code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _lowercase : Union[str, Any] = os.path.abspath(lowerCamelCase_ ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _lowercase : Optional[Any] = tf.train.list_variables(lowerCamelCase_ ) _lowercase : Optional[Any] = [] _lowercase : List[str] = [] _lowercase : str = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowercase : List[Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _lowercase : Union[str, Any] = name[1:] # figure out how many levels deep the name is _lowercase : str = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(lowerCamelCase_ ) # read data _lowercase : Union[str, Any] = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_ ) names.append('/'.join(lowerCamelCase_ ) ) arrays.append(lowerCamelCase_ ) logger.info(F'''Read a total of {len(lowerCamelCase_ ):,} layers''' ) # Sanity check if len(set(lowerCamelCase_ ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(lowerCamelCase_ ) )})''' ) _lowercase : Any = list(set(lowerCamelCase_ ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(lowerCamelCase_ , lowerCamelCase_ ): _lowercase : Tuple = full_name.split('/' ) _lowercase : Optional[int] = model _lowercase : str = [] for i, m_name in enumerate(lowerCamelCase_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): _lowercase : Optional[Any] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) _lowercase : Union[str, Any] = getattr(lowerCamelCase_ , 'embeddings' ) _lowercase : Optional[int] = getattr(lowerCamelCase_ , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) _lowercase : List[str] = getattr(lowerCamelCase_ , 'encoder' ) _lowercase : Optional[int] = getattr(lowerCamelCase_ , 'layer' ) _lowercase : Dict = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'pooler' ) _lowercase : Tuple = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) _lowercase : Dict = getattr(lowerCamelCase_ , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) _lowercase : str = getattr(lowerCamelCase_ , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) _lowercase : List[Any] = getattr(lowerCamelCase_ , 'token_type_embeddings' ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append('weight' ) _lowercase : List[Any] = getattr(lowerCamelCase_ , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) _lowercase : Tuple = getattr(lowerCamelCase_ , 'attention' ) _lowercase : Tuple = getattr(lowerCamelCase_ , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) _lowercase : Dict = getattr(lowerCamelCase_ , 'attention' ) _lowercase : int = getattr(lowerCamelCase_ , 'output' ) _lowercase : Dict = getattr(lowerCamelCase_ , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) _lowercase : Union[str, Any] = getattr(lowerCamelCase_ , 'attention' ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'output' ) _lowercase : Dict = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'output' ) _lowercase : Any = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) _lowercase : List[Any] = getattr(lowerCamelCase_ , 'output' ) _lowercase : Dict = getattr(lowerCamelCase_ , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) _lowercase : List[Any] = getattr(lowerCamelCase_ , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) _lowercase : Any = getattr(lowerCamelCase_ , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) _lowercase : int = getattr(lowerCamelCase_ , 'intermediate' ) _lowercase : Optional[int] = getattr(lowerCamelCase_ , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) _lowercase : Optional[Any] = getattr(lowerCamelCase_ , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) _lowercase : Optional[int] = getattr(lowerCamelCase_ , 'weight' ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary _lowercase : Any = '.'.join(lowerCamelCase_ ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , lowerCamelCase_ ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , lowerCamelCase_ ): _lowercase : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowercase : Union[str, Any] = array.transpose() if pointer.shape == array.shape: _lowercase : Optional[int] = torch.from_numpy(lowerCamelCase_ ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) _lowercase : Union[str, Any] = BertConfig.from_json_file(lowerCamelCase_ ) _lowercase : Union[str, Any] = BertModel(lowerCamelCase_ ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
21
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
0
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if isinstance(__lowercase , collections.abc.Iterable ): return x return (x, x) @require_tf class A_ : def lowercase ( self : str , snake_case_ : int , snake_case_ : int ): pass def lowercase ( self : Optional[Any] ): pass def lowercase ( self : int ): pass def lowercase ( self : List[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Any , snake_case_ : int , snake_case_ : List[str]=None , **snake_case_ : int ): _UpperCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowercase ( self : List[str] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple=None , **snake_case_ : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Union[str, Any]=None , **snake_case_ : Any ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = {"vision_model": vision_model, "text_model": text_model} _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowercase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any]=None , **snake_case_ : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) _UpperCAmelCase = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = after_output[0].numpy() _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) def lowercase ( self : int , snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : int=None , **snake_case_ : str ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) _UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = to_atuple(vision_model.config.image_size ) _UpperCAmelCase = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ): _UpperCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowercase ( self : Tuple ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @slow def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.get_pretrained_model_and_inputs() _UpperCAmelCase = model_a(**snake_case_ ) _UpperCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) _UpperCAmelCase = model_a(**snake_case_ ) _UpperCAmelCase = after_outputs[0].numpy() _UpperCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1e-5 ) @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : Optional[int] ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] ): _UpperCAmelCase = TFViTModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFBertModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : int ): _UpperCAmelCase = TFViTModelTester(self ) _UpperCAmelCase = TFBertModelTester(self ) _UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : List[Any] ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : int , snake_case_ : int , snake_case_ : Dict , snake_case_ : str , snake_case_ : Tuple , snake_case_ : str=None , **snake_case_ : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.get_vision_text_model(snake_case_ , snake_case_ ) _UpperCAmelCase = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) _UpperCAmelCase = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) _UpperCAmelCase = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _UpperCAmelCase = to_atuple(vision_model.config.image_size ) _UpperCAmelCase = to_atuple(vision_model.config.patch_size ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCAmelCase = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowercase ( self : List[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ): _UpperCAmelCase = TFDeiTModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFRobertaModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : Any ): _UpperCAmelCase = TFDeiTModelTester(self ) _UpperCAmelCase = TFRobertaModelTester(self ) _UpperCAmelCase = vit_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A_ ( lowerCAmelCase_ , unittest.TestCase ): def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _UpperCAmelCase = 1_3 _UpperCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _UpperCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _UpperCAmelCase = random_attention_mask([batch_size, 4] ) _UpperCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowercase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] ): _UpperCAmelCase = TFCLIPVisionModel(snake_case_ , name="vision_model" ) _UpperCAmelCase = TFBertModel(snake_case_ , name="text_model" ) return vision_model, text_model def lowercase ( self : Optional[int] ): _UpperCAmelCase = TFCLIPVisionModelTester(self ) _UpperCAmelCase = TFBertModelTester(self ) _UpperCAmelCase = clip_model_tester.prepare_config_and_inputs() _UpperCAmelCase = bert_model_tester.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase = vision_config_and_inputs ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A_ ( unittest.TestCase ): @slow def lowercase ( self : int ): _UpperCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=snake_case_ ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=snake_case_ , padding=snake_case_ , return_tensors="np" ) _UpperCAmelCase = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCAmelCase = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1e-3 ) )
22
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__: List[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> str: inspect_dataset(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[Any] = path + '''.py''' assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ) -> List[str]: inspect_metric(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = path + '''.py''' assert script_name in os.listdir(_lowerCAmelCase ) assert "__pycache__" not in os.listdir(_lowerCAmelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Tuple = get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ) -> Dict: with pytest.raises(_lowerCAmelCase ): get_dataset_config_info(_lowerCAmelCase , config_name=_lowerCAmelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : List[str] = get_dataset_config_names(_lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> Dict: UpperCAmelCase : str = get_dataset_infos(_lowerCAmelCase ) assert list(infos.keys() ) == expected_configs UpperCAmelCase : int = expected_configs[0] assert expected_config in infos UpperCAmelCase : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : int = get_dataset_infos(_lowerCAmelCase ) assert expected_config in infos UpperCAmelCase : Dict = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int ) -> int: with pytest.raises(_lowerCAmelCase ): get_dataset_split_names(_lowerCAmelCase , config_name=_lowerCAmelCase )
23
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : int = 4 ) -> list[list[int]]: __snake_case = abs(snake_case_ ) or 4 return [[1 + x + y * row_size for x in range(snake_case_ )] for y in range(snake_case_ )] def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(snake_case_ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(snake_case_ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(snake_case_ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [list(snake_case_ ) for x in zip(*snake_case_ )] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = matrix[::-1] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> None: for i in matrix: print(*snake_case_ ) if __name__ == "__main__": snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
24
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,): SCREAMING_SNAKE_CASE__ : Any = len(_snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,_snake_case ,_snake_case ,) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : list[list[str]] = [] depth_first_search([] ,[] ,[] ,_snake_case ,_snake_case ) # Print all the boards for board in boards: for column in board: print(_snake_case ) print("""""" ) print(len(_snake_case ) ,"""solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
25
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _snake_case = logging.getLogger(__name__) class lowercase : def __init__( self ) -> Union[str, Any]: _A : Tuple = False def a__ ( self , _a , _a , _a , _a ) -> Optional[int]: if not self.initialized: _A : Any = RagRetriever( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) _A : Any = True def a__ ( self ) -> Dict: self.retriever.index.init_index() def a__ ( self , _a , _a ) -> Any: _A , _A : List[str] = self.retriever._main_retrieve(_a , _a ) return doc_ids, retrieved_doc_embeds class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a=None ) -> Dict: if index is not None and index.is_initialized() and len(_a ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , index=_a , init_retrieval=_a , ) _A : int = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_a , _a , _a , _a ) for worker in self.retrieval_workers ] ) def a__ ( self ) -> Union[str, Any]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def a__ ( self , _a , _a ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _A : Optional[Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] _A , _A : List[str] = ray.get(random_worker.retrieve.remote(_a , _a ) ) else: _A , _A : Optional[int] = self._main_retrieve(_a , _a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_a ) @classmethod def a__ ( cls , _a , _a=None , **_a ) -> List[Any]: return super(_a , cls ).get_tokenizers(_a , _a , **_a ) @classmethod def a__ ( cls , _a , _a , _a=None , **_a ) -> Union[str, Any]: _A : Any = kwargs.pop("""config""" , _a ) or RagConfig.from_pretrained(_a , **_a ) _A : str = RagTokenizer.from_pretrained(_a , config=_a ) _A : Dict = rag_tokenizer.question_encoder _A : Any = rag_tokenizer.generator if indexed_dataset is not None: _A : Optional[int] = """custom""" _A : Any = CustomHFIndex(config.retrieval_vector_size , _a ) else: _A : int = cls._build_index(_a ) return cls( _a , question_encoder_tokenizer=_a , generator_tokenizer=_a , retrieval_workers=_a , index=_a , )
26
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = inspect.getfile(accelerate.test_utils ) __a : List[str] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps', 'test_metrics.py'] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __a : Union[str, Any] = test_metrics @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __UpperCAmelCase ( self ): '''simple docstring''' debug_launcher(self.test_metrics.main ) @require_single_gpu def __UpperCAmelCase ( self ): '''simple docstring''' self.test_metrics.main() @require_multi_gpu def __UpperCAmelCase ( self ): '''simple docstring''' print(f"""Found {torch.cuda.device_count()} devices.""" ) __a : List[Any] = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
27
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = RoFormerTokenizer _SCREAMING_SNAKE_CASE = RoFormerTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def A ( self : Dict ): """simple docstring""" super().setUp() def A ( self : Optional[Any] , **UpperCamelCase__ : List[str] ): """simple docstring""" return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def A ( self : Any , **UpperCamelCase__ : Union[str, Any] ): """simple docstring""" return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = '永和服装饰品有限公司,今天天气非常好' UpperCamelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase , UpperCamelCase = self.get_chinese_input_output_texts() UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase , UpperCamelCase = self.get_chinese_input_output_texts() UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" pass def A ( self : List[Any] ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" pass
28
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __UpperCAmelCase = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __UpperCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "://" in dataset_path: UpperCAmelCase_ : int = dataset_path.split('://' )[1] return dataset_path def lowercase__ ( __snake_case : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def lowercase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = threading.Lock()
29
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( _UpperCAmelCase : list[int | str] ) -> None: """simple docstring""" create_state_space_tree(_UpperCAmelCase , [] , 0 , [0 for i in range(len(_UpperCAmelCase ) )] ) def UpperCamelCase_ ( _UpperCAmelCase : list[int | str] , _UpperCAmelCase : list[int | str] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , ) -> None: """simple docstring""" if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return for i in range(len(_UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _UpperCAmelCase : List[str] = True create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 , _UpperCAmelCase ) current_sequence.pop() _UpperCAmelCase : int = False __SCREAMING_SNAKE_CASE : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __SCREAMING_SNAKE_CASE : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
31
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
from ...configuration_utils import PretrainedConfig UpperCAmelCase_ : Any = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''tapas''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE__ : List[str]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=10.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]="ratio" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[str]=6_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : str , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) a_ : Any = vocab_size a_ : int = hidden_size a_ : List[str] = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[Any] = intermediate_size a_ : Union[str, Any] = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : int = type_vocab_sizes a_ : str = initializer_range a_ : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters a_ : List[Any] = positive_label_weight a_ : int = num_aggregation_labels a_ : Union[str, Any] = aggregation_loss_weight a_ : Dict = use_answer_as_supervision a_ : Optional[int] = answer_loss_importance a_ : Any = use_normalized_answer_loss a_ : Optional[int] = huber_loss_delta a_ : Tuple = temperature a_ : str = aggregation_temperature a_ : Union[str, Any] = use_gumbel_for_cells a_ : Tuple = use_gumbel_for_aggregation a_ : Any = average_approximation_function a_ : Dict = cell_selection_preference a_ : Any = answer_loss_cutoff a_ : Dict = max_num_rows a_ : str = max_num_columns a_ : Union[str, Any] = average_logits_per_cell a_ : List[Any] = select_one_column a_ : Any = allow_empty_column_selection a_ : int = init_cell_selection_weights_to_zero a_ : List[Any] = reset_position_index_per_cell a_ : Tuple = disable_per_token_loss # Aggregation hyperparameters a_ : Union[str, Any] = aggregation_labels a_ : Optional[int] = no_aggregation_label_index if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in aggregation_labels.items()}
32
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
"""simple docstring""" class _UpperCAmelCase : def __init__( self : List[Any] ) -> Union[str, Any]: lowercase_ : List[str] = {} def A ( self : Dict ) -> None: print(self.vertex ) for i in self.vertex: print(A , ''' -> ''' , ''' -> '''.join([str(A ) for j in self.vertex[i]] ) ) def A ( self : Dict , A : int , A : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(A ) else: # else make a new vertex lowercase_ : int = [to_vertex] def A ( self : Any ) -> None: # visited array for storing already visited nodes lowercase_ : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(A , A ) def A ( self : Tuple , A : int , A : list ) -> None: # mark start vertex as visited lowercase_ : Optional[Any] = True print(A , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(A , A ) if __name__ == "__main__": __A : Tuple = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
33
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Union[str, Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''albert''' def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) __UpperCamelCase = vocab_size __UpperCamelCase = embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_hidden_groups __UpperCamelCase = num_attention_heads __UpperCamelCase = inner_group_num __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = position_embedding_type class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right A =5_00_03 A =5_00_02 @require_sentencepiece @require_tokenizers class _a ( __a , unittest.TestCase ): __a : Any = PLBartTokenizer __a : Any = None __a : Dict = False def A ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = PLBartTokenizer(lowercase , language_codes='''base''' , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = PLBartTokenizer(lowercase , language_codes='''base''' , keep_accents=lowercase ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = [tokenizer.convert_ids_to_tokens(lowercase ) for x in range(end - 4 , lowercase )] self.assertListEqual(lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) UpperCAmelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' UpperCAmelCase = tokenizer(lowercase ).input_ids self.assertEqual( tokenizer.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) , lowercase , ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = PLBartTokenizer(lowercase , language_codes='''multi''' , keep_accents=lowercase ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) UpperCAmelCase = tokenizer.vocab_size UpperCAmelCase = [tokenizer.convert_ids_to_tokens(lowercase ) for x in range(end - 7 , lowercase )] self.assertListEqual( lowercase , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) UpperCAmelCase = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' UpperCAmelCase = tokenizer(lowercase ).input_ids self.assertEqual( tokenizer.decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) , lowercase , ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): __a : Tuple = """uclanlp/plbart-python-en_XX""" __a : int = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] __a : List[str] = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] __a : int = [ 134, 5_452, 33_460, 33_441, 33_463, 33_465, 33_463, 33_449, 988, 20, 33_456, 19, 33_456, 771, 39, 4_258, 889, 3_318, 33_441, 33_463, 33_465, 33_463, 33_449, 2_471, 2, PYTHON_CODE, ] @classmethod def A ( cls : str ): '''simple docstring''' UpperCAmelCase = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) UpperCAmelCase = 1 return cls def A ( self : Dict ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def A ( self : Any ): '''simple docstring''' self.assertIn(lowercase , self.tokenizer.all_special_ids ) UpperCAmelCase = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCAmelCase = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , lowercase ) UpperCAmelCase = 10 UpperCAmelCase = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase ) self.assertEqual(len(lowercase ) , lowercase ) def A ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase ) UpperCAmelCase = PLBartTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase ) @require_torch def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors='''pt''' ) UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors='''pt''' ) UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors='''pt''' ) UpperCAmelCase = targets['''input_ids'''] UpperCAmelCase = shift_tokens_right(lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(lowercase ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
34
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowercase ( __A ): '''simple docstring''' return (data["data"], data["target"]) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(__A ,__A ) # Predict target for test data __UpperCamelCase = xgb.predict(__A ) __UpperCamelCase = predictions.reshape(len(__A ) ,1 ) return predictions def _lowercase ( ): '''simple docstring''' __UpperCamelCase = fetch_california_housing() __UpperCamelCase , __UpperCamelCase = data_handling(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split( __A ,__A ,test_size=0.25 ,random_state=1 ) __UpperCamelCase = xgboost(__A ,__A ,__A ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" ) print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
349
0
'''simple docstring''' import baseaa def __snake_case( _lowerCAmelCase ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def __snake_case( _lowerCAmelCase ) -> str: return baseaa.baadecode(_lowerCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": __a = "Hello World!" __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
35
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
