCase_ : Optional[Any] = True , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : List[str] = 1 , **lowerCAmelCase_ : int , ) -> Union[str, Any]:
return self.pipea(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict = 512 , lowerCAmelCase_ : Union[str, Any] = 512 , lowerCAmelCase_ : Tuple = 50 , lowerCAmelCase_ : int = 7.5 , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Dict = 1 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Union[str, Any] = "pil" , lowerCAmelCase_ : Any = True , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Optional[Any] = 1 , **lowerCAmelCase_ : Optional[int] , ) -> Optional[int]:
return self.pipea(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] = 512 , lowerCAmelCase_ : Tuple = 512 , lowerCAmelCase_ : Any = 50 , lowerCAmelCase_ : Tuple = 7.5 , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[Any] = "pil" , lowerCAmelCase_ : List[str] = True , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = 1 , **lowerCAmelCase_ : Tuple , ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
self.to(lowerCAmelCase_ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : List[Any] = self.textaimg_sda_a(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : Tuple = self.textaimg_sda_a(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : Any = self.textaimg_sda_a(
prompt=lowerCAmelCase_ , height=lowerCAmelCase_ , width=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , output_type=lowerCAmelCase_ , return_dict=lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=lowerCAmelCase_ , **lowerCAmelCase_ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 268 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : Dict = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = '''gptj'''
__SCREAMING_SNAKE_CASE = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple:
__UpperCamelCase = vocab_size
__UpperCamelCase = n_positions
__UpperCamelCase = n_embd
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = n_inner
__UpperCamelCase = rotary_dim
__UpperCamelCase = activation_function
__UpperCamelCase = resid_pdrop
__UpperCamelCase = embd_pdrop
__UpperCamelCase = attn_pdrop
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = initializer_range
__UpperCamelCase = use_cache
__UpperCamelCase = bos_token_id
__UpperCamelCase = eos_token_id
super().__init__(
bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]:
super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase )
if not getattr(self._config , """pad_token_id""" , lowercase ):
# TODO: how to do that better?
__UpperCamelCase = 0
@property
def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
__UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(lowercase , direction="""inputs""" )
__UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__UpperCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_layer
@property
def __lowerCamelCase ( self ) -> int:
return self._config.n_head
def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]:
__UpperCamelCase = super(lowercase , self ).generate_dummy_inputs(
lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase )
# We need to order the input in the way they appears in the forward()
__UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__UpperCamelCase = [
(torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers )
]
__UpperCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__UpperCamelCase = ordered_inputs["""attention_mask"""].dtype
__UpperCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 )
return ordered_inputs
@property
def __lowerCamelCase ( self ) -> int:
return 1_3
| 349 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple:
"""simple docstring"""
return (data["data"], data["target"])
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
"""simple docstring"""
A : int = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__A , __A )
# Predict target for test data
A : Optional[int] = xgb.predict(__A )
A : str = predictions.reshape(len(__A ) , 1 )
return predictions
def __UpperCamelCase ( ) -> Any:
"""simple docstring"""
A : Optional[Any] = fetch_california_housing()
A , A : List[str] = data_handling(__A )
A , A , A , A : Dict = train_test_split(
__A , __A , test_size=0.25 , random_state=1 )
A : Tuple = xgboost(__A , __A , __A )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(__A , __A )}''' )
print(f'''Mean Square Error : {mean_squared_error(__A , __A )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 116 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
a__ : int = {
'configuration_layoutlmv3': [
'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LayoutLMv3Config',
'LayoutLMv3OnnxConfig',
],
'processing_layoutlmv3': ['LayoutLMv3Processor'],
'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['LayoutLMv3TokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv3ForQuestionAnswering',
'LayoutLMv3ForSequenceClassification',
'LayoutLMv3ForTokenClassification',
'LayoutLMv3Model',
'LayoutLMv3PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : str = [
'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLayoutLMv3ForQuestionAnswering',
'TFLayoutLMv3ForSequenceClassification',
'TFLayoutLMv3ForTokenClassification',
'TFLayoutLMv3Model',
'TFLayoutLMv3PreTrainedModel',
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['LayoutLMv3FeatureExtractor']
a__ : str = ['LayoutLMv3ImageProcessor']
if TYPE_CHECKING:
from .configuration_layoutlmva import (
LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP,
LayoutLMvaConfig,
LayoutLMvaOnnxConfig,
)
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_layoutlmva import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
TFLayoutLMvaPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 349 | 0 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
lowerCAmelCase__ : Tuple = logging.getLogger(__name__)
@dataclass
class __snake_case :
__lowerCamelCase = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} ,)
__lowerCamelCase = field(
default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} ,)
@dataclass
class __snake_case :
__lowerCamelCase = field(default=UpperCAmelCase_ ,metadata={"""help""": """The input training data file (a text file)."""} )
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. If passed, sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={
"""help""": (
"""Whether to pad all samples to the maximum sentence length. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch. More """
"""efficient on GPU but very bad for TPU."""
