code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from string import ascii_uppercase
_a = {str(ord(c) - 55): c for c in ascii_uppercase}
def __a ( __lowerCamelCase, __lowerCamelCase ):
if isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("int() can't convert non-string with explicit base" )
if num < 0:
raise ValueError("parameter must be positive int" )
if isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("'str' object cannot be interpreted as an integer" )
if isinstance(__lowerCamelCase, __lowerCamelCase ):
raise TypeError("'float' object cannot be interpreted as an integer" )
if base in (0, 1):
raise ValueError("base must be >= 2" )
if base > 36:
raise ValueError("base must be <= 36" )
UpperCAmelCase_ : Optional[Any] = ""
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : str = 0
while div != 1:
UpperCAmelCase_ , UpperCAmelCase_ : str = divmod(__lowerCamelCase, __lowerCamelCase )
if base >= 11 and 9 < mod < 36:
UpperCAmelCase_ : Tuple = ALPHABET_VALUES[str(__lowerCamelCase )]
else:
UpperCAmelCase_ : int = str(__lowerCamelCase )
new_value += actual_value
UpperCAmelCase_ : Any = num // base
UpperCAmelCase_ : Optional[int] = div
if div == 0:
return str(new_value[::-1] )
elif div == 1:
new_value += str(__lowerCamelCase )
return str(new_value[::-1] )
return new_value[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for base in range(2, 37):
for num in range(1_000):
assert int(decimal_to_any(num, base), base) == num, (
num,
base,
decimal_to_any(num, base),
int(decimal_to_any(num, base), base),
)
| 61 | def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
_A = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: ')))
print('Googling.....')
_A = f"""https://www.google.com/search?q={query}&num=100"""
_A = requests.get(
url,
headers={'User-Agent': str(UserAgent().random)},
)
try:
_A = (
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'yuRUbf'})
.find('a')
.get('href')
)
except AttributeError:
_A = parse_qs(
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'kCrYT'})
.find('a')
.get('href')
)['url'][0]
webbrowser.open(link)
| 62 | from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
# TODO Update this
__snake_case = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Tuple = """esm"""
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase : List[str] =vocab_size
UpperCAmelCase : str =hidden_size
UpperCAmelCase : List[Any] =num_hidden_layers
UpperCAmelCase : Optional[Any] =num_attention_heads
UpperCAmelCase : str =intermediate_size
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : int =attention_probs_dropout_prob
UpperCAmelCase : Dict =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : Union[str, Any] =layer_norm_eps
UpperCAmelCase : Dict =position_embedding_type
UpperCAmelCase : Optional[Any] =use_cache
UpperCAmelCase : int =emb_layer_norm_before
UpperCAmelCase : List[str] =token_dropout
UpperCAmelCase : Optional[Any] =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
UpperCAmelCase : Optional[Any] =EsmFoldConfig()
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ )
UpperCAmelCase : Tuple =esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
UpperCAmelCase : Any =get_default_vocab_list()
else:
UpperCAmelCase : Tuple =vocab_list
else:
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : Union[str, Any] =None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =super().to_dict()
if isinstance(self.esmfold_config , snake_case__ ):
UpperCAmelCase : str =self.esmfold_config.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : str = None
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : float = 0
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : int = 128
__lowerCamelCase : "TrunkConfig" = None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.trunk is None:
UpperCAmelCase : str =TrunkConfig()
elif isinstance(self.trunk , snake_case__ ):
UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =asdict(self )
UpperCAmelCase : Any =self.trunk.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 48
__lowerCamelCase : int = 1024
__lowerCamelCase : int = 128
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : float = 0
__lowerCamelCase : float = 0
__lowerCamelCase : bool = False
__lowerCamelCase : int = 4
__lowerCamelCase : Optional[int] = 128
__lowerCamelCase : "StructureModuleConfig" = None
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.structure_module is None:
UpperCAmelCase : Any =StructureModuleConfig()
elif isinstance(self.structure_module , snake_case__ ):
UpperCAmelCase : str =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =asdict(self )
UpperCAmelCase : Tuple =self.structure_module.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 384
__lowerCamelCase : int = 128
__lowerCamelCase : int = 16
__lowerCamelCase : int = 128
__lowerCamelCase : int = 12
__lowerCamelCase : int = 4
__lowerCamelCase : int = 8
__lowerCamelCase : float = 0.1
__lowerCamelCase : int = 8
__lowerCamelCase : int = 1
__lowerCamelCase : int = 2
__lowerCamelCase : int = 7
__lowerCamelCase : int = 10
__lowerCamelCase : float = 1E-8
__lowerCamelCase : float = 1E5
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return asdict(self )
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 348 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__a =(
{
'feature-extraction': TFMobileBertModel,
'fill-mask': TFMobileBertForMaskedLM,
'question-answering': TFMobileBertForQuestionAnswering,
'text-classification': TFMobileBertForSequenceClassification,
'token-classification': TFMobileBertForTokenClassification,
'zero-shot': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__a =False
__a =False
def UpperCamelCase__ ( self : str , __a : Tuple , __a : Optional[Any] , __a : List[str]=False ):
_a = super()._prepare_for_class(__a , __a , return_labels=__a )
if return_labels:
if model_class in get_values(__a ):
_a = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[str] , __a : int , __a : Union[str, Any]=13 , __a : int=7 , __a : List[str]=True , __a : str=True , __a : Union[str, Any]=True , __a : Union[str, Any]=True , __a : Tuple=99 , __a : Any=32 , __a : Tuple=32 , __a : Any=2 , __a : int=4 , __a : Dict=37 , __a : Union[str, Any]="gelu" , __a : Optional[Any]=0.1 , __a : Union[str, Any]=0.1 , __a : Dict=5_12 , __a : int=16 , __a : str=2 , __a : Tuple=0.02 , __a : Any=3 , __a : Tuple=4 , __a : Any=None , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
_a = embedding_size
def UpperCamelCase__ ( self : Any ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self : Optional[int] , __a : Optional[Any] , __a : int , __a : Tuple , __a : str , __a : List[Any] , __a : List[Any] , __a : str ):