'''simple docstring''' import string def _lowercase ( __A ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(__A ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = input("""Encrypted message: """ ) __UpperCamelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''▁''' _lowerCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowerCAmelCase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowerCAmelCase = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Optional[int] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token lowerCAmelCase__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) lowerCAmelCase__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Dict = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> int: lowerCAmelCase__ : List[str] = self.__dict__.copy() lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : List[Any] = [self.cls_token_id] lowerCAmelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : List[Any] = [self.sep_token_id] lowerCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> str: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase__ : Dict = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Tuple = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase ,""" """ ).strip() return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Optional[Any] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : Dict = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
37
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict ): super().__init__() UpperCamelCase :List[str] = nn.Linear(3 , 4 ) UpperCamelCase :Dict = nn.BatchNormad(4 ) UpperCamelCase :Optional[Any] = nn.Linear(4 , 5 ) def _A ( self : Tuple , __lowerCamelCase : List[str] ): return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Tuple ): UpperCamelCase :List[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , model.state_dict() ) UpperCamelCase :Dict = os.path.join(__lowerCamelCase , """index.json""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase :Union[str, Any] = os.path.join(__lowerCamelCase , F"""{key}.dat""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def _A ( self : Optional[Any] ): UpperCamelCase :List[str] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase :Optional[Any] = torch.randn(2 , 3 , dtype=__lowerCamelCase ) with TemporaryDirectory() as tmp_dir: UpperCamelCase :Dict = offload_weight(__lowerCamelCase , """weight""" , __lowerCamelCase , {} ) UpperCamelCase :Optional[Any] = os.path.join(__lowerCamelCase , """weight.dat""" ) self.assertTrue(os.path.isfile(__lowerCamelCase ) ) self.assertDictEqual(__lowerCamelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(__lowerCamelCase ).split(""".""" )[1]}} ) UpperCamelCase :str = load_offloaded_weight(__lowerCamelCase , index["""weight"""] ) self.assertTrue(torch.equal(__lowerCamelCase , __lowerCamelCase ) ) def _A ( self : str ): UpperCamelCase :List[str] = ModelForTest() UpperCamelCase :Optional[int] = model.state_dict() UpperCamelCase :Optional[Any] = {k: v for k, v in state_dict.items() if """linear2""" not in k} UpperCamelCase :List[str] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) UpperCamelCase :Tuple = {k: v for k, v in state_dict.items() if """weight""" in k} UpperCamelCase :List[Any] = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__lowerCamelCase , __lowerCamelCase ) # Duplicates are removed UpperCamelCase :Optional[int] = OffloadedWeightsLoader(state_dict=__lowerCamelCase , save_folder=__lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(__lowerCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__lowerCamelCase , weight_map[key] ) ) def _A ( self : int ): UpperCamelCase :str = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} UpperCamelCase :Optional[int] = extract_submodules_state_dict(__lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(__lowerCamelCase , {"""a.1""": 0, """a.2""": 2} ) UpperCamelCase :List[Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} UpperCamelCase :List[Any] = extract_submodules_state_dict(__lowerCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(__lowerCamelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
38
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '''▁''' _a = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} _a = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } _a = {'''vinai/bartpho-syllable''': 1024} class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = monolingual_vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _UpperCAmelCase = {} _UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = cnt cnt += 1 with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): _UpperCAmelCase = line.strip().split()[0] _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids: _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ''.join(UpperCAmelCase ).replace(UpperCAmelCase , ' ' ).strip() return out_string def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _UpperCAmelCase = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , 'wb' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(UpperCAmelCase )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
39
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __UpperCamelCase = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" __lowercase = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
40
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _lowercase : def __init__( self: List[str] , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any]=13 , UpperCamelCase__: List[str]=7 , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: Dict=True , UpperCamelCase__: Tuple=False , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: List[Any]=19 , UpperCamelCase__: str=32 , UpperCamelCase__: Tuple=5 , UpperCamelCase__: Any=4 , UpperCamelCase__: Dict=37 , UpperCamelCase__: Dict="gelu" , UpperCamelCase__: Any=0.1 , UpperCamelCase__: str=0.1 , UpperCamelCase__: Optional[int]=512 , UpperCamelCase__: str=16 , UpperCamelCase__: List[str]=2 , UpperCamelCase__: List[Any]=0.02 , UpperCamelCase__: str=3 , UpperCamelCase__: List[str]=4 , UpperCamelCase__: Union[str, Any]=None , ): lowerCamelCase__ : Any = parent lowerCamelCase__ : str = batch_size lowerCamelCase__ : Optional[Any] = seq_length lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Optional[int] = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Any = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Dict = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : int = None if self.use_input_mask: lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCamelCase__ , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def lowerCamelCase_ ( self: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: Any ): lowerCamelCase__ : Dict = EsmForProteinFolding(config=UpperCamelCase__ ).float() model.to(UpperCamelCase__ ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ ) lowerCamelCase__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = config_and_inputs lowerCamelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = False a = (EsmForProteinFolding,) if is_torch_available() else () a = () a = {} if is_torch_available() else {} a = False def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = EsmFoldModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: Tuple ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip("""Does not support attention outputs""" ) def lowerCamelCase_ ( self: List[Any] ): pass @unittest.skip def lowerCamelCase_ ( self: int ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase_ ( self: str ): pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase_ ( self: int ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase_ ( self: Optional[Any] ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase_ ( self: List[str] ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip("""ESMFold only has one output format.""" ) def lowerCamelCase_ ( self: Dict ): pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def lowerCamelCase_ ( self: Union[str, Any] ): pass @unittest.skip("""ESMFold does not support input chunking.""" ) def lowerCamelCase_ ( self: Any ): pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def lowerCamelCase_ ( self: Optional[int] ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase_ ( self: Any ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase_ ( self: str ): pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase_ ( self: List[Any] ): pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def lowerCamelCase_ ( self: Tuple ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase_ ( self: str ): pass @require_torch class _lowercase ( _lowercase ): @slow def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[Any] = EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() lowerCamelCase__ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase__ : Any = model(UpperCamelCase__ )["""positions"""] lowerCamelCase__ : Dict = torch.tensor([2.5_828, 0.7_993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCamelCase__ , atol=1e-4 ) )
41
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = FlaxPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(lowercase , lowercase ) __UpperCamelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase ) __UpperCamelCase = np.ones((1, 1) ) __UpperCamelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase ) __UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences __UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Tuple = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :int = tempfile.mkdtemp() # fmt: off __UpperCamelCase :int = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __UpperCamelCase :Tuple = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :List[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __UpperCamelCase :Optional[Any] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__lowercase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) __UpperCamelCase :List[str] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __UpperCamelCase :Any = os.path.join(self.tmpdirname , __lowercase) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(__lowercase , __lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> List[str]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self) -> List[str]: shutil.rmtree(self.tmpdirname) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __UpperCamelCase :int = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1)) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Dict = self.get_tokenizer() __UpperCamelCase :str = self.get_rust_tokenizer() __UpperCamelCase :Optional[Any] = self.get_image_processor() __UpperCamelCase :List[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) processor_slow.save_pretrained(self.tmpdirname) __UpperCamelCase :Optional[int] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase) __UpperCamelCase :Union[str, Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) processor_fast.save_pretrained(self.tmpdirname) __UpperCamelCase :Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , __lowercase) self.assertIsInstance(processor_fast.tokenizer , __lowercase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , __lowercase) self.assertIsInstance(processor_fast.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __UpperCamelCase :int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') __UpperCamelCase :List[Any] = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0) __UpperCamelCase :Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[int] = self.get_image_processor() __UpperCamelCase :Optional[Any] = self.get_tokenizer() __UpperCamelCase :Dict = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Dict = self.prepare_image_inputs() __UpperCamelCase :Union[str, Any] = image_processor(__lowercase , return_tensors='''np''') __UpperCamelCase :str = processor(images=__lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = self.get_image_processor() __UpperCamelCase :Dict = self.get_tokenizer() __UpperCamelCase :str = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Tuple = '''lower newer''' __UpperCamelCase :str = processor(text=__lowercase) __UpperCamelCase :Optional[Any] = tokenizer(__lowercase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :str = self.get_image_processor() __UpperCamelCase :Tuple = self.get_tokenizer() __UpperCamelCase :Optional[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Optional[int] = '''lower newer''' __UpperCamelCase :str = self.prepare_image_inputs() __UpperCamelCase :Any = processor(text=__lowercase , images=__lowercase) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(__lowercase): processor() def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :str = self.get_image_processor() __UpperCamelCase :Tuple = self.get_tokenizer() __UpperCamelCase :List[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :Optional[Any] = self.prepare_image_inputs() __UpperCamelCase :Optional[Any] = self.prepare_image_inputs() __UpperCamelCase :List[Any] = processor(images=__lowercase , visual_prompt=__lowercase) self.assertListEqual(list(inputs.keys()) , ['''pixel_values''', '''conditional_pixel_values''']) # test if it raises when no input is passed with pytest.raises(__lowercase): processor() def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = self.get_image_processor() __UpperCamelCase :List[str] = self.get_tokenizer() __UpperCamelCase :Optional[Any] = CLIPSegProcessor(tokenizer=__lowercase , image_processor=__lowercase) __UpperCamelCase :int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase :Optional[Any] = processor.batch_decode(__lowercase) __UpperCamelCase :Any = tokenizer.batch_decode(__lowercase) self.assertListEqual(__lowercase , __lowercase)
43
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : int ) -> List[str]: _lowerCAmelCase : Tuple = k_size // 2 _lowerCAmelCase , _lowerCAmelCase : List[str] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : Union[str, Any] = 1 / (2 * pi * sigma) * exp(-(square(_lowerCamelCase ) + square(_lowerCamelCase )) / (2 * square(_lowerCamelCase )) ) return g def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> Dict: _lowerCAmelCase , _lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : Optional[int] = height - k_size + 1 _lowerCAmelCase : Dict = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : int = 0 for i, j in product(range(_lowerCamelCase ) ,range(_lowerCamelCase ) ): _lowerCAmelCase : Any = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : List[Any] = gen_gaussian_kernel(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = ravel(_lowerCamelCase ) # reshape and get the dst image _lowerCAmelCase : int = dot(_lowerCamelCase ,_lowerCamelCase ).reshape(_lowerCamelCase ,_lowerCamelCase ).astype(_lowerCamelCase ) return dst if __name__ == "__main__": # read original image _a : Optional[Any] = imread(r'../image_data/lena.jpg') # turn image in gray scale value _a : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _a : Union[str, Any] = gaussian_filter(gray, 3, sigma=1) _a : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
44
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = BertJapaneseTokenizer __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Any = True def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''こんにちは、世界。 \nこんばんは、世界。''' __a = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __UpperCAmelCase ( self , _a ): __a , __a = self.get_input_output_texts(_a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_a ) __a = '''こんにちは、世界。\nこんばんは、世界。''' __a = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __a = pickle.load(_a ) __a = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCAmelCase ( self ): try: __a = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCAmelCase ( self ): try: __a = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCAmelCase ( self ): __a = MecabTokenizer(do_lower_case=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __UpperCAmelCase ( self ): try: __a = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __UpperCAmelCase ( self ): __a = MecabTokenizer(normalize_text=_a , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_a ) __a = '''こんにちは、世界。\nこんばんは、世界。''' __a = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __a = pickle.load(_a ) __a = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(normalize_text=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __UpperCAmelCase ( self ): __a = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_a ) __a = '''こんにちは、世界。\nこんばんは、世界。''' __a = tokenizer.tokenize(_a ) self.assertListEqual(_a , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __a = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_a , '''wb''' ) as handle: pickle.dump(_a , _a ) with open(_a , '''rb''' ) as handle: __a = pickle.load(_a ) __a = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def __UpperCAmelCase ( self ): __a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCAmelCase ( self ): __a = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCAmelCase ( self ): __a = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __UpperCAmelCase ( self ): __a = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __UpperCAmelCase ( self ): __a = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __UpperCAmelCase ( self ): __a = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) __a = tokenizer.subword_tokenizer __a = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_a , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) __a = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_a , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) __a = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) __a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = BertJapaneseTokenizer __UpperCAmelCase : Any = False def __UpperCAmelCase ( self ): super().setUp() __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , **_a ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_a ) def __UpperCAmelCase ( self , _a ): __a = '''こんにちは、世界。 \nこんばんは、世界。''' __a = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): pass # TODO add if relevant def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) __a = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _a , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] __a = {} for i, token in enumerate(_a ): __a = i __a = CharacterTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) __a = tokenizer.encode('''ありがとう。''' , add_special_tokens=_a ) __a = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = '''cl-tohoku/bert-base-japanese''' __a = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) __a = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
45
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = set({"""(""", """[""", """{"""} ) lowerCAmelCase = set({""")""", """]""", """}"""} ) lowerCAmelCase = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(SCREAMING_SNAKE_CASE ) == 0 or (len(SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(SCREAMING_SNAKE_CASE ) == 0 def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = input("""Enter sequence of brackets: """ ) if is_balanced(SCREAMING_SNAKE_CASE ): print(SCREAMING_SNAKE_CASE , """is balanced""" ) else: print(SCREAMING_SNAKE_CASE , """is not balanced""" ) if __name__ == "__main__": main()
46
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
47
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ (lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Any = PhobertTokenizer lowerCamelCase_ : List[str] = False def _lowercase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Union[str, Any] = ["T@@", "i", "I", "R@@", "r", "e@@"] lowerCamelCase : Optional[Any] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) lowerCamelCase : Union[str, Any] = ["#version: 0.2", "l à</w>"] lowerCamelCase : Dict = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def _lowercase ( self , **UpperCamelCase__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Union[str, Any] = "Tôi là VinAI Research" lowerCamelCase : List[Any] = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def _lowercase ( self ) -> Tuple: lowerCamelCase : Optional[int] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase : Any = "Tôi là VinAI Research" lowerCamelCase : str = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() lowerCamelCase : Tuple = tokenizer.tokenize(UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = tokens + [tokenizer.unk_token] lowerCamelCase : Any = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
48
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
__snake_case :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __snake_case :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __snake_case :Optional[int] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
49
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : int = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
def A (__A : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) UpperCAmelCase_ = sum(__A ) / len(__A ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__A ) if __name__ == "__main__": import doctest doctest.testmod()
51
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
0
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( _lowerCAmelCase ) -> int: # getting number of pixels in the image UpperCamelCase , UpperCamelCase : List[str] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): UpperCamelCase : Tuple = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __lowerCamelCase : Any = imread("""image_data/lena.jpg""", 1) # convert to its negative __lowerCamelCase : Optional[int] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
52
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a__ : Any =logging.get_logger(__name__) a__ : List[str] ='''▁''' a__ : Optional[Any] ={'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : Any ={ '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } a__ : Optional[int] ={ '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : Optional[Any] =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[str] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] =[] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__( self : Optional[int] , __A : Union[str, Any] , __A : Any="<s>" , __A : List[str]="</s>" , __A : Dict="</s>" , __A : str="<s>" , __A : Optional[int]="<unk>" , __A : str="<pad>" , __A : Optional[int]="<mask>" , __A : List[str]=None , __A : Optional[int]=None , __A : Optional[Any]=None , __A : Optional[Dict[str, Any]] = None , __A : Dict=None , **__A : int , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , tokenizer_file=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __UpperCamelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __UpperCamelCase = 1 __UpperCamelCase = len(self.sp_model ) __UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A ) } __UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __UpperCamelCase = src_lang if src_lang is not None else 'en_XX' __UpperCamelCase = self.lang_code_to_id[self._src_lang] __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None __UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[Any] , __A : int ): __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _lowerCamelCase ( self : Union[str, Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _lowerCamelCase ( self : List[str] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : Optional[int] , __A : str ): __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) __UpperCamelCase = [1] * len(self.prefix_tokens ) __UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def _lowerCamelCase ( self : Union[str, Any] , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Tuple , __A : List[int] , __A : Optional[List[int]] = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Union[str, Any] , __A : Union[str, Any] , __A : str , __A : Optional[str] , __A : Optional[str] , **__A : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) __UpperCamelCase = self.convert_tokens_to_ids(__A ) __UpperCamelCase = tgt_lang_id return inputs def _lowerCamelCase ( self : str ): __UpperCamelCase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : List[Any] , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def _lowerCamelCase ( self : Optional[int] , __A : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCamelCase ( self : Dict , __A : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCamelCase ( self : Optional[Any] , __A : Optional[Any] ): __UpperCamelCase = ''.join(__A ).replace(__A , ' ' ).strip() return out_string def _lowerCamelCase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( __A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def _lowerCamelCase ( self : Tuple , __A : List[str] , __A : str = "en_XX" , __A : Optional[List[str]] = None , __A : str = "ro_RO" , **__A : int , ): __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _lowerCamelCase ( self : Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : Optional[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Dict , __A : List[Any] ): __UpperCamelCase = self.lang_code_to_id[src_lang] __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] def _lowerCamelCase ( self : Tuple , __A : str ): __UpperCamelCase = self.lang_code_to_id[lang] __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code]