)
} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} ,)
__lowerCamelCase = field(
default=UpperCAmelCase_ ,metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} ,)
def __a ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.train_file is not None:
snake_case__ : List[Any] = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
snake_case__ : str = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class __snake_case :
__lowerCamelCase = 42
__lowerCamelCase = True
__lowerCamelCase = None
__lowerCamelCase = None
def __call__( self , __UpperCamelCase ) -> str:
'''simple docstring'''
snake_case__ : List[Any] = 'label' if 'label' in features[0].keys() else 'labels'
snake_case__ : Dict = [feature.pop(__UpperCamelCase ) for feature in features]
snake_case__ : List[Any] = len(__UpperCamelCase )
snake_case__ : Dict = len(features[0]['input_ids'] )
snake_case__ : List[Any] = [
[{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features
]
snake_case__ : int = list(chain(*__UpperCamelCase ) )
snake_case__ : Optional[int] = self.tokenizer.pad(
__UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
snake_case__ : Union[str, Any] = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()}
# Add back labels
snake_case__ : Union[str, Any] = torch.tensor(__UpperCamelCase , dtype=torch.intaa )
return batch
def UpperCamelCase__ ( ) -> List[str]:
snake_case__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case__ , snake_case__ , snake_case__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , __A , __A )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
snake_case__ : int = training_args.get_process_log_level()
logger.setLevel(__A )
datasets.utils.logging.set_verbosity(__A )
transformers.utils.logging.set_verbosity(__A )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
snake_case__ : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
snake_case__ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
snake_case__ : Dict = {}
if data_args.train_file is not None:
snake_case__ : Union[str, Any] = data_args.train_file
if data_args.validation_file is not None:
snake_case__ : List[Any] = data_args.validation_file
snake_case__ : Optional[Any] = data_args.train_file.split('.' )[-1]
snake_case__ : Tuple = load_dataset(
__A , data_files=__A , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
snake_case__ : Optional[Any] = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
snake_case__ : Optional[int] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
snake_case__ : int = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
snake_case__ : List[Any] = [F"""ending{i}""" for i in range(4 )]
snake_case__ : Tuple = 'sent1'
snake_case__ : Any = 'sent2'
if data_args.max_seq_length is None:
snake_case__ : Dict = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
snake_case__ : str = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
snake_case__ : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(A__ ):
snake_case__ : Optional[int] = [[context] * 4 for context in examples[context_name]]
snake_case__ : Optional[Any] = examples[question_header_name]
snake_case__ : str = [
[F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__A )
]
# Flatten out
snake_case__ : Optional[Any] = list(chain(*__A ) )
snake_case__ : List[str] = list(chain(*__A ) )
# Tokenize
snake_case__ : List[Any] = tokenizer(
__A , __A , truncation=__A , max_length=__A , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(__A ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
snake_case__ : Optional[Any] = raw_datasets['train']
if data_args.max_train_samples is not None:
snake_case__ : Optional[int] = min(len(__A ) , data_args.max_train_samples )
snake_case__ : Tuple = train_dataset.select(range(__A ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
snake_case__ : int = train_dataset.map(
__A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
snake_case__ : List[str] = raw_datasets['validation']
if data_args.max_eval_samples is not None:
snake_case__ : List[Any] = min(len(__A ) , data_args.max_eval_samples )
snake_case__ : Dict = eval_dataset.select(range(__A ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
snake_case__ : Any = eval_dataset.map(
__A , batched=__A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
snake_case__ : Union[str, Any] = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=__A , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(A__ ):
snake_case__ , snake_case__ : List[str] = eval_predictions
snake_case__ : Dict = np.argmax(__A , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
snake_case__ : Union[str, Any] = Trainer(
model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__A , data_collator=__A , compute_metrics=__A , )
# Training
if training_args.do_train:
snake_case__ : Dict = None
if training_args.resume_from_checkpoint is not None:
snake_case__ : str = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
snake_case__ : List[Any] = last_checkpoint
snake_case__ : Tuple = trainer.train(resume_from_checkpoint=__A )
trainer.save_model() # Saves the tokenizer too for easy upload
snake_case__ : Optional[Any] = train_result.metrics
snake_case__ : List[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__A )
)
snake_case__ : str = min(__A , len(__A ) )
trainer.log_metrics('train' , __A )
trainer.save_metrics('train' , __A )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
snake_case__ : List[Any] = trainer.evaluate()
snake_case__ : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A )