_a = TFMobileBertModel(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
_a = [input_ids, input_mask]
_a = model(__a )
_a = model(__a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self : List[str] , __a : List[str] , __a : Dict , __a : Tuple , __a : Union[str, Any] , __a : Dict , __a : List[Any] , __a : List[str] ):
_a = TFMobileBertForMaskedLM(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict , __a : Dict , __a : Any , __a : Any , __a : str , __a : Tuple , __a : str ):
_a = TFMobileBertForNextSentencePrediction(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : Optional[Any] , __a : List[Any] , __a : List[Any] , __a : List[str] , __a : Optional[Any] , __a : List[Any] ):
_a = TFMobileBertForPreTraining(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : str , __a : str , __a : Union[str, Any] , __a : List[Any] , __a : List[Any] , __a : List[Any] ):
_a = self.num_labels
_a = TFMobileBertForSequenceClassification(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self : Any , __a : str , __a : Any , __a : Optional[int] , __a : int , __a : Optional[int] , __a : int , __a : List[Any] ):
_a = self.num_choices
_a = TFMobileBertForMultipleChoice(config=__a )
_a = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) )
_a = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
_a = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase__ ( self : List[str] , __a : List[str] , __a : List[Any] , __a : Dict , __a : Dict , __a : int , __a : str , __a : List[str] ):
_a = self.num_labels
_a = TFMobileBertForTokenClassification(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self : Optional[Any] , __a : Tuple , __a : List[Any] , __a : str , __a : int , __a : Any , __a : int , __a : List[str] ):
_a = TFMobileBertForQuestionAnswering(config=__a )
_a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_a = model(__a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self : Any ):
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def UpperCamelCase__ ( self : str ):
_a = TFMobileBertModelTest.TFMobileBertModelTester(self )
_a = ConfigTester(self , config_class=__a , hidden_size=37 )
def UpperCamelCase__ ( self : Tuple ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : List[str] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a )
def UpperCamelCase__ ( self : Any ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a )
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__a )
def UpperCamelCase__ ( self : List[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__a )
def UpperCamelCase__ ( self : Optional[Any] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a )
def UpperCamelCase__ ( self : Any ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__a )
@slow
def UpperCamelCase__ ( self : List[str] ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
_a = TFMobileBertModel.from_pretrained(__a )
self.assertIsNotNone(__a )
@require_tf
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
@slow
def UpperCamelCase__ ( self : Optional[Any] ):
_a = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" )
_a = tf.constant([[0, 1, 2, 3, 4, 5]] )
_a = model(__a )[0]
_a = [1, 6, 3_05_22]
self.assertEqual(output.shape , __a )
_a = tf.constant(
[
[
[-4.5919547, -9.248295, -9.645256],
[-6.7306175, -6.440284, -6.6052837],
[-7.2743506, -6.7847915, -6.024673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 )
| 63 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 0 |
"""simple docstring"""
# using dfs for finding eulerian path traversal
def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str]=None ):
"""simple docstring"""
_snake_case : List[Any] = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
_snake_case , _snake_case : Dict = True, True
_snake_case : str = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
return path
def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ):
"""simple docstring"""
_snake_case : List[str] = 0
_snake_case : List[str] = -1
for i in range(snake_case__ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
_snake_case : int = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] ):
"""simple docstring"""
_snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
_snake_case , _snake_case : Dict = check_circuit_or_path(snake_case__ , snake_case__ )
if check == 3:
print("""graph is not Eulerian""" )
print("""no path""" )
return
_snake_case : int = 1
if check == 2:
_snake_case : Optional[int] = odd_node
print("""graph has a Euler path""" )
if check == 1:
print("""graph has a Euler cycle""" )
_snake_case : Optional[int] = dfs(snake_case__ , snake_case__ , snake_case__ )
print(snake_case__ )
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
_snake_case : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
_snake_case : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
_snake_case : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
_snake_case : List[str] = {
1: [],
2: []
# all degree is zero
}
_snake_case : List[Any] = 10
check_euler(snake_case__ , snake_case__ )
check_euler(snake_case__ , snake_case__ )
check_euler(snake_case__ , snake_case__ )
check_euler(snake_case__ , snake_case__ )
check_euler(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 64 | import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits
UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean()
UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item())
UpperCAmelCase : List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowerCAmelCase_ ( __A, __A, __A, __A, __A = None, __A = None, __A = None, ) -> str:
'''simple docstring'''
if config_name_or_path is None:
UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base"
if generator_tokenizer_name_or_path is None:
UpperCAmelCase__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
UpperCAmelCase__ = question_encoder_name_or_path
UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration
# Save model.
UpperCAmelCase__ = RagConfig.from_pretrained(__A )
UpperCAmelCase__ = AutoConfig.from_pretrained(__A )
UpperCAmelCase__ = AutoConfig.from_pretrained(__A )
UpperCAmelCase__ = gen_config
UpperCAmelCase__ = question_encoder_config
UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator(
__A, __A, config=__A )
rag_model.save_pretrained(__A )
# Sanity check.
model_class.from_pretrained(__A )
# Save tokenizers.
UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A )
gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(__A )
question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--model_type',
choices=['rag_sequence', 'rag_token'],
required=True,
type=str,
help='RAG model type: rag_sequence, rag_token',
)
parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.')
parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier')
parser.add_argument(
'--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier'
)
parser.add_argument(
'--generator_tokenizer_name_or_path',
type=str,
help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``',
)
parser.add_argument(
'--question_encoder_tokenizer_name_or_path',
type=str,
help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``',
)
parser.add_argument(
'--config_name_or_path',
type=str,
help=(
'Identifier of the model config to use, if not provided, resolves to a base config for a given'
' ``model_type``'
),
)
UpperCamelCase__ = parser.parse_args()
UpperCamelCase__ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 65 | import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : List[Any] =ort.SessionOptions()
UpperCAmelCase : Optional[int] =False
return options
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Optional[Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Dict ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : Any =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Tuple =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : str =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : int =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 348 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import Counter
from random import random
class lowerCamelCase :
'''simple docstring'''
def __init__( self: Tuple ) -> Optional[Any]:
snake_case_ :Optional[int] = {}
def lowerCAmelCase_ ( self: Dict , snake_case: str ) -> None:
snake_case_ :str = {}
def lowerCAmelCase_ ( self: Optional[int] , snake_case: str , snake_case: str , snake_case: float ) -> None:
if nodea not in self.connections:
self.add_node(snake_case )
if nodea not in self.connections:
self.add_node(snake_case )
snake_case_ :Dict = probability
def lowerCAmelCase_ ( self: List[Any] ) -> list[str]:
return list(self.connections )
def lowerCAmelCase_ ( self: Any , snake_case: str ) -> str:
snake_case_ :Optional[Any] = 0
snake_case_ :List[str] = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def A_ ( _lowercase, _lowercase, _lowercase ):
'''simple docstring'''
snake_case_ :List[str] = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_lowercase, _lowercase, _lowercase )
snake_case_ :int = Counter(graph.get_nodes() )
snake_case_ :Optional[Any] = start
for _ in range(_lowercase ):
snake_case_ :Tuple = graph.transition(_lowercase )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 66 | from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( )-> int:
'''simple docstring'''
UpperCAmelCase : str ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase )
return dataset
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] =get_dataset()
UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str =get_dataset()
UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
| 348 | 0 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list[int]:
__lowerCamelCase = [0] * no_of_processes
__lowerCamelCase = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(UpperCamelCase__ ):
__lowerCamelCase = burst_time[i]
__lowerCamelCase = 0
__lowerCamelCase = 0
__lowerCamelCase = 9_99_99_99_99
__lowerCamelCase = 0
__lowerCamelCase = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(UpperCamelCase__ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
__lowerCamelCase = remaining_time[j]
__lowerCamelCase = j
__lowerCamelCase = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
__lowerCamelCase = remaining_time[short]
if minm == 0:
__lowerCamelCase = 9_99_99_99_99
if remaining_time[short] == 0:
complete += 1
__lowerCamelCase = False
# Find finish time of current process
__lowerCamelCase = increment_time + 1
# Calculate waiting time
__lowerCamelCase = finish_time - arrival_time[short]
__lowerCamelCase = finar - burst_time[short]
if waiting_time[short] < 0:
__lowerCamelCase = 0
# Increment time
increment_time += 1
return waiting_time
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> list[int]:
__lowerCamelCase = [0] * no_of_processes
for i in range(UpperCamelCase__ ):
__lowerCamelCase = burst_time[i] + waiting_time[i]
return turn_around_time
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None:
__lowerCamelCase = 0
__lowerCamelCase = 0
for i in range(UpperCamelCase__ ):
__lowerCamelCase = total_waiting_time + waiting_time[i]
__lowerCamelCase = total_turn_around_time + turn_around_time[i]
print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" )
print('''Average turn around time =''' , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("Enter how many process you want to analyze")
__UpperCAmelCase =int(input())
__UpperCAmelCase =[0] * no_of_processes
__UpperCAmelCase =[0] * no_of_processes
__UpperCAmelCase =list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("Enter the arrival time and burst time for process:--" + str(i + 1))
__UpperCAmelCase , __UpperCAmelCase =map(int, input().split())
__UpperCAmelCase =calculate_waitingtime(arrival_time, burst_time, no_of_processes)
__UpperCAmelCase =burst_time
__UpperCAmelCase =no_of_processes
__UpperCAmelCase =waiting_time
__UpperCAmelCase =calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
__UpperCAmelCase =pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"Process",
"BurstTime",
"ArrivalTime",
"WaitingTime",
"TurnAroundTime",
],
)
# Printing the dataFrame
pd.set_option("display.max_rows", fcfs.shape[0] + 1)
print(fcfs)
| 67 | from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Optional[Any] =learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ )
else:
UpperCAmelCase : Union[str, Any] =None
UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : VQModel
__lowerCamelCase : CLIPTextModel
__lowerCamelCase : CLIPTokenizer
__lowerCamelCase : TransformeraDModel
__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings
__lowerCamelCase : VQDiffusionScheduler
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
UpperCAmelCase : Optional[int] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : int =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
UpperCAmelCase : str =[''''''] * batch_size
UpperCAmelCase : Tuple =text_input_ids.shape[-1]
UpperCAmelCase : Optional[Any] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1]
UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =1
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Tuple =len(snake_case__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
UpperCAmelCase : Tuple =batch_size * num_images_per_prompt
UpperCAmelCase : List[str] =guidance_scale > 1.0
UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(snake_case__ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1
UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCAmelCase : Any =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Optional[int] =latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 )
UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase : Optional[Any] =model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim
UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ )
UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ )
UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase : int =keep_mask[:, :-1, :]
UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase : Dict =log_p_x_0.clone()
UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0)
return rv
| 348 | 0 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class a__ ( snake_case ):
"""simple docstring"""
def __init__( self , lowercase , lowercase , lowercase=1024 , lowercase=1024 , lowercase=3.6 ) -> Tuple:
'''simple docstring'''
A__ = tokenizer
A__ = tokenizer.bos_token_id
A__ = dataset
A__ = seq_length
A__ = seq_length * chars_per_token * num_of_sequences
def __iter__( self ) -> Tuple:
'''simple docstring'''
A__ = iter(self.dataset )
A__ = True
while more_examples:
A__ , A__ = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(lowercase )["content"] )
buffer_len += len(buffer[-1] )
except StopIteration:
A__ = False
break
A__ = tokenizer(lowercase , truncation=lowercase )["input_ids"]
A__ = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(lowercase ) , self.seq_length ):
A__ = all_token_ids[i : i + self.seq_length]
if len(lowercase ) == self.seq_length:
yield torch.tensor(lowercase )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] ) -> List[str]:
'''simple docstring'''
A__ = {"streaming": True}
A__ = load_dataset(args.dataset_name , split="train" , **SCREAMING_SNAKE_CASE_ )
A__ = ConstantLengthDataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , seq_length=args.seq_length )
A__ = DataLoader(SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size )
return eval_dataloader
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] ) -> int:
'''simple docstring'''
model.eval()
A__ = []
for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ):
with torch.no_grad():
A__ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
A__ = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(SCREAMING_SNAKE_CASE_ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
A__ = torch.mean(torch.cat(SCREAMING_SNAKE_CASE_ ) )
try:
A__ = torch.exp(SCREAMING_SNAKE_CASE_ )
except OverflowError:
A__ = float("inf" )
return loss.item(), perplexity.item()
# Setup Accelerator
lowerCAmelCase__ = Accelerator()
# Parse configuration
lowerCAmelCase__ = HfArgumentParser(EvaluationArguments)
lowerCAmelCase__ = parser.parse_args()
set_seed(args.seed)
# Logging
lowerCAmelCase__ = logging.getLogger(__name__)
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO
)
# Load model and tokenizer
lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
lowerCAmelCase__ = create_dataloader(args)