53
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = "philschmid/bart-large-cnn-samsum" snake_case__ : str = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) snake_case__ : Union[str, Any] = "summarizer" snake_case__ : Optional[Any] = AutoTokenizer snake_case__ : Optional[int] = AutoModelForSeqaSeqLM snake_case__ : Any = ["text"] snake_case__ : Tuple = ["text"] def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[Any] ) -> int: return self.pre_processor(UpperCAmelCase__ , return_tensors="pt" , truncation=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : int ) -> Any: return self.model.generate(**UpperCAmelCase__ )[0] def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : List[Any] ) -> List[Any]: return self.pre_processor.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
54
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : int = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
55
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Union[str, Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''albert''' def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) __UpperCamelCase = vocab_size __UpperCamelCase = embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_hidden_groups __UpperCamelCase = num_attention_heads __UpperCamelCase = inner_group_num __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = position_embedding_type class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a : List[str] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class a ( unittest.TestCase ): @classmethod def A_ ( cls : str ): snake_case_ = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def A_ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def A_ ( self : Tuple ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ , repo_id='''test-model-flax''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def A_ ( self : Optional[Any] ): snake_case_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) snake_case_ = FlaxBertModel(lowercase_ ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( lowercase_ , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) snake_case_ = flatten_dict(unfreeze(model.params ) ) snake_case_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): snake_case_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(lowercase_ , 1e-3 , msg=F"{key} not identical" ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = True snake_case_ = flatten_dict(modela.params ) snake_case_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: snake_case_ = False return models_are_equal @require_flax class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) snake_case_ = FlaxBertModel(lowercase_ ) snake_case_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(lowercase_ , lowercase_ ) , max_shard_size='''10KB''' ) with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertTrue(check_models_equal(lowercase_ , lowercase_ ) ) def A_ ( self : str ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( self : Tuple ): snake_case_ = '''bert''' snake_case_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(lowercase_ ): snake_case_ = FlaxBertModel.from_pretrained(lowercase_ ) snake_case_ = FlaxBertModel.from_pretrained(lowercase_ , subfolder=lowercase_ ) self.assertIsNotNone(lowercase_ )
56
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowercase ( __A ): '''simple docstring''' return (data["data"], data["target"]) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(__A ,__A ) # Predict target for test data __UpperCamelCase = xgb.predict(__A ) __UpperCamelCase = predictions.reshape(len(__A ) ,1 ) return predictions def _lowercase ( ): '''simple docstring''' __UpperCamelCase = fetch_california_housing() __UpperCamelCase , __UpperCamelCase = data_handling(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split( __A ,__A ,test_size=0.25 ,random_state=1 ) __UpperCamelCase = xgboost(__A ,__A ,__A ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" ) print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
349
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) __lowerCAmelCase = load_dataset("ashraq/esc50" ) __lowerCAmelCase = dataset["train"]["audio"][-1]["array"] __lowerCAmelCase = audio_classifier(__a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__a ) , [{"score": 0.5_0_1, "label": "Sound of a dog"}, {"score": 0.4_9_9, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def snake_case ( self ): pass @slow @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog __lowerCAmelCase = load_dataset("ashraq/esc50" ) __lowerCAmelCase = dataset["train"]["audio"][-1]["array"] __lowerCAmelCase = audio_classifier(__a , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__a ) , [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ] , ) __lowerCAmelCase = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) __lowerCAmelCase = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.9_9_9, "label": "Sound of a dog"}, {"score": 0.0_0_1, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def snake_case ( self ): pass
57
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase = XGLMTokenizer UpperCamelCase = XGLMTokenizerFast UpperCamelCase = True UpperCamelCase = True def snake_case_( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing _SCREAMING_SNAKE_CASE = XGLMTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = """<pad>""" _SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def snake_case_( self ) -> Dict: _SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(A ) , 1008 ) def snake_case_( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def snake_case_( self ) -> Any: _SCREAMING_SNAKE_CASE = XGLMTokenizer(A , keep_accents=A ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def snake_case_( self ) -> str: return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def snake_case_( self ) -> int: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(A , f.name ) _SCREAMING_SNAKE_CASE = XGLMTokenizer(f.name , keep_accents=A ) _SCREAMING_SNAKE_CASE = pickle.dumps(A ) pickle.loads(A ) def snake_case_( self ) -> List[str]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A , add_special_tokens=A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) @slow def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = """Hello World!""" _SCREAMING_SNAKE_CASE = [2, 3_1227, 4447, 35] self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def snake_case_( self ) -> str: _SCREAMING_SNAKE_CASE = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _SCREAMING_SNAKE_CASE = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def snake_case_( self ) -> List[str]: # fmt: off _SCREAMING_SNAKE_CASE = { """input_ids""": [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""facebook/xglm-564M""" , padding=A , )
58
'''simple docstring''' import string def _lowercase ( __A ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(__A ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = input("""Encrypted message: """ ) __UpperCamelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase ( __lowerCamelCase : str = "" ): snake_case : Dict = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" snake_case : Union[str, Any] = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) snake_case : str = soup.find_all("td" , attrs="titleColumn" ) snake_case : Union[str, Any] = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCamelCase , __lowerCamelCase ) } def UpperCamelCase ( __lowerCamelCase : str = "IMDb_Top_250_Movies.csv" ): snake_case : List[str] = get_imdb_top_aaa_movies() with open(__lowerCamelCase , "w" , newline="" ) as out_file: snake_case : Union[str, Any] = csv.writer(__lowerCamelCase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
59
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _snake_case ( _snake_case : str , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Optional[int]=True , _snake_case : str="pt" ): lowerCAmelCase : int = {'''add_prefix_space''': True} if isinstance(_snake_case , _snake_case ) and not line.startswith(''' ''' ) else {} lowerCAmelCase : str = padding_side return tokenizer( [line] , max_length=_snake_case , padding='''max_length''' if pad_to_max_length else None , truncation=_snake_case , return_tensors=_snake_case , add_special_tokens=_snake_case , **_snake_case , ) def _snake_case ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : str=None , ): lowerCAmelCase : Tuple = input_ids.ne(_snake_case ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class snake_case_( a__ ): def __init__( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]="train" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[Any]="" , ): super().__init__() lowerCAmelCase : Any = Path(UpperCamelCase_ ).joinpath(type_path + '''.source''' ) lowerCAmelCase : int = Path(UpperCamelCase_ ).joinpath(type_path + '''.target''' ) lowerCAmelCase : Any = self.get_char_lens(self.src_file ) lowerCAmelCase : Optional[Any] = max_source_length lowerCAmelCase : Any = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' lowerCAmelCase : List[Any] = tokenizer lowerCAmelCase : Optional[Any] = prefix if n_obs is not None: lowerCAmelCase : Union[str, Any] = self.src_lens[:n_obs] lowerCAmelCase : Optional[Any] = src_lang lowerCAmelCase : Optional[int] = tgt_lang def __len__( self : List[str] ): return len(self.src_lens ) def __getitem__( self : Any , UpperCamelCase_ : List[str] ): lowerCAmelCase : int = index + 1 # linecache starts at 1 lowerCAmelCase : List[Any] = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase_ ).rstrip('''\n''' ) lowerCAmelCase : Tuple = linecache.getline(str(self.tgt_file ) , UpperCamelCase_ ).rstrip('''\n''' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase : List[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer ) lowerCAmelCase : Tuple = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer lowerCAmelCase : Optional[Any] = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_source_length , '''right''' ) lowerCAmelCase : Optional[Any] = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_target_length , '''right''' ) lowerCAmelCase : List[str] = source_inputs['''input_ids'''].squeeze() lowerCAmelCase : List[Any] = target_inputs['''input_ids'''].squeeze() lowerCAmelCase : int = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : int ): return [len(UpperCamelCase_ ) for x in Path(UpperCamelCase_ ).open().readlines()] def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : str ): lowerCAmelCase : str = torch.stack([x['''input_ids'''] for x in batch] ) lowerCAmelCase : Dict = torch.stack([x['''attention_mask'''] for x in batch] ) lowerCAmelCase : int = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowerCAmelCase : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : Optional[Any] = trim_batch(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase, lowerCAmelCase : Tuple = trim_batch(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : List[Any] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch snake_case__ : Dict = getLogger(__name__) def _snake_case ( _snake_case : List[List] ): return list(itertools.chain.from_iterable(_snake_case ) ) def _snake_case ( _snake_case : str ): lowerCAmelCase : Tuple = get_git_info() save_json(_snake_case , os.path.join(_snake_case , '''git_log.json''' ) ) def _snake_case ( _snake_case : Any , _snake_case : Tuple , _snake_case : List[Any]=4 , **_snake_case : Optional[int] ): with open(_snake_case , '''w''' ) as f: json.dump(_snake_case , _snake_case , indent=_snake_case , **_snake_case ) def _snake_case ( _snake_case : Tuple ): with open(_snake_case ) as f: return json.load(_snake_case ) def _snake_case ( ): lowerCAmelCase : Dict = git.Repo(search_parent_directories=_snake_case ) lowerCAmelCase : Dict = { '''repo_id''': str(_snake_case ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def _snake_case ( _snake_case : Callable , _snake_case : Iterable ): return list(map(_snake_case , _snake_case ) ) def _snake_case ( _snake_case : str , _snake_case : Tuple ): with open(_snake_case , '''wb''' ) as f: return pickle.dump(_snake_case , _snake_case ) def _snake_case ( _snake_case : Any ): def remove_articles(_snake_case : Dict ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , _snake_case ) def white_space_fix(_snake_case : int ): return " ".join(text.split() ) def remove_punc(_snake_case : str ): lowerCAmelCase : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def _snake_case ( _snake_case : str , _snake_case : List[Any] ): lowerCAmelCase : str = normalize_answer(_snake_case ).split() lowerCAmelCase : Union[str, Any] = normalize_answer(_snake_case ).split() lowerCAmelCase : str = Counter(_snake_case ) & Counter(_snake_case ) lowerCAmelCase : Tuple = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase : Dict = 1.0 * num_same / len(_snake_case ) lowerCAmelCase : str = 1.0 * num_same / len(_snake_case ) lowerCAmelCase : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _snake_case ( _snake_case : str , _snake_case : List[str] ): return normalize_answer(_snake_case ) == normalize_answer(_snake_case ) def _snake_case ( _snake_case : List[str] , _snake_case : List[str] ): assert len(_snake_case ) == len(_snake_case ) lowerCAmelCase : Dict = 0 for hypo, pred in zip(_snake_case , _snake_case ): em += exact_match_score(_snake_case , _snake_case ) if len(_snake_case ) > 0: em /= len(_snake_case ) return {"em": em} def _snake_case ( _snake_case : str ): return model_prefix.startswith('''rag''' ) def _snake_case ( _snake_case : str , _snake_case : Any , _snake_case : str ): lowerCAmelCase : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase : List[str] = '''dropout_rate''' for p in extra_params: if getattr(_snake_case , _snake_case , _snake_case ): if not hasattr(_snake_case , _snake_case ) and not hasattr(_snake_case , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_snake_case ) ) delattr(_snake_case , _snake_case ) continue lowerCAmelCase : Dict = p if hasattr(_snake_case , _snake_case ) else equivalent_param[p] setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) delattr(_snake_case , _snake_case ) return hparams, config
60
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
"""simple docstring""" import logging from transformers import PretrainedConfig _a = logging.getLogger(__name__) _a = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = """bertabs""" def __init__( self , lowercase_=3_0522 , lowercase_=512 , lowercase_=6 , lowercase_=512 , lowercase_=8 , lowercase_=512 , lowercase_=0.2 , lowercase_=6 , lowercase_=768 , lowercase_=8 , lowercase_=2048 , lowercase_=0.2 , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : List[Any] = max_pos UpperCAmelCase_ : int = enc_layers UpperCAmelCase_ : str = enc_hidden_size UpperCAmelCase_ : str = enc_heads UpperCAmelCase_ : Dict = enc_ff_size UpperCAmelCase_ : Tuple = enc_dropout UpperCAmelCase_ : List[str] = dec_layers UpperCAmelCase_ : Dict = dec_hidden_size UpperCAmelCase_ : str = dec_heads UpperCAmelCase_ : Union[str, Any] = dec_ff_size UpperCAmelCase_ : Optional[int] = dec_dropout
61
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __UpperCamelCase = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _A = logging.get_logger(__name__) class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : str = None @staticmethod def _a ( ) -> Optional[int]: raise NotImplementedError def _a ( self , A_ , A_ , A_ , **A_ ) -> Dict: raise NotImplementedError def _a ( self , A_ ) -> List[Any]: raise NotImplementedError def _a ( self ) -> str: if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def _a ( cls ) -> int: return f'`pip install {cls.pip_package or cls.name}`' class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "optuna" @staticmethod def _a ( ) -> Union[str, Any]: return is_optuna_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> List[Any]: return run_hp_search_optuna(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> Dict: return default_hp_space_optuna(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Tuple = "ray" UpperCAmelCase__ : str = "'ray[tune]'" @staticmethod def _a ( ) -> str: return is_ray_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> str: return run_hp_search_ray(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> List[Any]: return default_hp_space_ray(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "sigopt" @staticmethod def _a ( ) -> Tuple: return is_sigopt_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> int: return run_hp_search_sigopt(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> Union[str, Any]: return default_hp_space_sigopt(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[Any] = "wandb" @staticmethod def _a ( ) -> Any: return is_wandb_available() def _a ( self , A_ , A_ , A_ , **A_ ) -> Optional[Any]: return run_hp_search_wandb(A_ , A_ , A_ , **A_ ) def _a ( self , A_ ) -> List[str]: return default_hp_space_wandb(A_ ) _A = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _UpperCAmelCase ( ): __UpperCamelCase =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =available_backends[0].name if len(SCREAMING_SNAKE_CASE__ ) > 1: logger.info( F'{len(SCREAMING_SNAKE_CASE__ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
62
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
'''simple docstring''' from functools import reduce lowerCAmelCase_ : Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowerCamelCase ( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
63
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = FlaxPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(lowercase , lowercase ) __UpperCamelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase ) __UpperCamelCase = np.ones((1, 1) ) __UpperCamelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase ) __UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences __UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
349
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowercase( __a ): '''simple docstring''' lowercase__ = "biogpt" def __init__( self: Dict, a_: List[Any]=42_384, a_: int=1_024, a_: Optional[int]=24, a_: List[str]=16, a_: Optional[Any]=4_096, a_: int="gelu", a_: int=0.1, a_: List[Any]=0.1, a_: Any=1_024, a_: Optional[Any]=0.02, a_: Dict=1E-12, a_: Tuple=True, a_: Any=True, a_: Tuple=0.0, a_: str=0.0, a_: int=1, a_: Any=0, a_: List[str]=2, **a_: Optional[int], ): '''simple docstring''' _snake_case : Dict = vocab_size _snake_case : int = max_position_embeddings _snake_case : Optional[int] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Dict = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : List[str] = scale_embedding _snake_case : Dict = use_cache _snake_case : Optional[int] = layerdrop _snake_case : Any = activation_dropout super().__init__(pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, **a_ )
64
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
0
from math import ceil def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = list(range(0, __A ) ) UpperCAmelCase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCAmelCase__ = [] for i in device_map_blocks: if device_map_blocks.count(__A ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__A ) # Missing blocks UpperCAmelCase__ = [i for i in blocks if i not in device_map_blocks] UpperCAmelCase__ = [i for i in device_map_blocks if i not in blocks] if len(__A ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__A ) ) if len(__A ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__A ) ) def lowerCAmelCase_ ( __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = list(range(__A ) ) UpperCAmelCase__ = int(ceil(n_layers / len(__A ) ) ) UpperCAmelCase__ = [layers[i : i + n_blocks] for i in range(0, __A, __A )] return dict(zip(__A, __A ) )
65
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
'''simple docstring''' import re def __lowerCAmelCase ( UpperCamelCase__ ) -> str: if len(re.findall('''[ATCG]''' , UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
69
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : str =logging.get_logger(__name__) A__ : int ={ '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCAmelCase ( snake_case_ ): _lowercase: Union[str, Any] = '''table-transformer''' _lowercase: str = ['''past_key_values'''] _lowercase: Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , __snake_case : int=True , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=3 , __snake_case : int=1_00 , __snake_case : Optional[Any]=6 , __snake_case : Any=20_48 , __snake_case : Optional[Any]=8 , __snake_case : int=6 , __snake_case : int=20_48 , __snake_case : Optional[int]=8 , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Any="relu" , __snake_case : Union[str, Any]=2_56 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=0.0 , __snake_case : List[str]=0.0 , __snake_case : Optional[int]=0.02 , __snake_case : Dict=1.0 , __snake_case : Optional[Any]=False , __snake_case : Tuple="sine" , __snake_case : List[Any]="resnet50" , __snake_case : int=True , __snake_case : int=False , __snake_case : str=1 , __snake_case : Optional[Any]=5 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=1 , __snake_case : Union[str, Any]=1 , __snake_case : Optional[int]=5 , __snake_case : int=2 , __snake_case : int=0.1 , **__snake_case : int , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowerCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__snake_case , __snake_case ): _lowerCAmelCase = backbone_config.get("""model_type""" ) _lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase = config_class.from_dict(__snake_case ) # set timm attributes to None _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None, None, None _lowerCAmelCase = use_timm_backbone _lowerCAmelCase = backbone_config _lowerCAmelCase = num_channels _lowerCAmelCase = num_queries _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = init_xavier_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = encoder_layers _lowerCAmelCase = auxiliary_loss _lowerCAmelCase = position_embedding_type _lowerCAmelCase = backbone _lowerCAmelCase = use_pretrained_backbone _lowerCAmelCase = dilation # Hungarian matcher _lowerCAmelCase = class_cost _lowerCAmelCase = bbox_cost _lowerCAmelCase = giou_cost # Loss coefficients _lowerCAmelCase = mask_loss_coefficient _lowerCAmelCase = dice_loss_coefficient _lowerCAmelCase = bbox_loss_coefficient _lowerCAmelCase = giou_loss_coefficient _lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def lowercase__ ( self : Optional[int] ) -> int: return self.encoder_attention_heads @property def lowercase__ ( self : Dict ) -> int: return self.d_model class UpperCAmelCase ( snake_case_ ): _lowercase: List[Any] = version.parse('''1.11''' ) @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Optional[Any] ) -> float: return 1E-5 @property def lowercase__ ( self : Optional[int] ) -> int: return 12
70
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ :Tuple = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A_ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