snake_case__ : Union[str, Any] = min(__A , len(__A ) )
trainer.log_metrics('eval' , __A )
trainer.save_metrics('eval' , __A )
snake_case__ : Union[str, Any] = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**__A )
else:
trainer.create_model_card(**__A )
def UpperCamelCase__ ( A__ ) -> Optional[Any]:
main()
if __name__ == "__main__":
main()
| 143 |
'''simple docstring'''
def _lowercase ( __A ,__A ):
'''simple docstring'''
__UpperCamelCase = len(__A )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 ,required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 ,arr_len + 1 ):
for j in range(1 ,required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 349 | 0 |
import pytest
snake_case : List[str] = '__dummy_dataset1__'
snake_case : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def __lowerCamelCase ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __lowerCamelCase ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ):
"""simple docstring"""
a :List[Any] = dataset_loading_script_name
a :Tuple = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=__A )
a :List[str] = script_dir / F'''{script_name}.py'''
with open(__A , '''w''' ) as f:
f.write(__A )
return str(__A )
| 94 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
a__ : Any = get_logger(__name__)
class UpperCAmelCase__ :
def __init__( self , lowercase = None ) -> List[str]:
__UpperCamelCase = (
os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
__UpperCamelCase = Extractor
def __lowerCamelCase ( self , lowercase ) -> str:
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
__UpperCamelCase = os.path.abspath(lowercase )
return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) )
def __lowerCamelCase ( self , lowercase , lowercase ) -> bool:
return force_extract or (
not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase ))
)
def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str:
__UpperCamelCase = self.extractor.infer_extractor_format(lowercase )
if not extractor_format:
return input_path
__UpperCamelCase = self._get_output_path(lowercase )
if self._do_extract(lowercase , lowercase ):
self.extractor.extract(lowercase , lowercase , lowercase )
return output_path
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
@abstractmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
...
@staticmethod
@abstractmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
...
class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = []
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> int:
with open(lowercase , """rb""" ) as f:
return f.read(lowercase )
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if not magic_number:
__UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers )
try:
__UpperCamelCase = cls.read_magic_number(lowercase , lowercase )
except OSError:
return False
return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers )
class UpperCAmelCase__ ( UpperCAmelCase_):
@classmethod
def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool:
return tarfile.is_tarfile(lowercase )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
def resolved(lowercase ) -> str:
return os.path.realpath(os.path.abspath(lowercase ) )
def badpath(lowercase , lowercase ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase )
def badlink(lowercase , lowercase ) -> bool:
# Links are interpreted relative to the directory containing the link
__UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowercase )
__UpperCamelCase = resolved(lowercase )
for finfo in members:
if badpath(finfo.name , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" )
elif finfo.issym() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" )
elif finfo.islnk() and badlink(lowercase , lowercase ):
logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" )
else:
yield finfo
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = tarfile.open(lowercase )
tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) )
tar_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x1F\x8B''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with gzip.open(lowercase , """rb""" ) as gzip_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [
B'''PK\x03\x04''',
B'''PK\x05\x06''', # empty archive
B'''PK\x07\x08''', # spanned archive
]
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool:
if super().is_extractable(lowercase , magic_number=lowercase ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowercase , """rb""" ) as fp:
__UpperCamelCase = _EndRecData(lowercase )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
__UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be
if len(lowercase ) == sizeCentralDir:
__UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
os.makedirs(lowercase , exist_ok=lowercase )
with zipfile.ZipFile(lowercase , """r""" ) as zip_file:
zip_file.extractall(lowercase )
zip_file.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with lzma.open(lowercase ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.RARFILE_AVAILABLE:
raise ImportError("""Please pip install rarfile""" )
import rarfile
os.makedirs(lowercase , exist_ok=lowercase )
__UpperCamelCase = rarfile.RarFile(lowercase )
rf.extractall(lowercase )
rf.close()
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.ZSTANDARD_AVAILABLE:
raise ImportError("""Please pip install zstandard""" )
import zstandard as zstd
__UpperCamelCase = zstd.ZstdDecompressor()
with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh:
dctx.copy_stream(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