# Prepare everything with our `accelerator`.
lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("""Evaluating and saving model after training""")
lowerCAmelCase__ , lowerCAmelCase__ = evaluate(args)
logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
| 68 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase : Any =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.dummy_uncond_unet
UpperCAmelCase : Optional[int] =KarrasVeScheduler()
UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : List[str] =torch.manual_seed(0 )
UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : str =torch.manual_seed(0 )
UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0]
UpperCAmelCase : Any =image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256'''
UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ )
UpperCAmelCase : Dict =KarrasVeScheduler()
UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Any =torch.manual_seed(0 )
UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 348 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
__UpperCamelCase = {'''tokenization_tapex''': ['''TapexTokenizer''']}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 69 | import qiskit
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' )
UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
__snake_case = half_adder(1, 1)
print(f'Half Adder Output Qubit Counts: {counts}')
| 348 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Generic, TypeVar
A__ : List[str] =TypeVar('''T''')
class UpperCAmelCase ( Generic[T] ):
def __init__( self : List[str] , __snake_case : T ) -> None:
_lowerCAmelCase = data
_lowerCAmelCase = self
_lowerCAmelCase = 0
class UpperCAmelCase ( Generic[T] ):
def __init__( self : List[Any] ) -> None:
# map from node name to the node object
_lowerCAmelCase = {}
def lowercase__ ( self : Any , __snake_case : T ) -> None:
# create a new set with x as its member
_lowerCAmelCase = DisjointSetTreeNode(__snake_case )
def lowercase__ ( self : int , __snake_case : T ) -> DisjointSetTreeNode[T]:
# find the set x belongs to (with path-compression)
_lowerCAmelCase = self.map[data]
if elem_ref != elem_ref.parent:
_lowerCAmelCase = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def lowercase__ ( self : List[Any] , __snake_case : DisjointSetTreeNode[T] , __snake_case : DisjointSetTreeNode[T] ) -> None:
# helper function for union operation
if nodea.rank > nodea.rank:
_lowerCAmelCase = nodea
else:
_lowerCAmelCase = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def lowercase__ ( self : List[Any] , __snake_case : T , __snake_case : T ) -> None:
# merge 2 disjoint sets
self.link(self.find_set(__snake_case ) , self.find_set(__snake_case ) )
class UpperCAmelCase ( Generic[T] ):
def __init__( self : Tuple ) -> None:
# connections: map from the node to the neighbouring nodes (with weights)
_lowerCAmelCase = {}
def lowercase__ ( self : Any , __snake_case : T ) -> None:
# add a node ONLY if its not present in the graph
if node not in self.connections:
_lowerCAmelCase = {}
def lowercase__ ( self : List[Any] , __snake_case : T , __snake_case : T , __snake_case : int ) -> None:
# add an edge with the given weight
self.add_node(__snake_case )
self.add_node(__snake_case )
_lowerCAmelCase = weight
_lowerCAmelCase = weight
def lowercase__ ( self : List[Any] ) -> GraphUndirectedWeighted[T]:
_lowerCAmelCase = []
_lowerCAmelCase = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __snake_case : x[2] )
# creating the disjoint set
_lowerCAmelCase = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__snake_case )
# MST generation
_lowerCAmelCase = 0
_lowerCAmelCase = 0
_lowerCAmelCase = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = edges[index]
index += 1
_lowerCAmelCase = disjoint_set.find_set(__snake_case )
_lowerCAmelCase = disjoint_set.find_set(__snake_case )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__snake_case , __snake_case , __snake_case )
disjoint_set.union(__snake_case , __snake_case )
return graph
| 70 | from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __snake_case :
__lowerCamelCase : str = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Optional[int] = """gelu"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : Dict =seq_length
UpperCAmelCase : Optional[Any] =is_training
UpperCAmelCase : List[str] =use_labels
UpperCAmelCase : List[Any] =vocab_size
UpperCAmelCase : Optional[int] =hidden_size
UpperCAmelCase : Tuple =num_hidden_layers
UpperCAmelCase : Any =num_attention_heads
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : str =hidden_dropout_prob
UpperCAmelCase : Optional[int] =attention_probs_dropout_prob
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : List[Any] =eos_token_id
UpperCAmelCase : Optional[int] =pad_token_id
UpperCAmelCase : Tuple =bos_token_id
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder()
UpperCAmelCase : Any =inputs_dict['''input_ids''']
UpperCAmelCase : str =input_ids[:1, :]
UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Tuple =inputs_dict['''head_mask''']
UpperCAmelCase : List[Any] =1
# first forward pass
UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : Dict = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Union[str, Any] = True
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[str] =TFBlenderbotModelTester(self )
UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class __snake_case ( unittest.TestCase ):
__lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""]
__lowerCamelCase : Dict = """facebook/blenderbot-400M-distill"""
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase : Optional[int] =self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 348 | 0 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class __A :
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ):
"""simple docstring"""
__UpperCamelCase : str =parent
__UpperCamelCase : Dict =batch_size
__UpperCamelCase : Union[str, Any] =seq_length
__UpperCamelCase : List[str] =is_training
__UpperCamelCase : int =use_input_mask
__UpperCamelCase : Tuple =use_token_type_ids
__UpperCamelCase : Optional[int] =use_labels
__UpperCamelCase : Union[str, Any] =vocab_size
__UpperCamelCase : int =hidden_size
__UpperCamelCase : int =num_hidden_layers
__UpperCamelCase : Union[str, Any] =num_attention_heads
__UpperCamelCase : Dict =intermediate_size
__UpperCamelCase : Any =hidden_act
__UpperCamelCase : int =hidden_dropout_prob
__UpperCamelCase : Dict =attention_probs_dropout_prob
__UpperCamelCase : Optional[Any] =max_position_embeddings
__UpperCamelCase : List[Any] =type_vocab_size
__UpperCamelCase : Union[str, Any] =type_sequence_label_size
__UpperCamelCase : int =initializer_range
__UpperCamelCase : List[str] =num_labels
__UpperCamelCase : Optional[int] =num_choices
__UpperCamelCase : List[str] =scope
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase : List[str] =None
if self.use_input_mask:
__UpperCamelCase : Tuple =random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase : List[str] =None
if self.use_token_type_ids:
__UpperCamelCase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCamelCase : List[Any] =None
__UpperCamelCase : Optional[Any] =None
__UpperCamelCase : List[str] =None
if self.use_labels:
__UpperCamelCase : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase : str =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowercase ( self ):
"""simple docstring"""
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =LlamaModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : List[str] =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
__UpperCamelCase : Dict =model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : List[Any] =True
__UpperCamelCase : Tuple =LlamaModel(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : str =model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , )
__UpperCamelCase : str =model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , )
__UpperCamelCase : Union[str, Any] =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : List[str] =LlamaForCausalLM(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Any =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ):
"""simple docstring"""