"""simple docstring""" from __future__ import annotations from random import random class __snake_case : def __init__( self : Dict , __lowerCAmelCase : int | None = None ): """simple docstring""" _lowerCamelCase : List[Any] = value _lowerCamelCase : Any = random() _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None def __repr__( self : Any ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Tuple ): """simple docstring""" _lowerCamelCase : Union[str, Any] = str(self.value ) + ''' ''' _lowerCamelCase : Any = str(self.left or '''''' ) _lowerCamelCase : Any = str(self.right or '''''' ) return value + left + right def snake_case_ ( A_ : Node | None, A_ : int ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _lowerCamelCase , _lowerCamelCase : str = split(root.left, A_ ) return left, root else: _lowerCamelCase , _lowerCamelCase : Dict = split(root.right, A_ ) return root, right def snake_case_ ( A_ : Node | None, A_ : Node | None ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _lowerCamelCase : str = merge(left.right, A_ ) return left else: _lowerCamelCase : str = merge(A_, right.left ) return right def snake_case_ ( A_ : Node | None, A_ : int ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Node(A_ ) _lowerCamelCase , _lowerCamelCase : List[Any] = split(A_, A_ ) return merge(merge(A_, A_ ), A_ ) def snake_case_ ( A_ : Node | None, A_ : int ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Any = split(A_, value - 1 ) _lowerCamelCase , _lowerCamelCase : Any = split(A_, A_ ) return merge(A_, A_ ) def snake_case_ ( A_ : Node | None ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value, end=''',''' ) inorder(root.right ) def snake_case_ ( A_ : Node | None, A_ : str ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": _lowerCamelCase : Any = insert(A_, int(arg[1:] ) ) elif arg[0] == "-": _lowerCamelCase : Optional[Any] = erase(A_, int(arg[1:] ) ) else: print('''Unknown command''' ) return root def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _lowerCamelCase : Optional[int] = input() while args != "q": _lowerCamelCase : List[str] = interact_treap(A_, A_ ) print(A_ ) _lowerCamelCase : Optional[Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
72
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging a =logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = ['''audio_values''', '''audio_mask'''] def __init__( self : Any ,SCREAMING_SNAKE_CASE__ : str=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Dict=1 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1_6, 1_6] ,SCREAMING_SNAKE_CASE__ : Dict=1_2_8 ,SCREAMING_SNAKE_CASE__ : str=4_4_1_0_0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=8_6 ,SCREAMING_SNAKE_CASE__ : Tuple=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,**SCREAMING_SNAKE_CASE__ : Any ,): super().__init__( feature_size=SCREAMING_SNAKE_CASE__ ,sampling_rate=SCREAMING_SNAKE_CASE__ ,padding_value=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : int = spectrogram_length __lowerCamelCase : Tuple = num_channels __lowerCamelCase : int = patch_size __lowerCamelCase : Any = feature_size // self.patch_size[1] __lowerCamelCase : Tuple = n_fft __lowerCamelCase : List[str] = sampling_rate // hop_length_to_sampling_rate __lowerCamelCase : Tuple = sampling_rate __lowerCamelCase : str = padding_value __lowerCamelCase : Tuple = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=SCREAMING_SNAKE_CASE__ ,min_frequency=0.0 ,max_frequency=22050.0 ,sampling_rate=SCREAMING_SNAKE_CASE__ ,norm='slaney' ,mel_scale='slaney' ,).T def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.array): __lowerCamelCase : Dict = spectrogram( SCREAMING_SNAKE_CASE__ ,window_function(self.n_fft ,'hann') ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='dB' ,db_range=80.0 ,) __lowerCamelCase : Optional[Any] = log_spec[:, :-1] __lowerCamelCase : List[Any] = log_spec - 20.0 __lowerCamelCase : Tuple = np.clip(log_spec / 40.0 ,-2.0 ,0.0) + 1.0 return log_spec def __call__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : Optional[bool] = True ,SCREAMING_SNAKE_CASE__ : Optional[int] = None ,SCREAMING_SNAKE_CASE__ : bool = False ,SCREAMING_SNAKE_CASE__ : bool = False ,**SCREAMING_SNAKE_CASE__ : int ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __lowerCamelCase : int = isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __lowerCamelCase : Tuple = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE__ ,(list, tuple)) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list))) ) if is_batched: __lowerCamelCase : int = [np.asarray([speech] ,dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray): __lowerCamelCase : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa) elif isinstance(SCREAMING_SNAKE_CASE__ ,np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCamelCase : Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCamelCase : int = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowerCamelCase : int = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,SCREAMING_SNAKE_CASE__): __lowerCamelCase : Any = [np.asarray(SCREAMING_SNAKE_CASE__ ,dtype=np.floataa) for feature in audio_features] # Create audio attention mask __lowerCamelCase : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: __lowerCamelCase : Dict = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] __lowerCamelCase : int = np.array(SCREAMING_SNAKE_CASE__).astype(np.floataa) # convert into correct format for padding __lowerCamelCase : Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowerCamelCase : List[str] = np.ones([len(SCREAMING_SNAKE_CASE__), 1, max_time_len, self.feature_size]).astype(np.floataa) __lowerCamelCase : Any = padded_audio_features * self.padding_value for i in range(len(SCREAMING_SNAKE_CASE__)): __lowerCamelCase : int = audio_features[i] __lowerCamelCase : Union[str, Any] = feature # return as BatchFeature if return_attention_mask: __lowerCamelCase : int = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowerCamelCase : List[str] = {'audio_values': padded_audio_features} __lowerCamelCase : List[str] = BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__) return encoded_inputs
73
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
0
"""simple docstring""" from collections import namedtuple _lowercase = namedtuple('''from_to''', '''from_ to''') _lowercase = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 10_00), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00_454, 264.172), '''cubicyard''': from_to(0.76_455, 1.30_795), '''cubicfoot''': from_to(0.028, 35.3_147), '''cup''': from_to(0.000_236_588, 4_226.75), } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(snake_case__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(snake_case__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
74
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
'''simple docstring''' from __future__ import annotations a_ : str = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] a_ : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =len(__snake_case ) for i in range(__snake_case ): lowerCamelCase_ =-1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowerCamelCase_ =arr[j] break result.append(__snake_case ) return result def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =[] for i, outer in enumerate(__snake_case ): lowerCamelCase_ =-1 for inner in arr[i + 1 :]: if outer < inner: lowerCamelCase_ =inner break result.append(__snake_case ) return result def a_ ( __snake_case : list[float] ) -> list[float]: """simple docstring""" lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ =[-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCamelCase_ =stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) a_ : Dict = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
75
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase__ ( _a , _a , _a=1E-12): SCREAMING_SNAKE_CASE : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_a , axis=1) , a_min=_a)).T SCREAMING_SNAKE_CASE : Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_a , axis=1) , a_min=_a)).T return jnp.matmul(_a , norm_emb_a.T) class _UpperCamelCase ( nn.Module ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =jnp.floataa def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FlaxCLIPVisionModule(self.config.vision_config ) SCREAMING_SNAKE_CASE : Any = nn.Dense(self.config.projection_dim , use_bias=a , dtype=self.dtype ) SCREAMING_SNAKE_CASE : str = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : Optional[int] = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : List[Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) SCREAMING_SNAKE_CASE : Any = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , a : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_model(a )[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(a ) SCREAMING_SNAKE_CASE : List[Any] = jax_cosine_distance(a , self.special_care_embeds ) SCREAMING_SNAKE_CASE : str = jax_cosine_distance(a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE : Optional[int] = 0.0 SCREAMING_SNAKE_CASE : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE : str = jnp.round(a , 3 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=a ) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE : Union[str, Any] = is_special_care * 0.01 SCREAMING_SNAKE_CASE : Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE : Dict = jnp.round(a , 3 ) SCREAMING_SNAKE_CASE : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =CLIPConfig lowerCamelCase__ ='clip_input' lowerCamelCase__ =FlaxStableDiffusionSafetyCheckerModule def __init__( self : str , a : CLIPConfig , a : Optional[Tuple] = None , a : int = 0 , a : jnp.dtype = jnp.floataa , a : bool = True , **a : str , ) -> int: """simple docstring""" if input_shape is None: SCREAMING_SNAKE_CASE : List[Any] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE : Optional[int] = self.module_class(config=a , dtype=a , **a ) super().__init__(a , a , input_shape=a , seed=a , dtype=a , _do_init=_do_init ) def __UpperCamelCase ( self : str , a : jax.random.KeyArray , a : Tuple , a : FrozenDict = None ) -> FrozenDict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.normal(a , a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = jax.random.split(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} SCREAMING_SNAKE_CASE : int = self.module.init(a , a )["params"] return random_params def __call__( self : List[Any] , a : Optional[int] , a : dict = None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = jnp.transpose(a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(a , dtype=jnp.floataa ) , rngs={} , )
76
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a_ ( ): '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class UpperCAmelCase_ ( nn.Module): def __init__( self ) -> Optional[Any]: super().__init__() lowercase__ : List[str] = nn.Linear(3 , 4 ) lowercase__ : List[Any] = nn.BatchNormad(4 ) lowercase__ : Optional[int] = nn.Linear(4 , 5 ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: return self.lineara(self.batchnorm(self.lineara(a ) ) ) class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Tuple: lowercase__ : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(a ): nonlocal batch_sizes batch_sizes.append(a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a , [1_2_8, 6_4, 3_2, 1_6, 8] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : List[str] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(a , a ): nonlocal batch_sizes batch_sizes.append(a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowercase__ , lowercase__ : Any = mock_training_loop_function('hello' ) self.assertListEqual(a , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def _UpperCAmelCase ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(a ): pass with self.assertRaises(a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCAmelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(a ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def _UpperCAmelCase ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(a , a , a ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def _UpperCAmelCase ( self ) -> Dict: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(a ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(a ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Dict = torch.cuda.memory_allocated() lowercase__ : Any = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a ) lowercase__ : Tuple = release_memory(a ) self.assertEqual(torch.cuda.memory_allocated() , a )
77
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Union[str, Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''albert''' def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) __UpperCamelCase = vocab_size __UpperCamelCase = embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_hidden_groups __UpperCamelCase = num_attention_heads __UpperCamelCase = inner_group_num __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = position_embedding_type class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
"""simple docstring""" from __future__ import annotations import pandas as pd def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase_ ): UpperCAmelCase = burst_time[i] UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 999999999 UpperCAmelCase = 0 UpperCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase = remaining_time[j] UpperCAmelCase = j UpperCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase = remaining_time[short] if minm == 0: UpperCAmelCase = 999999999 if remaining_time[short] == 0: complete += 1 UpperCAmelCase = False # Find finish time of current process UpperCAmelCase = increment_time + 1 # Calculate waiting time UpperCAmelCase = finish_time - arrival_time[short] UpperCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = [0] * no_of_processes for i in range(lowercase_ ): UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = 0 UpperCAmelCase = 0 for i in range(lowercase_ ): UpperCAmelCase = total_waiting_time + waiting_time[i] UpperCAmelCase = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") snake_case_ = int(input()) snake_case_ = [0] * no_of_processes snake_case_ = [0] * no_of_processes snake_case_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) snake_case_ , snake_case_ = map(int, input().split()) snake_case_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) snake_case_ = burst_time snake_case_ = no_of_processes snake_case_ = waiting_time snake_case_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) snake_case_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
78
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowercase ( __A ): '''simple docstring''' return (data["data"], data["target"]) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(__A ,__A ) # Predict target for test data __UpperCamelCase = xgb.predict(__A ) __UpperCamelCase = predictions.reshape(len(__A ) ,1 ) return predictions def _lowercase ( ): '''simple docstring''' __UpperCamelCase = fetch_california_housing() __UpperCamelCase , __UpperCamelCase = data_handling(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split( __A ,__A ,test_size=0.25 ,random_state=1 ) __UpperCamelCase = xgboost(__A ,__A ,__A ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" ) print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
349
0
'''simple docstring''' import requests def __lowercase ( __lowercase , __lowercase ) -> None: '''simple docstring''' _A = {"Content-Type": "application/json"} _A = requests.post(__lowercase , json={"text": message_body} , headers=__lowercase ) if response.status_code != 200: _A = ( "Request to slack returned an error " F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(__lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
79
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig a__ : Dict = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class lowercase_ ( a__ ): __UpperCAmelCase = 'tapas' def __init__( self , a=3_05_22 , a=7_68 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=10_24 , a=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , a=0.02 , a=1e-12 , a=0 , a=10.0 , a=0 , a=1.0 , a=None , a=1.0 , a=False , a=None , a=1.0 , a=1.0 , a=False , a=False , a="ratio" , a=None , a=None , a=64 , a=32 , a=False , a=True , a=False , a=False , a=True , a=False , a=None , a=None , **a , ): super().__init__(pad_token_id=a , **a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_sizes UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps # Fine-tuning task hyperparameters UpperCamelCase__ = positive_label_weight UpperCamelCase__ = num_aggregation_labels UpperCamelCase__ = aggregation_loss_weight UpperCamelCase__ = use_answer_as_supervision UpperCamelCase__ = answer_loss_importance UpperCamelCase__ = use_normalized_answer_loss UpperCamelCase__ = huber_loss_delta UpperCamelCase__ = temperature UpperCamelCase__ = aggregation_temperature UpperCamelCase__ = use_gumbel_for_cells UpperCamelCase__ = use_gumbel_for_aggregation UpperCamelCase__ = average_approximation_function UpperCamelCase__ = cell_selection_preference UpperCamelCase__ = answer_loss_cutoff UpperCamelCase__ = max_num_rows UpperCamelCase__ = max_num_columns UpperCamelCase__ = average_logits_per_cell UpperCamelCase__ = select_one_column UpperCamelCase__ = allow_empty_column_selection UpperCamelCase__ = init_cell_selection_weights_to_zero UpperCamelCase__ = reset_position_index_per_cell UpperCamelCase__ = disable_per_token_loss # Aggregation hyperparameters UpperCamelCase__ = aggregation_labels UpperCamelCase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , a ): UpperCamelCase__ = {int(a ): v for k, v in aggregation_labels.items()}
80
'''simple docstring''' import string def _lowercase ( __A ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(__A ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = input("""Encrypted message: """ ) __UpperCamelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
0
"""simple docstring""" from __future__ import annotations import numpy as np def _A ( lowercase ): """simple docstring""" a , a =np.shape(lowercase ) if rows != columns: a =( '''\'table\' has to be of square shaped array but got a ''' f'''{rows}x{columns} array:\n{table}''' ) raise ValueError(lowercase ) a =np.zeros((rows, columns) ) a =np.zeros((rows, columns) ) for i in range(lowercase ): for j in range(lowercase ): a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) a =(table[i][j] - total) / upper[j][j] a =1 for j in range(lowercase , lowercase ): a =sum(lower[i][k] * upper[k][j] for k in range(lowercase ) ) a =table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
81
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa A__ = logging.getLogger(__name__) class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''summarization''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ROUGE_KEYS __lowerCamelCase = '''rouge2''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: _lowerCAmelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(_snake_case , num_labels=_snake_case , mode=self.mode , **_snake_case ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) _lowerCAmelCase = Path(self.output_dir ) / """metrics.json""" _lowerCAmelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) _lowerCAmelCase = 0 _lowerCAmelCase = defaultdict(_snake_case ) _lowerCAmelCase = self.config.model_type _lowerCAmelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size _lowerCAmelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _lowerCAmelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } _lowerCAmelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _lowerCAmelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _lowerCAmelCase = get_git_info()["""repo_sha"""] _lowerCAmelCase = hparams.num_workers _lowerCAmelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _snake_case ): _lowerCAmelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _lowerCAmelCase = self.decoder_start_token_id _lowerCAmelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) _lowerCAmelCase = False _lowerCAmelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _lowerCAmelCase = self.hparams.eval_max_gen_length else: _lowerCAmelCase = self.model.config.max_length _lowerCAmelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(_snake_case , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) _lowerCAmelCase = True return readable_batch def snake_case ( self , _snake_case , **_snake_case ): """simple docstring""" return self.model(_snake_case , **_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.tokenizer.pad_token_id _lowerCAmelCase , _lowerCAmelCase = batch["""input_ids"""], batch["""attention_mask"""] _lowerCAmelCase = batch["""labels"""] if isinstance(self.model , _snake_case ): _lowerCAmelCase = self.model._shift_right(_snake_case ) else: _lowerCAmelCase = shift_tokens_right(_snake_case , _snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _lowerCAmelCase = decoder_input_ids self.save_readable_batch(_snake_case ) _lowerCAmelCase = self(_snake_case , attention_mask=_snake_case , decoder_input_ids=_snake_case , use_cache=_snake_case ) _lowerCAmelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _lowerCAmelCase = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size _lowerCAmelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _lowerCAmelCase = nn.functional.log_softmax(_snake_case , dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = label_smoothed_nll_loss( _snake_case , _snake_case , self.hparams.label_smoothing , ignore_index=_snake_case ) return (loss,) @property def snake_case ( self ): """simple docstring""" return self.tokenizer.pad_token_id def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) # tokens per batch _lowerCAmelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].shape[0] _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).sum() _lowerCAmelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case , _snake_case="val" ): """simple docstring""" self.step_count += 1 _lowerCAmelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _lowerCAmelCase = losses["""loss"""] _lowerCAmelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } _lowerCAmelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _lowerCAmelCase = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) _lowerCAmelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()} _lowerCAmelCase = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path _lowerCAmelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_rouge(_snake_case , _snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _lowerCAmelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=_snake_case , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _lowerCAmelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] _lowerCAmelCase = self.ids_to_clean_text(_snake_case ) _lowerCAmelCase = self.ids_to_clean_text(batch["""labels"""] ) _lowerCAmelCase = self._step(_snake_case ) _lowerCAmelCase = dict(zip(self.loss_names , _snake_case ) ) _lowerCAmelCase = self.calc_generative_metrics(_snake_case , _snake_case ) _lowerCAmelCase = np.mean(lmap(_snake_case , _snake_case ) ) base_metrics.update(gen_time=_snake_case , gen_len=_snake_case , preds=_snake_case , target=_snake_case , **_snake_case ) return base_metrics def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return self._generative_step(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" return self.validation_epoch_end(_snake_case , prefix="""test""" ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.n_obs[type_path] _lowerCAmelCase = self.target_lens[type_path] _lowerCAmelCase = self.dataset_class( self.tokenizer , type_path=_snake_case , n_obs=_snake_case , max_target_length=_snake_case , **self.dataset_kwargs , ) return dataset def snake_case ( self , _snake_case , _snake_case , _snake_case = False ): """simple docstring""" _lowerCAmelCase = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_sortish_sampler(_snake_case , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _lowerCAmelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case , batch_sampler=_snake_case , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _snake_case , batch_size=_snake_case , collate_fn=dataset.collate_fn , shuffle=_snake_case , num_workers=self.num_workers , sampler=_snake_case , ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=_snake_case ) return dataloader def snake_case ( self ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def snake_case ( self ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def snake_case ( _snake_case , _snake_case ): """simple docstring""" BaseTransformer.add_model_specific_args(_snake_case , _snake_case ) add_generic_args(_snake_case , _snake_case ) parser.add_argument( """--max_source_length""" , default=1024 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=_snake_case , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=_snake_case ) parser.add_argument("""--max_tokens_per_batch""" , type=_snake_case , default=_snake_case ) parser.add_argument("""--logger_name""" , type=_snake_case , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=_snake_case , default=500 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=_snake_case , default=-1 , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=_snake_case , default="""summarization""" , required=_snake_case , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=_snake_case , default=0.0 , required=_snake_case ) parser.add_argument("""--src_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--tgt_lang""" , type=_snake_case , default="""""" , required=_snake_case ) parser.add_argument("""--eval_beams""" , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument( """--val_metric""" , type=_snake_case , default=_snake_case , required=_snake_case , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=_snake_case , default=_snake_case , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=_snake_case , default=1 , required=_snake_case , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=_snake_case , default=-1 , required=_snake_case , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''translation''' __lowerCamelCase = ['''loss'''] __lowerCamelCase = ['''bleu'''] __lowerCamelCase = '''bleu''' def __init__( self , _snake_case , **_snake_case ): """simple docstring""" super().__init__(_snake_case , **_snake_case ) _lowerCAmelCase = hparams.src_lang _lowerCAmelCase = hparams.tgt_lang def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" return calculate_bleu(_snake_case , _snake_case ) def _UpperCAmelCase ( snake_case , snake_case=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=snake_case ) check_output_dir(snake_case , expected_items=3 ) if model is None: if "summarization" in args.task: _lowerCAmelCase = SummarizationModule(snake_case ) else: _lowerCAmelCase = TranslationModule(snake_case ) _lowerCAmelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): _lowerCAmelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = os.environ.get("""WANDB_PROJECT""" , snake_case ) _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=snake_case ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: _lowerCAmelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _lowerCAmelCase = False _lowerCAmelCase = args.val_metric == """loss""" _lowerCAmelCase = generic_train( snake_case , snake_case , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , snake_case ) , early_stopping_callback=snake_case , logger=snake_case , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model _lowerCAmelCase = """""" _lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=snake_case ) ) if checkpoints: _lowerCAmelCase = checkpoints[-1] _lowerCAmelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": A__ = argparse.ArgumentParser() A__ = pl.Trainer.add_argparse_args(parser) A__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) A__ = parser.parse_args() main(args)