with bza.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.PY7ZR_AVAILABLE:
raise ImportError("""Please pip install py7zr""" )
import pyazr
os.makedirs(lowercase , exist_ok=lowercase )
with pyazr.SevenZipFile(lowercase , """r""" ) as archive:
archive.extractall(lowercase )
class UpperCAmelCase__ ( UpperCAmelCase_):
__SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18''']
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> None:
if not config.LZ4_AVAILABLE:
raise ImportError("""Please pip install lz4""" )
import lza.frame
with lza.frame.open(lowercase , """rb""" ) as compressed_file:
with open(lowercase , """wb""" ) as extracted_file:
shutil.copyfileobj(lowercase , lowercase )
class UpperCAmelCase__ :
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
__SCREAMING_SNAKE_CASE = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def __lowerCamelCase ( cls ) -> Union[str, Any]:
return max(
len(lowercase )
for extractor in cls.extractors.values()
if issubclass(lowercase , lowercase )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def __lowerCamelCase ( lowercase , lowercase ) -> str:
try:
return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase )
except OSError:
return b""
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool:
warnings.warn(
"""Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'infer_extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = cls.infer_extractor_format(lowercase )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/>
__UpperCamelCase = cls._get_magic_number_max_length()
__UpperCamelCase = cls._read_magic_number(lowercase , lowercase )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowercase , magic_number=lowercase ):
return extractor_format
@classmethod
def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None:
os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase )
# Prevent parallel extractions
__UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) )
with FileLock(lowercase ):
shutil.rmtree(lowercase , ignore_errors=lowercase )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg
warnings.warn(
"""Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """
"""Use 'extractor_format' instead.""" , category=lowercase , )
__UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format
else:
__UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowercase , lowercase )
else:
warnings.warn(
"""Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """
"""exception in 3.0.0.""" , category=lowercase , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowercase ):
return extractor.extract(lowercase , lowercase )
| 349 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase : Tuple = logging.get_logger(__name__)
class A ( UpperCAmelCase_ ):
__magic_name__ = ['''pixel_values''']
def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 255 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
A : Any = size if size is not None else {'''shortest_edge''': 256}
A : Dict = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
A : int = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''crop_size''' )
A : Optional[Any] = do_resize
A : List[str] = size
A : str = resample
A : Dict = do_center_crop
A : List[str] = crop_size
A : List[Any] = do_rescale
A : List[Any] = rescale_factor
A : Optional[Any] = do_normalize
A : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : Tuple = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A : List[str] = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE )
return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
A : str = get_size_dict(SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> np.ndarray:
"""simple docstring"""
return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray:
"""simple docstring"""
return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
"""simple docstring"""
A : Dict = do_resize if do_resize is not None else self.do_resize
A : Any = size if size is not None else self.size
A : Dict = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE )
A : str = resample if resample is not None else self.resample
A : int = do_center_crop if do_center_crop is not None else self.do_center_crop
A : Optional[int] = crop_size if crop_size is not None else self.crop_size
A : int = get_size_dict(SCREAMING_SNAKE_CASE , param_name='''crop_size''' )
A : Dict = do_rescale if do_rescale is not None else self.do_rescale
A : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A : str = do_normalize if do_normalize is not None else self.do_normalize
A : Optional[int] = image_mean if image_mean is not None else self.image_mean
A : int = image_std if image_std is not None else self.image_std
A : Any = make_list_of_images(SCREAMING_SNAKE_CASE )
if not valid_images(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
A : int = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
A : Any = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images]
if do_center_crop:
A : str = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
A : Optional[int] = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
A : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images]
A : str = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images]
A : Union[str, Any] = {'''pixel_values''': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(SCREAMING_SNAKE_CASE ):
A : Any = target_sizes.numpy()
A : Optional[int] = []
for idx in range(len(SCREAMING_SNAKE_CASE ) ):
A : Dict = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE )
A : List[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE )
else:
A : Optional[Any] = logits.argmax(dim=1 )
A : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 3 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class UpperCAmelCase__ :
__SCREAMING_SNAKE_CASE = PegasusConfig
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = '''gelu'''
def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = eos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = bos_token_id
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
__UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
__UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase )
return config, inputs_dict
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any:
__UpperCamelCase = 2_0
__UpperCamelCase = model_class_name(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] )
__UpperCamelCase , __UpperCamelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
__UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
__UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , )
__UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" )
def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,):
'''simple docstring'''
if attention_mask is None:
__UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
__UpperCamelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase):
__SCREAMING_SNAKE_CASE = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def __lowerCamelCase ( self ) -> Optional[Any]:
__UpperCamelCase = FlaxPegasusModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase )
def __lowerCamelCase ( self ) -> List[str]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = self._prepare_for_class(lowercase , lowercase )
__UpperCamelCase = model_class(lowercase )
@jax.jit
def encode_jitted(lowercase , lowercase=None , **lowercase ):
return model.encode(input_ids=lowercase , attention_mask=lowercase )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = encode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def __lowerCamelCase ( self ) -> List[Any]:
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__UpperCamelCase = model_class(lowercase )
__UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
__UpperCamelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase , lowercase , lowercase ):
return model.decode(
decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , )
with self.subTest("""JIT Enabled""" ):
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__UpperCamelCase = decode_jitted(**lowercase ).to_tuple()
self.assertEqual(len(lowercase ) , len(lowercase ) )
for jitted_output, output in zip(lowercase , lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __lowerCamelCase ( self ) -> Dict:
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase )
__UpperCamelCase = np.ones((1, 1) )
__UpperCamelCase = model(lowercase )
self.assertIsNotNone(lowercase )
@slow
def __lowerCamelCase ( self ) -> str:
__UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
__UpperCamelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
__UpperCamelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
__UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase )
__UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences
__UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
assert tgt_text == decoded
| 349 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class a_ :
"""simple docstring"""
__UpperCAmelCase = 42
__UpperCAmelCase = 42
class a_ :
"""simple docstring"""
def __init__( self : List[str] ,snake_case : int ):
SCREAMING_SNAKE_CASE =[[] for _ in range(snake_case )]
SCREAMING_SNAKE_CASE =size
def __getitem__( self : Dict ,snake_case : Any ):
return iter(self._graph[vertex] )
@property
def _lowerCAmelCase ( self : Optional[Any] ):
return self._size
def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : List[Any] ,snake_case : str ,snake_case : Optional[int] ):
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(snake_case ,snake_case ) )
def _lowerCAmelCase ( self : str ,snake_case : List[Any] ,snake_case : int ):
SCREAMING_SNAKE_CASE =deque([start_vertex] )
SCREAMING_SNAKE_CASE =[None] * self.size
SCREAMING_SNAKE_CASE =0
while queue:
SCREAMING_SNAKE_CASE =queue.popleft()
SCREAMING_SNAKE_CASE =distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
SCREAMING_SNAKE_CASE =current_distance + edge.weight
SCREAMING_SNAKE_CASE =distances[edge.destination_vertex]
if (
isinstance(snake_case ,snake_case )
and new_distance >= dest_vertex_distance
):
continue
SCREAMING_SNAKE_CASE =new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 334 |
'''simple docstring'''
import pytest
a__ : List[str] = '__dummy_dataset1__'
a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _lowercase ( ):
'''simple docstring'''
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = dataset_loading_script_name
__UpperCamelCase = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=__A )
__UpperCamelCase = script_dir / f"{script_name}.py"
with open(__A ,"""w""" ) as f:
f.write(__A )
return str(__A )
| 349 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__A : Optional[int] = {
'configuration_efficientformer': [
'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientFormerConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['EfficientFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientFormerForImageClassification',
'EfficientFormerForImageClassificationWithTeacher',
'EfficientFormerModel',
'EfficientFormerPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Dict = [