__UpperCamelCase : str =True
__UpperCamelCase : str =True
__UpperCamelCase : Optional[int] =LlamaForCausalLM(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
# first forward pass
__UpperCamelCase : Any =model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , use_cache=lowerCamelCase__ , )
__UpperCamelCase : Dict =outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase : Optional[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCamelCase : str =torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase : Optional[Any] =torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCamelCase : List[str] =model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )['hidden_states'][0]
__UpperCamelCase : Optional[int] =model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , output_hidden_states=lowerCamelCase__ , )['hidden_states'][0]
# select random slice
__UpperCamelCase : Optional[int] =ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase : List[str] =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) : Optional[Any] =config_and_inputs
__UpperCamelCase : str ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __A ( a , a , a , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Optional[Any] =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
UpperCamelCase__ : int =(LlamaForCausalLM,) if is_torch_available() else ()
UpperCamelCase__ : str =(
{
"""feature-extraction""": LlamaModel,
"""text-classification""": LlamaForSequenceClassification,
"""text-generation""": LlamaForCausalLM,
"""zero-shot""": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase__ : Tuple =False
UpperCamelCase__ : Any =False
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =LlamaModelTester(self )
__UpperCamelCase : str =ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 )
def __lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCamelCase : str =type
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase : Optional[Any] =3
__UpperCamelCase : List[str] =input_dict['input_ids']
__UpperCamelCase : Tuple =input_ids.ne(1 ).to(lowerCamelCase__ )
__UpperCamelCase : List[str] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase : Optional[int] =LlamaForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Optional[Any] =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase : Optional[Any] =3
__UpperCamelCase : int ='single_label_classification'
__UpperCamelCase : List[Any] =input_dict['input_ids']
__UpperCamelCase : int =input_ids.ne(1 ).to(lowerCamelCase__ )
__UpperCamelCase : str =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase : List[Any] =LlamaForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Optional[Any] =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Dict =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase : List[str] =3
__UpperCamelCase : Optional[Any] ='multi_label_classification'
__UpperCamelCase : Optional[int] =input_dict['input_ids']
__UpperCamelCase : int =input_ids.ne(1 ).to(lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCamelCase : Any =LlamaForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCamelCase : Any =model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('LLaMA buffers include complex numbers, which breaks this test' )
def __lowercase ( self ):
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase : Any =ids_tensor([1, 10] , config.vocab_size )
__UpperCamelCase : Tuple =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase : Dict =LlamaModel(lowerCamelCase__ )
original_model.to(lowerCamelCase__ )
original_model.eval()
__UpperCamelCase : Any =original_model(lowerCamelCase__ ).last_hidden_state
__UpperCamelCase : Any =original_model(lowerCamelCase__ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase : Tuple ={'type': scaling_type, 'factor': 10.0}
__UpperCamelCase : List[str] =LlamaModel(lowerCamelCase__ )
scaled_model.to(lowerCamelCase__ )
scaled_model.eval()
__UpperCamelCase : Optional[Any] =scaled_model(lowerCamelCase__ ).last_hidden_state
__UpperCamelCase : Union[str, Any] =scaled_model(lowerCamelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-5 ) )
@require_torch
class __A ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =[1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase : int =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' )
__UpperCamelCase : Optional[Any] =model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCamelCase : Optional[Any] =torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase__ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase : Tuple =torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase__ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : List[str] =[1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase : Dict =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' )
__UpperCamelCase : List[str] =model(torch.tensor(lowerCamelCase__ ) )
# Expected mean on dim = -1
__UpperCamelCase : Optional[Any] =torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase__ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase : Any =torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase__ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Union[str, Any] =[1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase : Optional[Any] =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' )
__UpperCamelCase : Optional[Any] =model(torch.tensor(lowerCamelCase__ ) )
# Expected mean on dim = -1
__UpperCamelCase : Dict =torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase__ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase : Union[str, Any] =torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase__ , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =[1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase : str =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' )
__UpperCamelCase : str =model(torch.tensor(lowerCamelCase__ ) )
__UpperCamelCase : Optional[Any] =torch.tensor(
[[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase__ , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCamelCase : Optional[Any] =torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase__ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Model is curently gated' )
@slow
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Any ='Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'
__UpperCamelCase : List[Any] ='Simply put, the theory of relativity states that '
__UpperCamelCase : Optional[Any] =LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' )
__UpperCamelCase : int =tokenizer.encode(lowerCamelCase__ , return_tensors='pt' )
__UpperCamelCase : Any =LlamaForCausalLM.from_pretrained(
'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=lowerCamelCase__ )
# greedy generation outputs
__UpperCamelCase : Dict =model.generate(lowerCamelCase__ , max_new_tokens=64 , top_p=lowerCamelCase__ , temperature=1 , do_sample=lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase__ )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
| 71 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """sew-d"""
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase : Union[str, Any] =hidden_size
UpperCAmelCase : Union[str, Any] =feat_extract_norm
UpperCAmelCase : Optional[Any] =feat_extract_activation
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : int =list(snake_case__ )
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : str =conv_bias
UpperCAmelCase : Tuple =num_conv_pos_embeddings
UpperCAmelCase : Dict =num_conv_pos_embedding_groups
UpperCAmelCase : str =len(self.conv_dim )
UpperCAmelCase : Dict =num_hidden_layers
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : List[Any] =squeeze_factor
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : int =position_buckets
UpperCAmelCase : Optional[int] =share_att_key