82
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' from math import pi def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
83
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __UpperCamelCase = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
84
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCamelCase_( snake_case : str ): '''simple docstring''' def decorator(snake_case : List[str] ): snake_case_ = getattr(snake_case , "handle_key" , [] ) handle += [key] setattr(snake_case , "handle_key" , snake_case ) return func return decorator def UpperCamelCase_( *snake_case : List[str] ): '''simple docstring''' def decorator(snake_case : Optional[Any] ): snake_case_ = getattr(snake_case , "handle_key" , [] ) handle += keys setattr(snake_case , "handle_key" , snake_case ) return func return decorator class _snake_case ( lowercase_ ): def __new__( cls , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = super().__new__(cls , a__ , a__ , a__ ) if not hasattr(a__ , "key_handler" ): setattr(a__ , "key_handler" , {} ) setattr(a__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): snake_case_ = getattr(a__ , "handle_key" , [] ) for key in handled_keys: snake_case_ = value return new_cls @staticmethod def lowerCAmelCase__ ( cls ) -> List[str]: '''simple docstring''' snake_case_ = get_character() if char != KEYMAP["undefined"]: snake_case_ = ord(a__ ) snake_case_ = cls.key_handler.get(a__ ) if handler: snake_case_ = char return handler(cls ) else: return None def UpperCamelCase_( cls : int ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
85
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = FlaxPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(lowercase , lowercase ) __UpperCamelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase ) __UpperCamelCase = np.ones((1, 1) ) __UpperCamelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase ) __UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences __UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
349
0
"""simple docstring""" import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __lowerCAmelCase (_UpperCamelCase=32 , _UpperCamelCase=10 , _UpperCamelCase=100 , _UpperCamelCase=1026 , _UpperCamelCase=True , _UpperCamelCase="data/tokenized_stories_train_wikitext103.jbl" , _UpperCamelCase="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __lowerCAmelCase , __lowerCAmelCase : Optional[int] = generate_datasets( _UpperCamelCase , _UpperCamelCase , number=_UpperCamelCase , min_len=1026 , trim=_UpperCamelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __lowerCAmelCase : List[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __lowerCAmelCase : int = load_gpta('gpt2' ).to(_UpperCamelCase ) print('computing perplexity on objective set' ) __lowerCAmelCase : Optional[int] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).item() print('perplexity on objective set:' , _UpperCamelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=15 , _UpperCamelCase=128 , _UpperCamelCase=100 , _UpperCamelCase="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model __lowerCAmelCase : List[Any] = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __lowerCAmelCase : Dict = SecondaryLearner(_UpperCamelCase ) # Train secondary learner __lowerCAmelCase : Optional[Any] = train_secondary_learner( _UpperCamelCase , _UpperCamelCase , max_epochs=_UpperCamelCase , batch_size=_UpperCamelCase , eval_freq=100 , igf_model_path=_UpperCamelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=32 , _UpperCamelCase=1000 , _UpperCamelCase=16 , _UpperCamelCase=1.0 , _UpperCamelCase=recopy_gpta , _UpperCamelCase=None , _UpperCamelCase=10 , _UpperCamelCase="gpt2_finetuned.pt" , ): __lowerCAmelCase : Any = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __lowerCAmelCase : Union[str, Any] = RandomSampler(_UpperCamelCase ) __lowerCAmelCase : Any = DataLoader(_UpperCamelCase , sampler=_UpperCamelCase ) __lowerCAmelCase : str = max_steps // (len(_UpperCamelCase )) + 1 __lowerCAmelCase : int = 0 __lowerCAmelCase : int = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = recopy_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCamelCase ) secondary_learner.eval() __lowerCAmelCase : List[Any] = [] __lowerCAmelCase : Any = 0 __lowerCAmelCase : str = [] __lowerCAmelCase : str = [] # Compute the performance of the transformer model at the beginning __lowerCAmelCase : List[str] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) for epoch in range(int(_UpperCamelCase ) ): for step, example in enumerate(_UpperCamelCase ): torch.cuda.empty_cache() __lowerCAmelCase : Dict = random.randint(0 , example.size(2 ) - context_len - 1 ) __lowerCAmelCase : Union[str, Any] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __lowerCAmelCase : List[Any] = model(_UpperCamelCase , labels=_UpperCamelCase ) __lowerCAmelCase : Any = True if secondary_learner is not None: __lowerCAmelCase : List[Any] = secondary_learner.forward( torch.tensor(_UpperCamelCase , dtype=torch.long , device=_UpperCamelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCamelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __lowerCAmelCase : List[Any] = -1 if predicted_q < threshold: __lowerCAmelCase : Dict = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __lowerCAmelCase : int = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __lowerCAmelCase : Optional[Any] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __lowerCAmelCase : Optional[Any] = compute_perplexity(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) test_perps.append(_UpperCamelCase ) print('Test perplexity, step' , _UpperCamelCase , ':' , _UpperCamelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCamelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __lowerCAmelCase (): __lowerCAmelCase : Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_UpperCamelCase , default=_UpperCamelCase , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_UpperCamelCase , type=_UpperCamelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=_UpperCamelCase , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_UpperCamelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_UpperCamelCase , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_UpperCamelCase , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_UpperCamelCase , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_UpperCamelCase , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_UpperCamelCase , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_UpperCamelCase , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_UpperCamelCase , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_UpperCamelCase , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_UpperCamelCase , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_UpperCamelCase , type=_UpperCamelCase , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_UpperCamelCase , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_UpperCamelCase , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_UpperCamelCase , type=_UpperCamelCase , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_UpperCamelCase , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __lowerCAmelCase : str = joblib.load('data/IGF_values.jbl' ) # Train secondary learner __lowerCAmelCase : List[Any] = training_secondary_learner( _UpperCamelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __lowerCAmelCase : str = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __lowerCAmelCase , __lowerCAmelCase : Any = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_UpperCamelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCamelCase , secondary_learner=_UpperCamelCase , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
86
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.''') if tokenizer_name is None: lowercase__ : Optional[Any] = TOKENIZER_CLASSES else: lowercase__ : int = {tokenizer_name: getattr(_lowerCamelCase , tokenizer_name + "Fast")} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''') for tokenizer_name in tokenizer_names: lowercase__ : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] lowercase__ : Optional[Any] = True if checkpoint_name is None: lowercase__ : str = list(tokenizer_class.max_model_input_sizes.keys()) else: lowercase__ : Optional[Any] = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''') for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''') # Load tokenizer lowercase__ : Optional[Any] = tokenizer_class.from_pretrained(_lowerCamelCase , force_download=_lowerCamelCase) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''') # For organization names we create sub-directories if "/" in checkpoint: lowercase__ , lowercase__ : Union[str, Any] = checkpoint.split("/") lowercase__ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase) elif add_prefix: lowercase__ : List[str] = checkpoint lowercase__ : List[str] = dump_path else: lowercase__ : Any = None lowercase__ : str = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''') if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]: lowercase__ : int = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint] lowercase__ : int = file_path.split(_lowerCamelCase)[-1][0] if next_char == "/": lowercase__ : Union[str, Any] = os.path.join(_lowerCamelCase , _lowerCamelCase) lowercase__ : Dict = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''') lowercase__ : List[Any] = tokenizer.save_pretrained( _lowerCamelCase , legacy_format=_lowerCamelCase , filename_prefix=_lowerCamelCase) logger.info(f'''=> File names {file_names}''') for file_name in file_names: if not file_name.endswith("tokenizer.json"): os.remove(_lowerCamelCase) logger.info(f'''=> removing {file_name}''') if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) UpperCamelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
87
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
0
import re import string import numpy as np import datasets __lowerCAmelCase : Optional[int] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[int] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : str ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : int=False , UpperCamelCase__ : Tuple=False , ) -> Dict: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) __magic_name__ = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: __magic_name__ = np.asarray(UpperCamelCase__ ) __magic_name__ = np.asarray(UpperCamelCase__ ) if ignore_case: __magic_name__ = np.char.lower(UpperCamelCase__ ) __magic_name__ = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: __magic_name__ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: __magic_name__ = string.digits.maketrans("""""" , """""" , string.digits ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) __magic_name__ = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
88
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = 'Salesforce/blip-image-captioning-base' lowerCAmelCase : Tuple = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) lowerCAmelCase : Optional[int] = 'image_captioner' lowerCAmelCase : List[str] = AutoModelForVisionaSeq lowerCAmelCase : Tuple = ['image'] lowerCAmelCase : Optional[Any] = ['text'] def __init__( self : Dict ,*_UpperCAmelCase : List[Any] ,**_UpperCAmelCase : str ): requires_backends(self ,['vision'] ) super().__init__(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : "Image" ): return self.pre_processor(images=_UpperCAmelCase ,return_tensors='pt' ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int ): return self.model.generate(**_UpperCAmelCase ) def __lowercase ( self : int ,_UpperCAmelCase : Dict ): return self.pre_processor.batch_decode(_UpperCAmelCase ,skip_special_tokens=_UpperCAmelCase )[0].strip()
89
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = torch.nn.Linear(10 , 10 ) __lowerCamelCase = torch.optim.SGD(model.parameters() , 0.1 ) __lowerCamelCase = Accelerator() __lowerCamelCase = accelerator.prepare(lowerCamelCase__ ) try: pickle.loads(pickle.dumps(lowerCamelCase__ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
90
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "roberta" def __init__( self : List[Any] , lowercase_ : Optional[Any]=50265 , lowercase_ : List[Any]=768 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Any=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : Optional[int]=2 , lowercase_ : List[str]=0.02 , lowercase_ : Tuple=1e-12 , lowercase_ : Any=1 , lowercase_ : Any=0 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]="absolute" , lowercase_ : str=True , lowercase_ : str=None , **lowercase_ : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_ : Tuple = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
91
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def _a ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
92
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = tempfile.mkdtemp() # fmt: off lowercase_ : Optional[int] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowercase_ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) lowercase_ : int = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] lowercase_ : Optional[int] = {'''unk_token''': '''<unk>'''} lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Optional[Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowercase_ : Any = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowercase_ : List[str] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.get_tokenizer() lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : Union[str, Any] = self.get_image_processor() lowercase_ : Tuple = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ : int = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) lowercase_ : int = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ : Any = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowercase_ : List[str] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) lowercase_ : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : Optional[int] = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : List[Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) lowercase_ : Optional[Any] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.get_image_processor() lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : Tuple = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = '''lower newer''' lowercase_ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE ) lowercase_ : int = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.get_image_processor() lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : Dict = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowercase_ : str = '''lower newer''' lowercase_ : Optional[int] = self.prepare_image_inputs() lowercase_ : Dict = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : str = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowercase_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : Any = processor.batch_decode(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = self.get_image_processor() lowercase_ : int = self.get_tokenizer() lowercase_ : Dict = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = '''lower newer''' lowercase_ : Any = self.prepare_image_inputs() lowercase_ : Any = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
93
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
import mpmath # for roots of unity import numpy as np class _snake_case : def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None ): # Input as list a :int = list(poly_a or [0] )[:] a :List[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() a :Tuple = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() a :Any = len(self.polyB ) # Add 0 to make lengths equal a power of 2 a :Dict = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform a :Union[str, Any] = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product a :Tuple = self.__multiply() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Optional[Any] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(_lowerCamelCase ) <= 1: return dft[0] # a :Dict = self.c_max_length // 2 while next_ncol > 0: a :Union[str, Any] = [[] for i in range(_lowerCamelCase )] a :Union[str, Any] = self.root**next_ncol # First half of next step a :str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step a :int = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update a :Tuple = new_dft a :Optional[Any] = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = self.__dft('''A''' ) a :List[Any] = self.__dft('''B''' ) a :Dict = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT a :Dict = 2 while next_ncol <= self.c_max_length: a :str = [[] for i in range(_lowerCamelCase )] a :List[Any] = self.root ** (next_ncol // 2) a :List[str] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update a :int = new_inverse_c next_ncol *= 2 # Unpack a :Any = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): a :Dict = '''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) a :Any = '''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) a :Tuple = '''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCAmelCase : Tuple = logging.get_logger(__name__) UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase : int = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } UpperCAmelCase : int = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } UpperCAmelCase : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = VOCAB_FILES_NAMES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = PRETRAINED_INIT_CONFIGURATION _lowercase : List[str] = RoFormerTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : int =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or pre_tok_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents ): a__ : int =getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) ) a__ : int =do_lower_case a__ : List[str] =strip_accents a__ : Union[str, Any] =pre_tok_class(**lowerCAmelCase__ ) a__ : List[str] =do_lower_case def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =self.__dict__.copy() a__ : Optional[int] =BertPreTokenizer() return state def __setstate__( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : List[str] =d a__ : Any =self.__dict__["_tokenizer"].get_vocab() a__ : Any =PreTokenizer.custom(JiebaPreTokenizer(lowerCAmelCase__ ) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: '''simple docstring''' a__ : Dict =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' a__ : Any =[self.sep_token_id] a__ : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' a__ : Optional[Any] =self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' a__ : Dict =BertPreTokenizer() return super().save_pretrained(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
95
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if height >= 1: move_tower(height - 1 , lowercase__ , lowercase__ , lowercase__ ) move_disk(lowercase__ , lowercase__ ) move_tower(height - 1 , lowercase__ , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): print('moving disk from' , lowercase__ , 'to' , lowercase__ ) def _snake_case ( ): _lowerCamelCase : List[Any] = int(input('Height of hanoi: ' ).strip() ) move_tower(lowercase__ , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
96
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = [10, 20, 30, 40, 50, 60] UpperCamelCase__ :Optional[int] = [2, 4, 6, 8, 10, 12] UpperCamelCase__ :Dict = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , '''max_weight must greater than zero.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , '''Weight can not be negative.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , '''Profit can not be negative.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , '''max_weight must greater than zero.''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
97
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ : Tuple = logging.get_logger(__name__) lowerCAmelCase__ : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ : Dict = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } lowerCAmelCase__ : Any = { 'gpt-neox-20b': 2_048, } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Dict ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Tuple=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : int="<|endoftext|>" ,lowerCamelCase__ : Dict="<|endoftext|>" ,lowerCamelCase__ : int="<|endoftext|>" ,lowerCamelCase__ : Any=False ,**lowerCamelCase__ : List[str] ,): super().__init__( lowerCamelCase__ ,lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,add_prefix_space=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,lowerCamelCase__ ) != add_prefix_space: UpperCAmelCase__ = getattr(lowerCamelCase__ ,pre_tok_state.pop('type' ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**lowerCamelCase__ ) UpperCAmelCase__ = add_prefix_space def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): UpperCAmelCase__ = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : "Conversation" ): UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids
98
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
import os from collections.abc import Iterator def A_ ( A__ = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(A__ ): a__ : Dict = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(A__ )[1] in (".py", ".ipynb"): yield os.path.join(A__ , A__ ).lstrip('./' ) def A_ ( A__ ) -> List[str]: return F'{i * " "}*' if i else "\n##" def A_ ( A__ , A__ ) -> str: a__ : Any = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(A__ ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(A__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def A_ ( A__ = "." ) -> None: a__ : Optional[Any] = '' for filepath in sorted(good_file_paths(A__ ) ): a__ , a__ : Union[str, Any] = os.path.split(A__ ) if filepath != old_path: a__ : Tuple = print_path(A__ , A__ ) a__ : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 a__ : Any = F'{filepath}/{filename}'.replace(' ' , '%20' ) a__ : List[Any] = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(A__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(""".""")