'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFEfficientFormerForImageClassification',
'TFEfficientFormerForImageClassificationWithTeacher',
'TFEfficientFormerModel',
'TFEfficientFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 273 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
a__ : List[str] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _lowercase ( __A ):
'''simple docstring'''
__UpperCamelCase = {}
with open(__A ,"""r""" ) as file:
for line_number, line in enumerate(__A ):
__UpperCamelCase = line.strip()
if line:
__UpperCamelCase = line.split()
__UpperCamelCase = line_number
__UpperCamelCase = words[0]
__UpperCamelCase = value
return result
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
for attribute in key.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = getattr(__A ,__A ).shape
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = hf_pointer
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = shape_pointer.shape
# let's reduce dimension
__UpperCamelCase = value[0]
else:
__UpperCamelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}" )
if weight_type == "weight":
__UpperCamelCase = value
elif weight_type == "weight_g":
__UpperCamelCase = value
elif weight_type == "weight_v":
__UpperCamelCase = value
elif weight_type == "bias":
__UpperCamelCase = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
__UpperCamelCase = getattr(__A ,__A )
__UpperCamelCase = value
else:
__UpperCamelCase = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(__A ):
__UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]]
__UpperCamelCase = """param"""
if weight_type is not None and weight_type != "param":
__UpperCamelCase = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCamelCase = """.""".join([key, hf_param_name] )
else:
__UpperCamelCase = key
__UpperCamelCase = value if """lm_head""" in full_key else value[0]
a__ : Dict = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _lowercase ( __A ,__A ,__A=None ,__A=None ):
'''simple docstring'''
__UpperCamelCase = False
for key, mapped_key in MAPPING.items():
__UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__UpperCamelCase = True
if "*" in mapped_key:
__UpperCamelCase = name.split(__A )[0].split(""".""" )[-2]
__UpperCamelCase = mapped_key.replace("""*""" ,__A )
if "weight_g" in name:
__UpperCamelCase = """weight_g"""
elif "weight_v" in name:
__UpperCamelCase = """weight_v"""
elif "bias" in name:
__UpperCamelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCamelCase = """weight"""
else:
__UpperCamelCase = None
if hf_dict is not None:
rename_dict(__A ,__A ,__A ,__A ,__A )
else:
set_recursively(__A ,__A ,__A ,__A ,__A )
return is_used
return is_used
def _lowercase ( __A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = fairseq_model.state_dict()
__UpperCamelCase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCamelCase = False
if "conv_layers" in name:
load_conv_layer(
__A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,)
__UpperCamelCase = True
else:
__UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A )
if not is_used:
unused_weights.append(__A )
logger.warning(f"Unused weights: {unused_weights}" )
def _lowercase ( __A ,__A ,__A ,__A ,__A ):
'''simple docstring'''
__UpperCamelCase = full_name.split("""conv_layers.""" )[-1]
__UpperCamelCase = name.split(""".""" )
__UpperCamelCase = int(items[0] )
__UpperCamelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
__UpperCamelCase = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(__A )
@torch.no_grad()
def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ):
'''simple docstring'''
if config_path is not None:
__UpperCamelCase = WavaVecaConfig.from_pretrained(__A )
else:
__UpperCamelCase = WavaVecaConfig()
if is_seq_class:
__UpperCamelCase = read_txt_into_dict(__A )
__UpperCamelCase = idalabel
__UpperCamelCase = WavaVecaForSequenceClassification(__A )
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
feature_extractor.save_pretrained(__A )
elif is_finetuned:
if dict_path:
__UpperCamelCase = Dictionary.load(__A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCamelCase = target_dict.pad_index
__UpperCamelCase = target_dict.bos_index
__UpperCamelCase = target_dict.eos_index
__UpperCamelCase = len(target_dict.symbols )
__UpperCamelCase = os.path.join(__A ,"""vocab.json""" )
if not os.path.isdir(__A ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) )
return
os.makedirs(__A ,exist_ok=__A )
__UpperCamelCase = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCamelCase = 0
__UpperCamelCase = 1
with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle:
json.dump(__A ,__A )
__UpperCamelCase = WavaVecaCTCTokenizer(
__A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,)
__UpperCamelCase = True if config.feat_extract_norm == """layer""" else False
__UpperCamelCase = WavaVecaFeatureExtractor(
feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,)
__UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A )
processor.save_pretrained(__A )
__UpperCamelCase = WavaVecaForCTC(__A )
else:
__UpperCamelCase = WavaVecaForPreTraining(__A )
if is_finetuned or is_seq_class:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" )
__UpperCamelCase = fairseq.tasks.setup_task(__A )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A )
__UpperCamelCase = model[0].eval()
recursively_load_weights(__A ,__A ,not is_finetuned )
hf_wavavec.save_pretrained(__A )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
a__ : Optional[int] = parser.parse_args()
a__ : str = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 349 | 0 |