UpperCAmelCase : Optional[int] =relative_attention
UpperCAmelCase : Tuple =norm_rel_ebd
UpperCAmelCase : List[Any] =list(snake_case__ )
UpperCAmelCase : Dict =hidden_act
UpperCAmelCase : Optional[int] =num_attention_heads
UpperCAmelCase : Any =hidden_dropout
UpperCAmelCase : str =attention_dropout
UpperCAmelCase : Union[str, Any] =activation_dropout
UpperCAmelCase : str =feat_proj_dropout
UpperCAmelCase : Union[str, Any] =final_dropout
UpperCAmelCase : Optional[int] =layer_norm_eps
UpperCAmelCase : str =feature_layer_norm_eps
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Any =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] =apply_spec_augment
UpperCAmelCase : Optional[Any] =mask_time_prob
UpperCAmelCase : Tuple =mask_time_length
UpperCAmelCase : str =mask_time_min_masks
UpperCAmelCase : Optional[int] =mask_feature_prob
UpperCAmelCase : Optional[Any] =mask_feature_length
UpperCAmelCase : List[Any] =mask_feature_min_masks
# ctc loss
UpperCAmelCase : str =ctc_loss_reduction
UpperCAmelCase : Optional[int] =ctc_zero_infinity
# sequence classification
UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum
UpperCAmelCase : int =classifier_proj_size
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
"""simple docstring"""
from importlib import import_module
from .logging import get_logger
lowerCAmelCase__ = get_logger(__name__)
class __snake_case :
def __init__( self : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any]=None ):
"""simple docstring"""
_lowerCamelCase : Tuple = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith('''__''' ):
setattr(self , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
_lowerCamelCase : Any = module._original_module if isinstance(__lowerCAmelCase , _PatchedModuleObj ) else module
class __snake_case :
snake_case__ : Dict = []
def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str]=None ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = obj
_lowerCamelCase : int = target
_lowerCamelCase : int = new
_lowerCamelCase : Tuple = target.split('''.''' )[0]
_lowerCamelCase : Optional[Any] = {}
_lowerCamelCase : Optional[int] = attrs or []
def __enter__( self : Optional[Any] ):
"""simple docstring"""
*_lowerCamelCase , _lowerCamelCase : Optional[int] = self.target.split('''.''' )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(__lowerCAmelCase ) ):
try:
_lowerCamelCase : Union[str, Any] = import_module('''.'''.join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_lowerCamelCase : Dict = getattr(self.obj , __lowerCAmelCase )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(__lowerCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_lowerCamelCase : Dict = obj_attr
# patch at top level
setattr(self.obj , __lowerCAmelCase , _PatchedModuleObj(__lowerCAmelCase , attrs=self.attrs ) )
_lowerCamelCase : Tuple = getattr(self.obj , __lowerCAmelCase )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(__lowerCAmelCase , __lowerCAmelCase , _PatchedModuleObj(getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , attrs=self.attrs ) )
_lowerCamelCase : int = getattr(__lowerCAmelCase , __lowerCAmelCase )
# finally set the target attribute
setattr(__lowerCAmelCase , __lowerCAmelCase , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_lowerCamelCase : Optional[int] = getattr(import_module('''.'''.join(__lowerCAmelCase ) ) , __lowerCAmelCase )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , __lowerCAmelCase ) is attr_value:
_lowerCamelCase : str = getattr(self.obj , __lowerCAmelCase )
setattr(self.obj , __lowerCAmelCase , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_lowerCamelCase : List[str] = globals()['''__builtins__'''][target_attr]
setattr(self.obj , __lowerCAmelCase , self.new )
else:
raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' )
def __exit__( self : Any , *__lowerCAmelCase : Dict ):
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , __lowerCAmelCase , self.original.pop(__lowerCAmelCase ) )
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 72 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__snake_case = 4
__snake_case = 3
class __snake_case ( lowerCamelCase__ ):
pass
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]:
'''simple docstring'''
for shard in shards:
for i in range(__lowerCAmelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =int(os.environ['''RANK'''] )
UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] )
UpperCAmelCase : List[Any] =ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCAmelCase )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase )
parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 )
UpperCAmelCase : Any =parser.parse_args()
UpperCAmelCase : List[str] =args.streaming
UpperCAmelCase : Tuple =args.num_workers
UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]}
UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase )
if not streaming:
UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) )
UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase )
UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase )
UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : str =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : List[Any] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 348 | 0 |
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> float:
if digit_amount > 0:
return round(number - int(lowerCamelCase__ ) , lowerCamelCase__ )
return number - int(lowerCamelCase__ )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.3_45, 1))
print(decimal_isolate(35.3_45, 2))
print(decimal_isolate(35.3_45, 3))
print(decimal_isolate(-14.7_89, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.1_23, 1))
print(decimal_isolate(-14.1_23, 2))
print(decimal_isolate(-14.1_23, 3))
| 73 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[Any] ,A_ : Any ,A_ : str=13 ,A_ : List[str]=30 ,A_ : Any=2 ,A_ : Union[str, Any]=3 ,A_ : List[str]=True ,A_ : Any=True ,A_ : List[Any]=32 ,A_ : List[Any]=5 ,A_ : List[Any]=4 ,A_ : Optional[int]=37 ,A_ : List[str]="gelu" ,A_ : Optional[int]=0.1 ,A_ : Optional[int]=0.1 ,A_ : Tuple=10 ,A_ : Any=0.02 ,) -> Union[str, Any]:
A = parent
A = batch_size
A = image_size
A = patch_size
A = num_channels
A = is_training
A = use_labels
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = type_sequence_label_size
A = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A = (image_size // patch_size) ** 2
A = num_patches + 1
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A = ViTConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A_ ,initializer_range=self.initializer_range ,)
return config, pixel_values
def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Optional[Any] ,A_ : Union[str, Any] ) -> List[str]:
A = FlaxViTModel(config=A_ )
A = model(A_ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
A = (self.image_size, self.image_size)
A = (self.patch_size, self.patch_size)
A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Dict ,A_ : Tuple ) -> Tuple:
A = self.type_sequence_label_size
A = FlaxViTForImageClassification(config=A_ )
A = model(A_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A = 1
A = FlaxViTForImageClassification(A_ )
A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A = model(A_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
A = self.prepare_config_and_inputs()
(
(
A
) , (
A
) ,
) = config_and_inputs
A = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class lowerCAmelCase_ ( _lowercase , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase: Optional[int] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _SCREAMING_SNAKE_CASE ( self : Any ) -> None:
A = FlaxViTModelTester(self )
A = ConfigTester(self ,config_class=A_ ,has_text_modality=A_ ,hidden_size=37 )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict:
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(A_ )
A = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A = [*signature.parameters.keys()]
A = ['pixel_values']
self.assertListEqual(arg_names[:1] ,A_ )