99
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Union[str, Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''albert''' def __init__( self , lowercase=3_0_0_0_0 , lowercase=1_2_8 , lowercase=4_0_9_6 , lowercase=1_2 , lowercase=1 , lowercase=6_4 , lowercase=1_6_3_8_4 , lowercase=1 , lowercase="gelu_new" , lowercase=0 , lowercase=0 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0.1 , lowercase="absolute" , lowercase=0 , lowercase=2 , lowercase=3 , **lowercase , ) -> Any: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) __UpperCamelCase = vocab_size __UpperCamelCase = embedding_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_hidden_groups __UpperCamelCase = num_attention_heads __UpperCamelCase = inner_group_num __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = classifier_dropout_prob __UpperCamelCase = position_embedding_type class UpperCAmelCase__ ( UpperCAmelCase_): @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowercase ( __A ): '''simple docstring''' return (data["data"], data["target"]) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = XGBRegressor(verbosity=0 ,random_state=42 ) xgb.fit(__A ,__A ) # Predict target for test data __UpperCamelCase = xgb.predict(__A ) __UpperCamelCase = predictions.reshape(len(__A ) ,1 ) return predictions def _lowercase ( ): '''simple docstring''' __UpperCamelCase = fetch_california_housing() __UpperCamelCase , __UpperCamelCase = data_handling(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = train_test_split( __A ,__A ,test_size=0.25 ,random_state=1 ) __UpperCamelCase = xgboost(__A ,__A ,__A ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__A ,__A )}" ) print(f"Mean Square Error : {mean_squared_error(__A ,__A )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
349
0
def UpperCamelCase ( ): '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase__ :Any = generate_large_matrix() lowercase__ :List[Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' assert all(row == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for row in grid ) assert all(list(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for col in zip(*lowerCAmelCase__ ) ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 lowercase = len(lowerCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase = (left + right) // 2 lowercase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase = mid + 1 else: lowercase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 lowercase = len(grid[0] ) for i in range(len(lowerCAmelCase__ ) ): lowercase = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase__ ) * len(grid[0] )) - total def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 for row in grid: for i, number in enumerate(lowerCAmelCase__ ): if number < 0: total += len(lowerCAmelCase__ ) - i break return total def UpperCamelCase ( ): '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) lowercase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase = timeit(f'{func}(grid=grid)' , setup=lowerCAmelCase__ , number=500 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
101
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=2 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=4_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: __UpperCamelCase = TFPegasusModel(config=lowercase ).get_decoder() __UpperCamelCase = inputs_dict["""input_ids"""] __UpperCamelCase = input_ids[:1, :] __UpperCamelCase = inputs_dict["""attention_mask"""][:1, :] __UpperCamelCase = inputs_dict["""head_mask"""] __UpperCamelCase = 1 # first forward pass __UpperCamelCase = model(lowercase , attention_mask=lowercase , head_mask=lowercase , use_cache=lowercase ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase = model(lowercase , attention_mask=lowercase )[0] __UpperCamelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase , lowercase , rtol=1E-3 ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,__A=None ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = tf.cast(tf.math.not_equal(__A ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: __UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: __UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> str: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase__ ( unittest.TestCase): __SCREAMING_SNAKE_CASE = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] __SCREAMING_SNAKE_CASE = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __SCREAMING_SNAKE_CASE = '''google/pegasus-xsum''' @cached_property def __lowerCamelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ) -> str: __UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **lowercase ) -> Optional[int]: __UpperCamelCase = self.translate_src_text(**lowercase ) assert self.expected_text == generated_words def __lowerCamelCase ( self , **lowercase ) -> Optional[Any]: __UpperCamelCase = self.tokenizer(self.src_text , **lowercase , padding=lowercase , return_tensors="""tf""" ) __UpperCamelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase , ) __UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase ) return generated_words @slow def __lowerCamelCase ( self ) -> Dict: self._assert_generated_batch_equal_expected()
349
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE (*a_ , **a_ ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = ObjectDetectionPipeline(model=a_ , image_processor=a_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(a_ ) , 0 ) for detected_object in outputs: self.assertEqual( a_ , { '''score''': ANY(a_ ), '''label''': ANY(a_ ), '''box''': {'''xmin''': ANY(a_ ), '''ymin''': ANY(a_ ), '''xmax''': ANY(a_ ), '''ymax''': ANY(a_ )}, } , ) import datasets __snake_case : Dict = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __snake_case : Tuple = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __snake_case : List[Any] = object_detector(a_ , threshold=0.0 ) self.assertEqual(len(a_ ) , len(a_ ) ) for outputs in batch_outputs: self.assertGreater(len(a_ ) , 0 ) for detected_object in outputs: self.assertEqual( a_ , { '''score''': ANY(a_ ), '''label''': ANY(a_ ), '''box''': {'''xmin''': ANY(a_ ), '''ymin''': ANY(a_ ), '''xmax''': ANY(a_ ), '''ymax''': ANY(a_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __snake_case : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(a_ ) __snake_case : Dict = AutoFeatureExtractor.from_pretrained(a_ ) __snake_case : Optional[Any] = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ ) __snake_case : Dict = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ] , ) __snake_case : Dict = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_59, '''ymin''': 1_20, '''xmax''': 4_80, '''ymax''': 3_59}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''facebook/detr-resnet-50''' __snake_case : int = AutoModelForObjectDetection.from_pretrained(a_ ) __snake_case : int = AutoFeatureExtractor.from_pretrained(a_ ) __snake_case : List[Any] = ObjectDetectionPipeline(model=a_ , feature_extractor=a_ ) __snake_case : Union[str, Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) __snake_case : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = '''facebook/detr-resnet-50''' __snake_case : Any = pipeline('''object-detection''' , model=a_ ) __snake_case : Dict = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) __snake_case : Optional[Any] = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 1_75, '''ymax''': 1_17}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_33, '''ymin''': 72, '''xmax''': 3_68, '''ymax''': 1_87}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_39, '''ymax''': 4_73}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = 0.9985 __snake_case : Optional[int] = '''facebook/detr-resnet-50''' __snake_case : Any = pipeline('''object-detection''' , model=a_ ) __snake_case : Optional[Any] = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=a_ ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 3_14, '''ymax''': 4_70}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_45, '''ymin''': 23, '''xmax''': 6_40, '''ymax''': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = '''Narsil/layoutlmv3-finetuned-funsd''' __snake_case : Optional[Any] = 0.9993 __snake_case : int = pipeline('''object-detection''' , model=a_ , threshold=a_ ) __snake_case : Dict = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_94, '''ymin''': 2_54, '''xmax''': 3_43, '''ymax''': 2_64}}, ] , )
102
'''simple docstring''' import string def _lowercase ( __A ): '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = """""" for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(__A ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = input("""Encrypted message: """ ) __UpperCamelCase = message.upper() decrypt(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging A__ : int = logging.get_logger(__name__) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Any = nn.functional.normalize(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase ,normalized_text_embeds.t() ) class __snake_case ( UpperCamelCase_ ): _a = CLIPConfig _a = ['''CLIPEncoderLayer'''] def __init__( self : Dict , A_ : CLIPConfig): super().__init__(A_) lowerCAmelCase_ : Optional[Any] = CLIPVisionModel(config.vision_config) lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=A_) lowerCAmelCase_ : List[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim) , requires_grad=A_) lowerCAmelCase_ : Tuple = nn.Parameter(torch.ones(3 , config.projection_dim) , requires_grad=A_) lowerCAmelCase_ : int = nn.Parameter(torch.ones(1_7) , requires_grad=A_) lowerCAmelCase_ : int = nn.Parameter(torch.ones(3) , requires_grad=A_) @torch.no_grad() def UpperCAmelCase__ ( self : int , A_ : int , A_ : int): lowerCAmelCase_ : int = self.vision_model(A_)[1] # pooled_output lowerCAmelCase_ : Optional[Any] = self.visual_projection(A_) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ : int = cosine_distance(A_ , self.special_care_embeds).cpu().float().numpy() lowerCAmelCase_ : Dict = cosine_distance(A_ , self.concept_embeds).cpu().float().numpy() lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Optional[Any] = image_embeds.shape[0] for i in range(A_): lowerCAmelCase_ : int = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Any = 0.0 for concept_idx in range(len(special_cos_dist[0])): lowerCAmelCase_ : Optional[int] = special_cos_dist[i][concept_idx] lowerCAmelCase_ : Optional[int] = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase_ : Dict = round(concept_cos - concept_threshold + adjustment , 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]}) lowerCAmelCase_ : str = 0.01 for concept_idx in range(len(cos_dist[0])): lowerCAmelCase_ : Optional[Any] = cos_dist[i][concept_idx] lowerCAmelCase_ : Dict = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase_ : Any = round(concept_cos - concept_threshold + adjustment , 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(A_) result.append(A_) lowerCAmelCase_ : str = [len(res['''bad_concepts''']) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self : str , A_ : torch.FloatTensor , A_ : torch.FloatTensor): lowerCAmelCase_ : str = self.vision_model(A_)[1] # pooled_output lowerCAmelCase_ : Optional[int] = self.visual_projection(A_) lowerCAmelCase_ : List[str] = cosine_distance(A_ , self.special_care_embeds) lowerCAmelCase_ : Union[str, Any] = cosine_distance(A_ , self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase_ : Any = 0.0 lowerCAmelCase_ : List[str] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase_ : List[str] = torch.any(special_scores > 0 , dim=1) lowerCAmelCase_ : Optional[int] = special_care * 0.01 lowerCAmelCase_ : Optional[Any] = special_adjustment.unsqueeze(1).expand(-1 , cos_dist.shape[1]) lowerCAmelCase_ : str = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase_ : Dict = torch.any(concept_scores > 0 , dim=1) return images, has_nsfw_concepts
103
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Dict = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = '''gptj''' __SCREAMING_SNAKE_CASE = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowercase=5_0_4_0_0 , lowercase=2_0_4_8 , lowercase=4_0_9_6 , lowercase=2_8 , lowercase=1_6 , lowercase=6_4 , lowercase=None , lowercase="gelu_new" , lowercase=0.0 , lowercase=0.0 , lowercase=0.0 , lowercase=1E-5 , lowercase=0.02 , lowercase=True , lowercase=5_0_2_5_6 , lowercase=5_0_2_5_6 , lowercase=False , **lowercase , ) -> Tuple: __UpperCamelCase = vocab_size __UpperCamelCase = n_positions __UpperCamelCase = n_embd __UpperCamelCase = n_layer __UpperCamelCase = n_head __UpperCamelCase = n_inner __UpperCamelCase = rotary_dim __UpperCamelCase = activation_function __UpperCamelCase = resid_pdrop __UpperCamelCase = embd_pdrop __UpperCamelCase = attn_pdrop __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_range __UpperCamelCase = use_cache __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id super().__init__( bos_token_id=lowercase , eos_token_id=lowercase , tie_word_embeddings=lowercase , **lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase = "default" , lowercase = None , lowercase = False , ) -> List[str]: super().__init__(lowercase , task=lowercase , patching_specs=lowercase , use_past=lowercase ) if not getattr(self._config , """pad_token_id""" , lowercase ): # TODO: how to do that better? __UpperCamelCase = 0 @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowercase , direction="""inputs""" ) __UpperCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: __UpperCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __lowerCamelCase ( self ) -> int: return self._config.n_layer @property def __lowerCamelCase ( self ) -> int: return self._config.n_head def __lowerCamelCase ( self , lowercase , lowercase = -1 , lowercase = -1 , lowercase = False , lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase = super(lowercase , self ).generate_dummy_inputs( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) # We need to order the input in the way they appears in the forward() __UpperCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __UpperCamelCase , __UpperCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __UpperCamelCase = seqlen + 2 __UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(self.num_layers ) ] __UpperCamelCase = common_inputs["""attention_mask"""] if self.use_past: __UpperCamelCase = ordered_inputs["""attention_mask"""].dtype __UpperCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) return ordered_inputs @property def __lowerCamelCase ( self ) -> int: return 1_3
349
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase__ = CLIPImageProcessor() lowerCAmelCase__ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') lowerCAmelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
104
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : int = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['LayoutLMv3FeatureExtractor'] a__ : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _SCREAMING_SNAKE_CASE ( ) ->List[Any]: '''simple docstring''' a : Tuple = torch.nn.Linear(2 , 4 ) a : Dict = torch.optim.AdamW(model.parameters() , lr=1.0 ) a : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_lowercase , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) a : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) a : Optional[int] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->int: '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->List[Any]: '''simple docstring''' a : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_lowercase ) class __UpperCamelCase ( a__ ): @require_cuda def __a ( self ) -> int: a : Union[str, Any] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCAmelCase__ ): a : List[Any] = Accelerator(cpu=lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: a : Optional[int] = Accelerator() a : str = GradientState() assert state.num_steps == 1 a : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True a : Optional[Any] = False assert state.sync_gradients is False GradientState._reset_state() def __a ( self ) -> List[Any]: a : Any = Accelerator() a, a, a, a, a : Tuple = create_components() ( ( a ), ( a ), ( a ), ( a ), ( a ), ) : str = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __a ( self ) -> int: a : Optional[int] = Accelerator() a, a, a, a, a : Any = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __a ( self ) -> Tuple: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCAmelCase__ , **lowerCAmelCase__ ): pass with patch("torch.cuda.set_device" , lowerCAmelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): a : Tuple = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __a ( self ) -> Any: a : Dict = Accelerator() a, a, a, a, a : str = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[Any] = get_signature(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) def __a ( self ) -> List[str]: a : Union[str, Any] = Accelerator() a, a, a, a, a : Union[str, Any] = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = get_signature(lowerCAmelCase__ ) # saving hook def save_config(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): a : Optional[Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowerCAmelCase__ , "data.json" ) , "w" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # loading hook def load_config(lowerCAmelCase__ , lowerCAmelCase__ ): with open(os.path.join(lowerCAmelCase__ , "data.json" ) , "r" ) as f: a : Optional[Any] = json.load(lowerCAmelCase__ ) a : str = config["class_name"] a : List[str] = accelerator.register_save_state_pre_hook(lowerCAmelCase__ ) a : int = accelerator.register_load_state_pre_hook(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match with hooks load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded a : Union[str, Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded a : List[str] = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __a ( self ) -> List[str]: a : List[str] = Accelerator() a, a, a, a, a : List[str] = create_components() a : List[Any] = None # This should work a, a, a, a, a, a : Optional[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertTrue(dummy_obj is None ) def __a ( self ) -> List[Any]: a : Union[str, Any] = Accelerator() a, a, a, a, a : Union[str, Any] = create_components() a : List[Any] = [1, 2, 3] # This should work a, a, a, a, a, a : List[str] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowerCAmelCase__ , "_is_accelerate_prepared" , lowerCAmelCase__ ) , lowerCAmelCase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __a ( self ) -> Optional[Any]: from transformers import AutoModelForCausalLM a : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase__ , device_map={"": 0} , ) a : Tuple = Accelerator() # This should work a : Dict = accelerator.prepare(lowerCAmelCase__ ) @slow @require_bnb def __a ( self ) -> Any: from transformers import AutoModelForCausalLM a : Dict = Accelerator() with init_empty_weights(): a : Optional[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : Optional[Any] = infer_auto_device_map(lowerCAmelCase__ ) a : Dict = "cpu" a : Union[str, Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowerCAmelCase__ , load_in_abit=lowerCAmelCase__ , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase__ ) # This should not work and get value error with self.assertRaises(lowerCAmelCase__ ): a : int = accelerator.prepare(lowerCAmelCase__ ) @slow @require_bnb @require_multi_gpu def __a ( self ) -> Optional[int]: from transformers import AutoModelForCausalLM a : str = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): a : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() a : List[str] = infer_auto_device_map(lowerCAmelCase__ ) a : int = 1 a : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , ) a : str = Accelerator() # This should not work and get value error with self.assertRaises(lowerCAmelCase__ ): a : List[Any] = accelerator.prepare(lowerCAmelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __a ( self ) -> Union[str, Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): a : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) a : List[Any] = infer_auto_device_map(lowerCAmelCase__ ) a : Union[str, Any] = 1 a : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , ) a : Any = Accelerator() # This should work a : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) @require_cuda def __a ( self ) -> str: a : str = torch.nn.Linear(10 , 10 ) a : str = torch.optim.SGD(model.parameters() , lr=0.01 ) a : Optional[Any] = Accelerator(cpu=lowerCAmelCase__ ) a : Any = accelerator.prepare(lowerCAmelCase__ )
105
'''simple docstring''' def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = len(__A ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __UpperCamelCase = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = AudioLDMPipeline lowercase__ = TEXT_TO_AUDIO_PARAMS lowercase__ = TEXT_TO_AUDIO_BATCH_PARAMS lowercase__ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __lowerCAmelCase ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(3_2, 6_4) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=3_2 ,class_embeddings_concat=lowercase_ ,) lowerCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase_ ,set_alpha_to_one=lowercase_ ,) torch.manual_seed(0 ) lowerCAmelCase__ : Any = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase__ : Dict = ClapTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,projection_dim=3_2 ,) lowerCAmelCase__ : int = ClapTextModelWithProjection(lowercase_ ) lowerCAmelCase__ : Tuple = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=7_7 ) lowerCAmelCase__ : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 ,sampling_rate=1_6_0_0_0 ,upsample_initial_channel=1_6 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=lowercase_ ,) lowerCAmelCase__ : Any = SpeechTaHifiGan(lowercase_ ) lowerCAmelCase__ : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __lowerCAmelCase ( self : str ,lowercase_ : Dict ,lowercase_ : Optional[Any]=0 ): if str(lowercase_ ).startswith('''mps''' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(lowercase_ ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : List[str] = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : str = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : str = audio[:1_0] lowerCAmelCase__ : str = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Any = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : int = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Tuple = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : List[str] = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : int = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : str = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : List[Any] = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Tuple = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Tuple = F.normalize(lowercase_ ,dim=-1 ) lowerCAmelCase__ : List[Any] = prompt_embeds # forward lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Any = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : int = 3 * ['''this is a negative prompt'''] lowerCAmelCase__ : Any = negative_prompt lowerCAmelCase__ : int = 3 * [inputs['''prompt''']] # forward lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : List[str] = output.audios[0] lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Optional[int] = 3 * [inputs.pop('''prompt''' )] lowerCAmelCase__ : Optional[Any] = [] for p in [prompt, negative_prompt]: lowerCAmelCase__ : int = audioldm_pipe.tokenizer( lowercase_ ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=lowercase_ ,return_tensors='''pt''' ,) lowerCAmelCase__ : Optional[Any] = text_inputs['''input_ids'''].to(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe.text_encoder( lowercase_ ,) lowerCAmelCase__ : Dict = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ : Any = F.normalize(lowercase_ ,dim=-1 ) embeds.append(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : int = embeds # forward lowerCAmelCase__ : List[str] = audioldm_pipe(**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Optional[int] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[str] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = '''egg cracking''' lowerCAmelCase__ : Tuple = audioldm_pipe(**lowercase_ ,negative_prompt=lowercase_ ) lowerCAmelCase__ : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 2_5_6 lowerCAmelCase__ : Any = audio[:1_0] lowerCAmelCase__ : List[Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components() lowerCAmelCase__ : int = PNDMScheduler(skip_prk_steps=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[int] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowerCAmelCase__ : Dict = audioldm_pipe(lowercase_ ,num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt lowerCAmelCase__ : Dict = 2 lowerCAmelCase__ : int = audioldm_pipe(lowercase_ ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase__ : Optional[int] = 2 lowerCAmelCase__ : List[Any] = audioldm_pipe( [prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=lowercase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components() lowerCAmelCase__ : Optional[Any] = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Any = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase__ : Any = self.get_dummy_inputs(lowercase_ ) lowerCAmelCase__ : Dict = audioldm_pipe(audio_length_in_s=0.016 ,**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.016 lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(audio_length_in_s=0.032 ,**lowercase_ ) lowerCAmelCase__ : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(lowercase_ ) / vocoder_sampling_rate == 0.032 def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = AudioLDMPipeline(**lowercase_ ) lowerCAmelCase__ : Optional[int] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : str = ['''hey'''] lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : str = output.audios.shape assert audio_shape == (1, 2_5_6) lowerCAmelCase__ : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase__ : int = SpeechTaHifiGan(lowercase_ ).to(lowercase_ ) lowerCAmelCase__ : str = audioldm_pipe(lowercase_ ,num_inference_steps=1 ) lowerCAmelCase__ : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def __lowerCAmelCase ( self : Any ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase_ ) def __lowerCAmelCase ( self : Dict ): self._test_inference_batch_single_identical(test_mean_pixel_difference=lowercase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def __lowerCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase_ ) @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ,lowercase_ : Any ,lowercase_ : Union[str, Any]="cpu" ,lowercase_ : Any=torch.floataa ,lowercase_ : Tuple=0 ): lowerCAmelCase__ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowerCAmelCase__ : str = np.random.RandomState(lowercase_ ).standard_normal((1, 8, 1_2_8, 1_6) ) lowerCAmelCase__ : str = torch.from_numpy(lowercase_ ).to(device=lowercase_ ,dtype=lowercase_ ) lowerCAmelCase__ : List[Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Union[str, Any] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : List[Any] = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = 2_5 lowerCAmelCase__ : Optional[Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : Optional[Any] = audio[7_7_2_3_0:7_7_2_4_0] lowerCAmelCase__ : Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) lowerCAmelCase__ : List[str] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Optional[int] = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowerCAmelCase__ : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase__ : str = audioldm_pipe.to(lowercase_ ) audioldm_pipe.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase__ : Optional[Any] = self.get_inputs(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = audioldm_pipe(**lowercase_ ).audios[0] assert audio.ndim == 1 assert len(lowercase_ ) == 8_1_9_2_0 lowerCAmelCase__ : List[Any] = audio[2_7_7_8_0:2_7_7_9_0] lowerCAmelCase__ : Any = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) lowerCAmelCase__ : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