def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A = self._prepare_for_class(A_ ,A_ )
A = model_class(A_ )
@jax.jit
def model_jitted(A_ : List[Any] ,**A_ : List[Any] ):
return model(pixel_values=A_ ,**A_ )
with self.subTest('JIT Enabled' ):
A = model_jitted(**A_ ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
A = model_jitted(**A_ ).to_tuple()
self.assertEqual(len(A_ ) ,len(A_ ) )
for jitted_output, output in zip(A_ ,A_ ):
self.assertEqual(jitted_output.shape ,output.shape )
@slow
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict:
for model_class_name in self.all_model_classes:
A = model_class_name.from_pretrained('google/vit-base-patch16-224' )
A = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(A_ ) | 74 | import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __snake_case :
def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str:
'''simple docstring'''
UpperCAmelCase : str =parent
UpperCAmelCase : Tuple =batch_size
UpperCAmelCase : Optional[int] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Tuple =use_input_mask
UpperCAmelCase : List[Any] =use_token_type_ids
UpperCAmelCase : Optional[Any] =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : List[Any] =hidden_size
UpperCAmelCase : Optional[int] =rotary_dim
UpperCAmelCase : Union[str, Any] =num_hidden_layers
UpperCAmelCase : List[Any] =num_attention_heads
UpperCAmelCase : Dict =intermediate_size
UpperCAmelCase : Union[str, Any] =hidden_act
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : Dict =attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : List[Any] =vocab_size - 1
UpperCAmelCase : Optional[Any] =vocab_size - 1
UpperCAmelCase : List[Any] =vocab_size - 1
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] =None
if self.use_input_mask:
UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict =GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs
UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =20
UpperCAmelCase : Any =model_class_name(snake_case__ )
UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , )
UpperCAmelCase : List[Any] =model(snake_case__ )
UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Dict =20
UpperCAmelCase : Dict =model_class_name(snake_case__ )
UpperCAmelCase : Tuple =jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : int =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : str =model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ )
UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
@tooslow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ )
UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : str =False
UpperCAmelCase : Union[str, Any] =model.config.eos_token_id
UpperCAmelCase : List[Any] =jax.jit(model.generate )
UpperCAmelCase : Dict =jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )
UpperCAmelCase : Tuple =[
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(snake_case__ , snake_case__ )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : int =0
UpperCAmelCase : Optional[int] =1
UpperCAmelCase : Optional[int] =0
UpperCAmelCase : Union[str, Any] =1
UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ )
UpperCAmelCase : Union[str, Any] =fx_state
with torch.no_grad():
UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(snake_case__ )
UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ )
UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : int =getattr(snake_case__ , snake_case__ )
UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params )
UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : str =0
UpperCAmelCase : Any =1
UpperCAmelCase : List[Any] =0
UpperCAmelCase : Tuple =1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(snake_case__ )
UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ )
with torch.no_grad():
UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : Tuple =model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case__ )
| 348 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class __UpperCamelCase ( unittest.TestCase ):
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModel.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModel.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForPreTraining.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =TFAutoModelForCausalLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =AutoModelForCausalLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =TFAutoModelForMaskedLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForMaskedLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =AutoModelForMaskedLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =TFAutoModelForSeqaSeqLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
lowerCamelCase_, lowerCamelCase_ =AutoModelForSeqaSeqLM.from_pretrained(
lowerCAmelCase, output_loading_info=lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
@slow
def lowercase__ ( self ):
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowerCamelCase_ =AutoConfig.from_pretrained(lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
lowerCamelCase_ =AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsNotNone(lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertEqual(model.num_parameters(), 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 )
lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertEqual(model.num_parameters(), 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 )
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_pt=lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertEqual(model.num_parameters(), 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 )
lowerCamelCase_ =AutoModelWithLMHead.from_pretrained(lowerCAmelCase, from_tf=lowerCAmelCase )
self.assertIsInstance(lowerCAmelCase, lowerCAmelCase )
self.assertEqual(model.num_parameters(), 14_410 )
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase ), 14_410 )
| 75 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a_ = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 76 | import os
from typing import Dict, List, Tuple, TypeVar, Union
__snake_case = TypeVar('''T''')
__snake_case = Union[List[T], Tuple[T, ...]]
__snake_case = Union[T, List[T], Dict[str, T]]
__snake_case = Union[str, bytes, os.PathLike]
| 348 | 0 |
"""simple docstring"""
import torch
def a_ ( ):
'''simple docstring'''
if torch.cuda.is_available():
lowercase__ : Tuple = torch.cuda.device_count()
else:
lowercase__ : Optional[int] = 0
print(f"""Successfully ran on {num_gpus} GPUs""" )
if __name__ == "__main__":
main()
| 77 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''google/bigbird-roberta-base''': 40_96,
'''google/bigbird-roberta-large''': 40_96,
'''google/bigbird-base-trivia-itc''': 40_96,
}
__snake_case = '''▁'''
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Dict = VOCAB_FILES_NAMES
__lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : List[str] = BigBirdTokenizer
__lowerCamelCase : Any = ["""input_ids""", """attention_mask"""]
__lowerCamelCase : List[int] = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase : Tuple =vocab_file
UpperCAmelCase : Optional[int] =False if not self.vocab_file else True
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : int =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(snake_case__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Optional[int] =os.path.join(
snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 348 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( lowercase_ , lowercase_ ):
UpperCAmelCase = 0
UpperCAmelCase = len(lowercase_ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
UpperCAmelCase = i + 1
else:
UpperCAmelCase = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
| 78 | from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]:
'''simple docstring'''
def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool:
UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
UpperCAmelCase : List[Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__lowerCAmelCase ) )