106
'''simple docstring''' import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger a__ : Any = get_logger(__name__) class UpperCAmelCase__ : def __init__( self , lowercase = None ) -> List[str]: __UpperCamelCase = ( os.path.join(lowercase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __UpperCamelCase = Extractor def __lowerCamelCase ( self , lowercase ) -> str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __UpperCamelCase = os.path.abspath(lowercase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowercase ) ) def __lowerCamelCase ( self , lowercase , lowercase ) -> bool: return force_extract or ( not os.path.isfile(lowercase ) and not (os.path.isdir(lowercase ) and os.listdir(lowercase )) ) def __lowerCamelCase ( self , lowercase , lowercase = False ) -> str: __UpperCamelCase = self.extractor.infer_extractor_format(lowercase ) if not extractor_format: return input_path __UpperCamelCase = self._get_output_path(lowercase ) if self._do_extract(lowercase , lowercase ): self.extractor.extract(lowercase , lowercase , lowercase ) return output_path class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod @abstractmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: ... @staticmethod @abstractmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: ... class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> int: with open(lowercase , """rb""" ) as f: return f.read(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if not magic_number: __UpperCamelCase = max(len(lowercase ) for cls_magic_number in cls.magic_numbers ) try: __UpperCamelCase = cls.read_magic_number(lowercase , lowercase ) except OSError: return False return any(magic_number.startswith(lowercase ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase__ ( UpperCAmelCase_): @classmethod def __lowerCamelCase ( cls , lowercase , **lowercase ) -> bool: return tarfile.is_tarfile(lowercase ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: def resolved(lowercase ) -> str: return os.path.realpath(os.path.abspath(lowercase ) ) def badpath(lowercase , lowercase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowercase , lowercase ) ).startswith(lowercase ) def badlink(lowercase , lowercase ) -> bool: # Links are interpreted relative to the directory containing the link __UpperCamelCase = resolved(os.path.join(lowercase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowercase ) __UpperCamelCase = resolved(lowercase ) for finfo in members: if badpath(finfo.name , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked (illegal path)" ) elif finfo.issym() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}" ) elif finfo.islnk() and badlink(lowercase , lowercase ): logger.error(f"Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}" ) else: yield finfo @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = tarfile.open(lowercase ) tar_file.extractall(lowercase , members=TarExtractor.safemembers(lowercase , lowercase ) ) tar_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x1F\x8B'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with gzip.open(lowercase , """rb""" ) as gzip_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [ B'''PK\x03\x04''', B'''PK\x05\x06''', # empty archive B'''PK\x07\x08''', # spanned archive ] @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = b"" ) -> bool: if super().is_extractable(lowercase , magic_number=lowercase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowercase , """rb""" ) as fp: __UpperCamelCase = _EndRecData(lowercase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __UpperCamelCase = fp.read(lowercase ) # CD is where we expect it to be if len(lowercase ) == sizeCentralDir: __UpperCamelCase = struct.unpack(lowercase , lowercase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: os.makedirs(lowercase , exist_ok=lowercase ) with zipfile.ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\xFD\x37\x7A\x58\x5A\x00'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with lzma.open(lowercase ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''Rar!\x1a\x07\x00''', B'''Rar!\x1a\x07\x01\x00'''] # RAR_ID # RAR5_ID @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowercase , exist_ok=lowercase ) __UpperCamelCase = rarfile.RarFile(lowercase ) rf.extractall(lowercase ) rf.close() class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x28\xb5\x2F\xFD'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __UpperCamelCase = zstd.ZstdDecompressor() with open(lowercase , """rb""" ) as ifh, open(lowercase , """wb""" ) as ofh: dctx.copy_stream(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x42\x5A\x68'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: with bza.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x37\x7A\xBC\xAF\x27\x1C'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowercase , exist_ok=lowercase ) with pyazr.SevenZipFile(lowercase , """r""" ) as archive: archive.extractall(lowercase ) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = [B'''\x04\x22\x4D\x18'''] @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> None: if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowercase , """rb""" ) as compressed_file: with open(lowercase , """wb""" ) as extracted_file: shutil.copyfileobj(lowercase , lowercase ) class UpperCAmelCase__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __SCREAMING_SNAKE_CASE = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def __lowerCamelCase ( cls ) -> Union[str, Any]: return max( len(lowercase ) for extractor in cls.extractors.values() if issubclass(lowercase , lowercase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def __lowerCamelCase ( lowercase , lowercase ) -> str: try: return MagicNumberBaseExtractor.read_magic_number(lowercase , magic_number_length=lowercase ) except OSError: return b"" @classmethod def __lowerCamelCase ( cls , lowercase , lowercase = False ) -> bool: warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = cls.infer_extractor_format(lowercase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def __lowerCamelCase ( cls , lowercase ) -> str: # <Added version="2.4.0"/> __UpperCamelCase = cls._get_magic_number_max_length() __UpperCamelCase = cls._read_magic_number(lowercase , lowercase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowercase , magic_number=lowercase ): return extractor_format @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase = None , lowercase = "deprecated" , ) -> None: os.makedirs(os.path.dirname(lowercase ) , exist_ok=lowercase ) # Prevent parallel extractions __UpperCamelCase = str(Path(lowercase ).with_suffix(""".lock""" ) ) with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowercase , lowercase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowercase , ) __UpperCamelCase = extractor if extractor != """deprecated""" else extractor_format else: __UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(lowercase , lowercase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowercase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowercase ): return extractor.extract(lowercase , lowercase )
349
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase : List[str] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
107
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ : List[str] = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase__ : __SCREAMING_SNAKE_CASE = PegasusConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = '''gelu''' def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=False , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase=0.1 , lowercase=0.1 , lowercase=2_0 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def __lowerCamelCase ( self ) -> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCamelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase ) -> Any: __UpperCamelCase = 2_0 __UpperCamelCase = model_class_name(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) __UpperCamelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def _lowercase ( __A ,__A ,__A ,__A=None ,__A=None ,): '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.not_equal(__A ,config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ), ] ,axis=-1 ,) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = FlaxPegasusModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase ) def __lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(lowercase , lowercase ) __UpperCamelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase , lowercase=None , **lowercase ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(lowercase ) __UpperCamelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __UpperCamelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase , lowercase , lowercase ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest("""JIT Enabled""" ): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCamelCase ( self ) -> Dict: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowercase ) __UpperCamelCase = np.ones((1, 1) ) __UpperCamelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) __UpperCamelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] __UpperCamelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] __UpperCamelCase = tokenizer(lowercase , return_tensors="""np""" , truncation=lowercase , max_length=5_1_2 , padding=lowercase ) __UpperCamelCase = model.generate(**lowercase , num_beams=2 ).sequences __UpperCamelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
349
0
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a__ ( *SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , SCREAMING_SNAKE_CASE : Dict=True , SCREAMING_SNAKE_CASE : List[Any]=2 ): '''simple docstring''' from .. import __version__ lowerCAmelCase : str = take_from lowerCAmelCase : Optional[Any] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) lowerCAmelCase : Optional[Any] = None if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE ),) lowerCAmelCase : Any = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): values += (getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ),) lowerCAmelCase : Tuple = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: lowerCAmelCase : Optional[int] = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: lowerCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , SCREAMING_SNAKE_CASE , stacklevel=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] lowerCAmelCase : Union[str, Any] = call_frame.filename lowerCAmelCase : Optional[int] = call_frame.lineno lowerCAmelCase : Any = call_frame.function lowerCAmelCase , lowerCAmelCase : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(SCREAMING_SNAKE_CASE ) == 0: return elif len(SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
108
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
0
"""simple docstring""" def _snake_case ( UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): UpperCAmelCase : Tuple = 0 UpperCAmelCase : str = len(UpperCamelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : List[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase ): return None UpperCAmelCase : Tuple = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase : List[str] = left UpperCAmelCase : Union[str, Any] = point elif point > right: UpperCAmelCase : Union[str, Any] = right UpperCAmelCase : List[str] = point else: if item < current_item: UpperCAmelCase : Tuple = point - 1 else: UpperCAmelCase : Any = point + 1 return None def _snake_case ( UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Dict ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase : Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase , UpperCamelCase , UpperCamelCase , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase , UpperCamelCase , point + 1 , UpperCamelCase ) def _snake_case ( UpperCamelCase : Optional[Any] ): if collection != sorted(UpperCamelCase ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys A: Any = 0 if debug == 1: A: Optional[int] = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") A: str = 6_7 A: List[Any] = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
109
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
0
import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase__ = float("""nan""") class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowercase : Any ): '''simple docstring''' __a = sys.stdout __a = open(__lowercase , """a""" ) def __getattr__( self : Any , __lowercase : Dict ): '''simple docstring''' return getattr(self.stdout , __lowercase ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] ): '''simple docstring''' self.stdout.write(__lowercase ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , __lowercase , 0 , re.M ) ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict=80 , _SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" __a = [] # deal with critical env vars __a = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: __a = os.environ.get(__A , __A ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) __a = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(__A ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __a = [] __a = """""" while len(__A ) > 0: current_line += f"{cmd.pop(0 )} " if len(__A ) == 0 or len(__A ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__A ) __a = """""" return "\\\n".join(__A ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __a = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own __a = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir __a = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __a = subprocess.run(__A , capture_output=__A , text=__A ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams __a = variation.replace(""" """ , """-""" ) with open(Path(__A ) / f"log.{prefix}.stdout.txt" , """w""" ) as f: f.write(result.stdout ) with open(Path(__A ) / f"log.{prefix}.stderr.txt" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , """r""" , encoding="""utf-8""" ) as f: __a = json.load(__A ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , ): """simple docstring""" __a = [] __a = [] __a = f"{id}: {variation:<{longest_variation_len}}" __a = f"{preamble}: " __a = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__A ) , desc=__A , leave=__A ): __a = process_run_single( __A , __A , __A , __A , __A , __A , __A ) __a = single_run_metrics[target_metric_key] if not math.isnan(__A ): metrics.append(__A ) results.append(__A ) outcome += "✓" else: outcome += "✘" __a = f"\33[2K\r{outcome}" if len(__A ) > 0: __a = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __a = round(mean_metrics[target_metric_key] , 2 ) __a = f"{outcome} {mean_target}" if len(__A ) > 1: results_str += f" {tuple(round(__A , 2 ) for x in results )}" print(__A ) __a = variation return mean_metrics else: print(__A ) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase__ ( ): """simple docstring""" __a = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __a = pd.DataFrame(__A ) __a = """variation""" __a = """diff_%""" __a = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __a = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__A ): # as a fallback, use the minimal value as the sentinel __a = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__A ): __a = df.apply( lambda _SCREAMING_SNAKE_CASE : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns __a = [variation_key, target_metric_key, diff_key, *report_metric_keys] __a = df.reindex(__A , axis="""columns""" ) # reorder cols # capitalize __a = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible __a = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) __a = df.rename(lambda _SCREAMING_SNAKE_CASE : c.replace("""_""" , """\n""" ) , axis="""columns""" ) __a = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__A , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__A , floatfmt=""".2f""" )] print("""\n\n""".join(__A ) ) def lowerCAmelCase__ ( ): """simple docstring""" __a = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=__A , type=__A , required=__A , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=__A , type=__A , nargs="""+""" , required=__A , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=__A , type=__A , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=__A , type=__A , required=__A , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=__A , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=__A , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=__A , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=__A , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) __a = parser.parse_args() __a = args.output_dir Path(__A ).mkdir(exist_ok=__A ) __a = get_base_command(__A , __A ) # split each dimension into its --foo variations __a = [list(map(str.strip , re.split(r"""\|""" , __A ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __a = list(map(str.strip , map(""" """.join , itertools.product(*__A ) ) ) ) __a = max(len(__A ) for x in variations ) # split wanted keys __a = args.report_metric_keys.split() # capture prints into a log file for convenience __a = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) __a = Tee(__A ) print(f"\n*** Running {len(__A )} benchmarks:" ) print(f"Base command: {' '.join(__A )}" ) __a = """variation""" __a = [] for id, variation in enumerate(tqdm(__A , desc="""Total completion: """ , leave=__A ) ): __a = base_cmd + variation.split() results.append( process_run( id + 1 , __A , __A , __A , __A , args.target_metric_key , __A , args.repeat_times , __A , args.verbose , ) ) process_results(__A , args.target_metric_key , __A , args.base_variation , __A ) if __name__ == "__main__": main()
302
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : def __init__( self , lowercase , ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = 1_3 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 9_9 __UpperCamelCase = 3_2 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 3_7 __UpperCamelCase = """gelu""" __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 5_1_2 __UpperCamelCase = 1_6 __UpperCamelCase = 2 __UpperCamelCase = 0.02 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = None def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: __UpperCamelCase = TFDistilBertModel(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]: __UpperCamelCase = TFDistilBertForMaskedLM(config=lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = TFDistilBertForQuestionAnswering(config=lowercase ) __UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Tuple: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForSequenceClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: __UpperCamelCase = self.num_choices __UpperCamelCase = TFDistilBertForMultipleChoice(lowercase ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: __UpperCamelCase = self.num_labels __UpperCamelCase = TFDistilBertForTokenClassification(lowercase ) __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} __UpperCamelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs __UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = TFDistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=lowercase , dim=3_7 ) def __lowerCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def __lowerCamelCase ( self ) -> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def __lowerCamelCase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class UpperCAmelCase__ ( unittest.TestCase): @slow def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase = model(lowercase )[0] __UpperCamelCase = [1, 6, 7_6_8] self.assertEqual(output.shape , lowercase ) __UpperCamelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1E-4 )
349
0
"""simple docstring""" from __future__ import annotations import math def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" if num <= 0: lowerCAmelCase_ : Union[str, Any] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(__A ) lowerCAmelCase_ : str = [True] * (num + 1) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : str = 2 lowerCAmelCase_ : Any = int(math.sqrt(__A ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__A ) # Set multiples of start be False for i in range(start * start , num + 1 , __A ): if sieve[i] is True: lowerCAmelCase_ : int = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__A ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
241
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _lowercase ( __A ,__A ): '''simple docstring''' return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__A ,__A ) ) ) def _lowercase ( __A ,__A ): '''simple docstring''' if dataset.ndim != value_array.ndim: __UpperCamelCase = ( """Wrong input data's dimensions... """ f"dataset : {dataset.ndim}, value_array : {value_array.ndim}" ) raise ValueError(__A ) try: if dataset.shape[1] != value_array.shape[1]: __UpperCamelCase = ( """Wrong input data's shape... """ f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}" ) raise ValueError(__A ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: __UpperCamelCase = ( """Input data have different datatype... """ f"dataset : {dataset.dtype}, value_array : {value_array.dtype}" ) raise TypeError(__A ) __UpperCamelCase = [] for value in value_array: __UpperCamelCase = euclidean(__A ,dataset[0] ) __UpperCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: __UpperCamelCase = euclidean(__A ,__A ) if dist > temp_dist: __UpperCamelCase = temp_dist __UpperCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def _lowercase ( __A ,__A ): '''simple docstring''' return np.dot(__A ,__A ) / (norm(__A ) * norm(__A )) if __name__ == "__main__": import doctest doctest.testmod()
349
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCAmelCase__( lowercase : Optional[Any] , lowercase : Dict , lowercase : Optional[int] , lowercase : List[Any]=5 ) -> Optional[int]: assert masked_input.count("<mask>" ) == 1 __snake_case : Union[str, Any] = torch.tensor(tokenizer.encode(__A , add_special_tokens=__A ) ).unsqueeze(0 ) # Batch size 1 __snake_case : Dict = model(__A )[0] # The last hidden-state is the first element of the output tuple __snake_case : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __snake_case : Optional[Any] = logits[0, masked_index, :] __snake_case : Optional[int] = logits.softmax(dim=0 ) __snake_case , __snake_case : Optional[Any] = prob.topk(k=__A , dim=0 ) __snake_case : Any = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__A ) )] ) __snake_case : str = tokenizer.mask_token __snake_case : Union[str, Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): __snake_case : Optional[int] = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(__A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(__A ) , __A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__A , __A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _UpperCamelCase = CamembertTokenizer.from_pretrained('''camembert-base''') _UpperCamelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() _UpperCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
326
'''simple docstring''' from datetime import datetime import requests def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCamelCase = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(__A ).content if __name__ == "__main__": a__ : int = input('Enter Video/IGTV url: ').strip() a__ : int = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
349
0
"""simple docstring""" from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : List[Any] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[str] = False , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Union[str, Any] = True , lowerCAmelCase : str = "arrow" , **lowerCAmelCase : Optional[int] , ): super().__init__( split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = load_from_cache_file lowerCAmelCase = file_format lowerCAmelCase = Spark( df=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , working_dir=lowerCAmelCase , **lowerCAmelCase , ) def __lowercase ( self : Dict ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
155
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
0
"""simple docstring""" import math def snake_case ( A__ = 1_00 ): UpperCAmelCase_ : str = sum(i * i for i in range(1 ,n + 1 ) ) UpperCAmelCase_ : Tuple = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
268
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1e-12 ) -> str: """simple docstring""" A : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__A , axis=1 ) , a_min=__A ) ).T A : Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__A , axis=1 ) , a_min=__A ) ).T return jnp.matmul(__A , norm_emb_a.T ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' __lowerCamelCase : Dict = 42 __lowerCamelCase : Any = jnp.floataa def _lowerCAmelCase ( self ): A : Tuple = FlaxCLIPVisionModule(self.config.vision_config ) A : Any = nn.Dense(self.config.projection_dim, use_bias=lowerCamelCase__, dtype=self.dtype ) A : int = self.param("""concept_embeds""", jax.nn.initializers.ones, (17, self.config.projection_dim) ) A : Any = self.param( """special_care_embeds""", jax.nn.initializers.ones, (3, self.config.projection_dim) ) A : Dict = self.param("""concept_embeds_weights""", jax.nn.initializers.ones, (17,) ) A : Dict = self.param("""special_care_embeds_weights""", jax.nn.initializers.ones, (3,) ) def __call__( self, lowerCamelCase__ ): A : Tuple = self.vision_model(lowerCamelCase__ )[1] A : Any = self.visual_projection(lowerCamelCase__ ) A : Optional[int] = jax_cosine_distance(lowerCamelCase__, self.special_care_embeds ) A : List[str] = jax_cosine_distance(lowerCamelCase__, self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs A : Any = 0.0 A : Any = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment A : str = jnp.round(lowerCamelCase__, 3 ) A : int = jnp.any(special_scores > 0, axis=1, keepdims=lowerCamelCase__ ) # Use a lower threshold if an image has any special care concept A : Optional[Any] = is_special_care * 0.01 A : int = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment A : str = jnp.round(lowerCamelCase__, 3 ) A : Union[str, Any] = jnp.any(concept_scores > 0, axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Dict = CLIPConfig __lowerCamelCase : Optional[int] = "clip_input" __lowerCamelCase : List[str] = FlaxStableDiffusionSafetyCheckerModule def __init__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = 0, lowerCamelCase__ = jnp.floataa, lowerCamelCase__ = True, **lowerCamelCase__, ): if input_shape is None: A : Union[str, Any] = (1, 224, 224, 3) A : Union[str, Any] = self.module_class(config=lowerCamelCase__, dtype=lowerCamelCase__, **lowerCamelCase__ ) super().__init__(lowerCamelCase__, lowerCamelCase__, input_shape=lowerCamelCase__, seed=lowerCamelCase__, dtype=lowerCamelCase__, _do_init=_do_init ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None ): # init input tensor A : List[Any] = jax.random.normal(lowerCamelCase__, lowerCamelCase__ ) A , A : List[Any] = jax.random.split(lowerCamelCase__ ) A : Dict = {"""params""": params_rng, """dropout""": dropout_rng} A : str = self.module.init(lowerCamelCase__, lowerCamelCase__ )["""params"""] return random_params def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, ): A : Optional[Any] = jnp.transpose(lowerCamelCase__, (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params}, jnp.array(lowerCamelCase__, dtype=jnp.floataa ), rngs={}, )
116
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
0
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : int = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) snake_case__ : str = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) snake_case__ : Optional[int] = 'A painting of a squirrel eating a burger' snake_case__ : str = torch.manual_seed(0 ) snake_case__ : Union[str, Any] = sd_pipe([prompt] , generator=__UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) snake_case__ : Optional[Any] = output.images snake_case__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case__ : Any = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ : Tuple = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('sample_euler' ) snake_case__ : List[Any] = 'A painting of a squirrel eating a burger' snake_case__ : str = torch.manual_seed(0 ) snake_case__ : Any = sd_pipe([prompt] , generator=__UpperCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) snake_case__ : Tuple = output.images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case__ : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) snake_case__ : List[Any] = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) snake_case__ : List[Any] = 'A painting of a squirrel eating a burger' snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Optional[Any] = sd_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=__UpperCamelCase , ) snake_case__ : List[str] = output.images snake_case__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case__ : Optional[Any] = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
143
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> int: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Any: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> str: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> int: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class UpperCAmelCase__ ( metaclass=UpperCAmelCase_): __SCREAMING_SNAKE_CASE = ['''flax'''] def __init__( self , *lowercase , **lowercase ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def __lowerCamelCase ( cls , *lowercase , **lowercase ) -> List[str]: requires_backends(cls , ["""flax"""] )
349
0
from collections import deque from math import floor from random import random from time import time class _snake_case : def __init__( self ): a :Optional[int] = {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 ): if self.graph.get(_lowerCamelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: a :Optional[Any] = [[w, v]] if not self.graph.get(_lowerCamelCase ): a :Optional[int] = [] def SCREAMING_SNAKE_CASE__ ( self ): return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): if s == d: return [] a :Any = [] a :Tuple = [] if s == -2: a :Optional[Any] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a :int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: a :List[str] = stack[len(_lowerCamelCase ) - 1] else: a :Union[str, Any] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-1 ): if c == -1: a :Optional[Any] = floor(random() * 1_0000 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a :Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 ): a :Optional[int] = deque() a :Tuple = [] if s == -2: a :Union[str, Any] = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: a :int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 ): a :Tuple = [] a :List[str] = [] if s == -2: a :Union[str, Any] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Optional[int] = s a :Dict = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a :List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_lowerCamelCase ) != 0: a :List[str] = stack[len(_lowerCamelCase ) - 1] else: a :int = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = [] a :Union[str, Any] = [] a :List[str] = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :List[str] = -2 a :Dict = [] a :Tuple = s a :List[str] = False a :str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a :List[str] = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a :str = node[1] break # check if all the children are visited if s == ss: stack.pop() a :List[Any] = True if len(_lowerCamelCase ) != 0: a :Any = stack[len(_lowerCamelCase ) - 1] else: a :List[Any] = False indirect_parents.append(_lowerCamelCase ) a :Any = s a :str = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = [] a :Optional[int] = [] a :Tuple = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Optional[Any] = -2 a :List[str] = [] a :str = s a :Optional[int] = False a :Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a :Tuple = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a :Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() a :Union[str, Any] = True if len(_lowerCamelCase ) != 0: a :Optional[Any] = stack[len(_lowerCamelCase ) - 1] else: a :List[str] = False indirect_parents.append(_lowerCamelCase ) a :Optional[int] = s a :List[Any] = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): a :Optional[Any] = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) a :List[str] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 ): a :Optional[Any] = time() self.bfs(_lowerCamelCase ) a :Any = time() return end - begin class _snake_case : def __init__( self ): a :int = {} def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1 ): # check if the u exists if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist a :List[Any] = [[w, v]] # add the other way if self.graph.get(_lowerCamelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist a :Dict = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): if self.graph.get(_lowerCamelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCamelCase ) # the other way round if self.graph.get(_lowerCamelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): if s == d: return [] a :Dict = [] a :List[str] = [] if s == -2: a :str = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCamelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) a :Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCamelCase ) != 0: a :Tuple = stack[len(_lowerCamelCase ) - 1] else: a :Any = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-1 ): if c == -1: a :Tuple = floor(random() * 1_0000 ) + 10 for i in range(_lowerCamelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): a :int = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCamelCase , _lowerCamelCase , 1 ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 ): a :List[str] = deque() a :List[str] = [] if s == -2: a :Optional[int] = list(self.graph )[0] d.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) while d: a :Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = [] a :Union[str, Any] = [] a :Dict = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Dict = -2 a :Any = [] a :Tuple = s a :int = False a :Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a :Dict = len(_lowerCamelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a :str = node[1] break # check if all the children are visited if s == ss: stack.pop() a :str = True if len(_lowerCamelCase ) != 0: a :int = stack[len(_lowerCamelCase ) - 1] else: a :Optional[int] = False indirect_parents.append(_lowerCamelCase ) a :int = s a :Tuple = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return list(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = [] a :Optional[int] = [] a :Tuple = list(self.graph )[0] stack.append(_lowerCamelCase ) visited.append(_lowerCamelCase ) a :Optional[int] = -2 a :List[str] = [] a :Union[str, Any] = s a :Dict = False a :Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: a :Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): a :str = len(_lowerCamelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) a :Any = node[1] break # check if all the children are visited if s == ss: stack.pop() a :Union[str, Any] = True if len(_lowerCamelCase ) != 0: a :Dict = stack[len(_lowerCamelCase ) - 1] else: a :Optional[int] = False indirect_parents.append(_lowerCamelCase ) a :Dict = s a :Dict = ss # check if se have reached the starting point if len(_lowerCamelCase ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ): return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 , _lowerCamelCase=-1 ): a :int = time() self.dfs(_lowerCamelCase , _lowerCamelCase ) a :List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=-2 ): a :List[Any] = time() self.bfs(_lowerCamelCase ) a :Optional[Any] = time() return end - begin
94
'''simple docstring''' import logging import os from .state import PartialState class UpperCAmelCase__ ( logging.LoggerAdapter): @staticmethod def __lowerCamelCase ( lowercase ) -> Dict: __UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self , lowercase , lowercase , *lowercase , **lowercase ) -> List[str]: if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) __UpperCamelCase = kwargs.pop("""main_process_only""" , lowercase ) __UpperCamelCase = kwargs.pop("""in_order""" , lowercase ) if self.isEnabledFor(lowercase ): if self._should_log(lowercase ): __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) elif in_order: __UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCamelCase , __UpperCamelCase = self.process(lowercase , lowercase ) self.logger.log(lowercase , lowercase , *lowercase , **lowercase ) state.wait_for_everyone() def _lowercase ( __A ,__A = None ): '''simple docstring''' if log_level is None: __UpperCamelCase = os.environ.get("""ACCELERATE_LOG_LEVEL""" ,__A ) __UpperCamelCase = logging.getLogger(__A ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__A ,{} )
349
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : __magic_name__ = 42 __magic_name__ = None __magic_name__ = None def lowerCAmelCase_ ( ): '''simple docstring''' A : Dict = Node(1 ) A : List[Any] = Node(2 ) A : Any = Node(3 ) A : Tuple = Node(4 ) A : Tuple = Node(5 ) return tree def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Union[str, Any] = [] if root is None: return output A : Optional[Any] = deque([root] ) while process_queue: A : Any = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : int = [] def populate_output(snake_case__ , snake_case__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__A , __A ) return output def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[str] = [] def populate_output(snake_case__ , snake_case__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__A , __A ) return output def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if root is None: return [] A : List[Any] = [] A : Dict = 0 A : Union[str, Any] = height(__A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__A , __A ) ) A : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(__A , __A ) ) A : Tuple = 0 return output def lowerCAmelCase_ ( ): # Main function for testing. '''simple docstring''' A : Optional[Any] = make_tree() print(F'In-order Traversal: {inorder(__A )}' ) print(F'Pre-order Traversal: {preorder(__A )}' ) print(F'Post-order Traversal: {postorder(__A )}' , '''\n''' ) print(F'Height of Tree: {height(__A )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(__A ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(__A ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(__A , level=__A ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase__ : def __init__( self ) -> Any: __UpperCamelCase = False def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase ) -> str: if not self.initialized: __UpperCamelCase = RagRetriever( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = True def __lowerCamelCase ( self ) -> Optional[Any]: self.retriever.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(lowercase , lowercase ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=None ) -> List[Any]: if index is not None and index.is_initialized() and len(lowercase ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , index=lowercase , init_retrieval=lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowercase , lowercase , lowercase , lowercase ) for worker in self.retrieval_workers ] ) def __lowerCamelCase ( self ) -> Dict: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCamelCase ( self , lowercase , lowercase ) -> List[str]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(lowercase , lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(lowercase , lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase=None , **lowercase ) -> Any: return super(lowercase , cls ).get_tokenizers(lowercase , lowercase , **lowercase ) @classmethod def __lowerCamelCase ( cls , lowercase , lowercase , lowercase=None , **lowercase ) -> int: __UpperCamelCase = kwargs.pop("""config""" , lowercase ) or RagConfig.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(lowercase , config=lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = """custom""" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , lowercase ) else: __UpperCamelCase = cls._build_index(lowercase ) return cls( lowercase , question_encoder_tokenizer=lowercase , generator_tokenizer=lowercase , retrieval_workers=lowercase , index=lowercase , )
349
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors _lowerCamelCase =logging.getLogger(__name__) class a_ ( UpperCAmelCase_ ): """simple docstring""" __UpperCAmelCase = 'sequence-classification' def __init__( self : Tuple ,snake_case : Optional[int] ): if type(snake_case ) == dict: SCREAMING_SNAKE_CASE =Namespace(**snake_case ) SCREAMING_SNAKE_CASE =glue_output_modes[hparams.task] SCREAMING_SNAKE_CASE =glue_tasks_num_labels[hparams.task] super().__init__(snake_case ,snake_case ,self.mode ) def _lowerCAmelCase ( self : str ,**snake_case : Tuple ): return self.model(**snake_case ) def _lowerCAmelCase ( self : Tuple ,snake_case : int ,snake_case : Any ): SCREAMING_SNAKE_CASE ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None SCREAMING_SNAKE_CASE =self(**snake_case ) SCREAMING_SNAKE_CASE =outputs[0] SCREAMING_SNAKE_CASE =self.trainer.lr_schedulers[0]['scheduler'] SCREAMING_SNAKE_CASE ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =self.hparams SCREAMING_SNAKE_CASE =processors[args.task]() SCREAMING_SNAKE_CASE =processor.get_labels() for mode in ["train", "dev"]: SCREAMING_SNAKE_CASE =self._feature_file(snake_case ) if os.path.exists(snake_case ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' ,snake_case ) else: logger.info('Creating features from dataset file at %s' ,args.data_dir ) SCREAMING_SNAKE_CASE =( processor.get_dev_examples(args.data_dir ) if mode == 'dev' else processor.get_train_examples(args.data_dir ) ) SCREAMING_SNAKE_CASE =convert_examples_to_features( snake_case ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info('Saving features into cached file %s' ,snake_case ) torch.save(snake_case ,snake_case ) def _lowerCAmelCase ( self : List[Any] ,snake_case : Dict ,snake_case : str ,snake_case : Optional[int] = False ): SCREAMING_SNAKE_CASE ='dev' if mode == 'test' else mode SCREAMING_SNAKE_CASE =self._feature_file(snake_case ) logger.info('Loading features from cached file %s' ,snake_case ) SCREAMING_SNAKE_CASE =torch.load(snake_case ) SCREAMING_SNAKE_CASE =torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) SCREAMING_SNAKE_CASE =torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) SCREAMING_SNAKE_CASE =torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE =torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE =torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(snake_case ,snake_case ,snake_case ,snake_case ) ,batch_size=snake_case ,shuffle=snake_case ,) def _lowerCAmelCase ( self : List[str] ,snake_case : Optional[Any] ,snake_case : int ): SCREAMING_SNAKE_CASE ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: SCREAMING_SNAKE_CASE =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None SCREAMING_SNAKE_CASE =self(**snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =outputs[:2] SCREAMING_SNAKE_CASE =logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE =inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCAmelCase ( self : Dict ,snake_case : Dict ): SCREAMING_SNAKE_CASE =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item() SCREAMING_SNAKE_CASE =np.concatenate([x['pred'] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": SCREAMING_SNAKE_CASE =np.argmax(snake_case ,axis=1 ) elif self.hparams.glue_output_mode == "regression": SCREAMING_SNAKE_CASE =np.squeeze(snake_case ) SCREAMING_SNAKE_CASE =np.concatenate([x['target'] for x in outputs] ,axis=0 ) SCREAMING_SNAKE_CASE =[[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE =[[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task ,snake_case ,snake_case )} SCREAMING_SNAKE_CASE =dict(results.items() ) SCREAMING_SNAKE_CASE =results return ret, preds_list, out_label_list def _lowerCAmelCase ( self : List[Any] ,snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self._eval_end(snake_case ) SCREAMING_SNAKE_CASE =ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCAmelCase ( self : Tuple ,snake_case : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE =self._eval_end(snake_case ) SCREAMING_SNAKE_CASE =ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCAmelCase ( snake_case : Union[str, Any] ,snake_case : Dict ): BaseTransformer.add_model_specific_args(snake_case ,snake_case ) parser.add_argument( '--max_seq_length' ,default=128 ,type=snake_case ,help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) ,) parser.add_argument( '--task' ,default='' ,type=snake_case ,required=snake_case ,help='The GLUE task to run' ,) parser.add_argument( '--gpus' ,default=0 ,type=snake_case ,help='The number of GPUs allocated for this, it is by default 0 meaning none' ,) parser.add_argument( '--overwrite_cache' ,action='store_true' ,help='Overwrite the cached training and evaluation sets' ) return parser def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =argparse.ArgumentParser() add_generic_args(__A, os.getcwd() ) SCREAMING_SNAKE_CASE =GLUETransformer.add_model_specific_args(__A, os.getcwd() ) SCREAMING_SNAKE_CASE =parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: SCREAMING_SNAKE_CASE =os.path.join( './results', F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}', ) os.makedirs(args.output_dir ) SCREAMING_SNAKE_CASE =GLUETransformer(__A ) SCREAMING_SNAKE_CASE =generic_train(__A, __A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: SCREAMING_SNAKE_CASE =sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt' ), recursive=__A ) ) SCREAMING_SNAKE_CASE =model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__A ) if __name__ == "__main__": main()
334
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
0
from jiwer import compute_measures import datasets __A : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __A : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __A : Union[str, Any] = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): def _lowercase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def _lowercase ( self , _A=None , _A=None , _A=False ): '''simple docstring''' if concatenate_texts: return compute_measures(_A , _A )["wer"] else: UpperCAmelCase = 0 UpperCAmelCase = 0 for prediction, reference in zip(_A , _A ): UpperCAmelCase = compute_measures(_A , _A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
273
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0