# The ratio of the area for circle to square is pi/4.
UpperCAmelCase : Dict =proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float:
'''simple docstring'''
return mean(
function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None:
'''simple docstring'''
def identity_function(__lowerCAmelCase ) -> float:
return x
UpperCAmelCase : List[Any] =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2
print('''******************''' )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print('''******************''' )
def lowerCAmelCase_ ( __lowerCAmelCase )-> None:
'''simple docstring'''
def function_to_integrate(__lowerCAmelCase ) -> float:
return sqrt(4.0 - x * x )
UpperCAmelCase : Dict =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 )
print('''******************''' )
print('''Estimating pi using area_under_curve_estimator''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print('''******************''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
_A = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
_A = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
sd_pipe.set_scheduler("sample_euler" )
_A = "A painting of a squirrel eating a burger"
_A = torch.manual_seed(0 )
_A = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" )
_A = output.images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
_A = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_A = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
sd_pipe.set_scheduler("sample_euler" )
_A = "A painting of a squirrel eating a burger"
_A = torch.manual_seed(0 )
_A = sd_pipe([prompt] , generator=__UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" )
_A = output.images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
_A = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_A = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
sd_pipe.set_scheduler("sample_dpmpp_2m" )
_A = "A painting of a squirrel eating a burger"
_A = torch.manual_seed(0 )
_A = sd_pipe(
[prompt] , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=__UpperCAmelCase , )
_A = output.images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A = np.array(
[0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 79 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __snake_case :
def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : List[Any] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Union[str, Any] =use_input_mask
UpperCAmelCase : Tuple =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : Tuple =hidden_size
UpperCAmelCase : Dict =projection_dim
UpperCAmelCase : Optional[int] =num_hidden_layers
UpperCAmelCase : Dict =num_attention_heads
UpperCAmelCase : int =intermediate_size
UpperCAmelCase : Any =dropout
UpperCAmelCase : Union[str, Any] =attention_dropout
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : str =scope
UpperCAmelCase : str =bos_token_id
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : int =None
if self.use_input_mask:
UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : Optional[int] =input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape
UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : List[Any] =1
UpperCAmelCase : Tuple =0
UpperCAmelCase : List[Any] =self.get_config()
return config, input_ids, tf.convert_to_tensor(snake_case__ )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ )
UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ )
UpperCAmelCase : str =model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs
UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else ()
__lowerCamelCase : Dict = False
__lowerCamelCase : Optional[Any] = False
__lowerCamelCase : Dict = False
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : str =BlipTextModelTester(self )
UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def UpperCAmelCase__ ( self , snake_case__=True ) -> Any:
'''simple docstring'''
super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
| 348 | 0 |
'''simple docstring'''
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
a__ : Any = sys.version_info >= (3, 1_0)
def _UpperCamelCase ( __A=None , __A=None ) -> Optional[int]:
'''simple docstring'''
return field(default_factory=lambda: default , metadata=__A )
@dataclass
class lowercase_ :
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
__UpperCAmelCase = 42
@dataclass
class lowercase_ :
__UpperCAmelCase = 42
__UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class lowercase_ :
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = None
class lowercase_ ( a__ ):
__UpperCAmelCase = 'titi'
__UpperCAmelCase = 'toto'
class lowercase_ ( a__ ):
__UpperCAmelCase = 'titi'
__UpperCAmelCase = 'toto'
__UpperCAmelCase = 42
@dataclass
class lowercase_ :
__UpperCAmelCase = "toto"
def __a ( self ):
UpperCamelCase__ = BasicEnum(self.foo )
@dataclass
class lowercase_ :
__UpperCAmelCase = "toto"
def __a ( self ):
UpperCamelCase__ = MixedTypeEnum(self.foo )
@dataclass
class lowercase_ :
__UpperCAmelCase = None
__UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} )
__UpperCAmelCase = None
__UpperCAmelCase = list_field(default=[] )
__UpperCAmelCase = list_field(default=[] )
@dataclass
class lowercase_ :
__UpperCAmelCase = list_field(default=[] )
__UpperCAmelCase = list_field(default=[1, 2, 3] )
__UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
__UpperCAmelCase = list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class lowercase_ :
__UpperCAmelCase = field()
__UpperCAmelCase = field()
__UpperCAmelCase = field()
def __a ( self ):
UpperCamelCase__ = BasicEnum(self.required_enum )
@dataclass
class lowercase_ :
__UpperCAmelCase = 42
__UpperCAmelCase = field()
__UpperCAmelCase = None
__UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} )
__UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class lowercase_ :
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = None
@dataclass
class lowercase_ :
__UpperCAmelCase = None
__UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} )
__UpperCAmelCase = None
__UpperCAmelCase = list_field(default=[] )
__UpperCAmelCase = list_field(default=[] )
class lowercase_ ( unittest.TestCase ):
def __a ( self , a , a ):
self.assertEqual(len(a._actions ) , len(b._actions ) )
for x, y in zip(a._actions , b._actions ):
UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"}
UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices" , a ) and yy.get("choices" , a ):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](a ) , yy["type"](a ) )
del xx["type"], yy["type"]
self.assertEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=a , required=a )
expected.add_argument("--bar" , type=a , required=a )
expected.add_argument("--baz" , type=a , required=a )
expected.add_argument("--flag" , type=a , default=a , const=a , nargs="?" )
self.argparsersEqual(a , a )
UpperCamelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"]
((UpperCamelCase__) , ) = parser.parse_args_into_dataclasses(a , look_for_args_file=a )
self.assertFalse(example.flag )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=42 , type=a )
expected.add_argument("--baz" , default="toto" , type=a , help="help message" )
self.argparsersEqual(a , a )
def __a ( self ):
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=a , default=a , const=a , nargs="?" )
expected.add_argument("--baz" , type=a , default=a , const=a , nargs="?" )
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument("--no_baz" , action="store_false" , default=a , dest="baz" )
expected.add_argument("--opt" , type=a , default=a )
UpperCamelCase__ = [WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(a )
for dataclass_type in dataclass_types:
UpperCamelCase__ = HfArgumentParser(a )
self.argparsersEqual(a , a )
UpperCamelCase__ = parser.parse_args([] )
self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) )
UpperCamelCase__ = parser.parse_args(["--foo", "--no_baz"] )
self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) )
UpperCamelCase__ = parser.parse_args(["--foo", "--baz"] )
self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) )
UpperCamelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] )
self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) )
UpperCamelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] )
self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(a , a )
UpperCamelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
UpperCamelCase__ = parser.parse_args_into_dataclasses([] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto )
UpperCamelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi )
UpperCamelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo )
def __a ( self ):
@dataclass
class lowercase_ :
__UpperCAmelCase = "toto"
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument(
"--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , )
self.argparsersEqual(a , a )
UpperCamelCase__ = parser.parse_args([] )
self.assertEqual(args.foo , "toto" )
UpperCamelCase__ = parser.parse_args(["--foo", "titi"] )
self.assertEqual(args.foo , "titi" )
UpperCamelCase__ = parser.parse_args(["--foo", "42"] )
self.assertEqual(args.foo , 42 )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo_int" , nargs="+" , default=[] , type=a )
expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=a )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a )
expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=a )
self.argparsersEqual(a , a )
UpperCamelCase__ = parser.parse_args([] )
self.assertEqual(
a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , )
UpperCamelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() )
self.assertEqual(a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) )
def __a ( self ):
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , default=a , type=a )
expected.add_argument("--bar" , default=a , type=a , help="help message" )
expected.add_argument("--baz" , default=a , type=a )
expected.add_argument("--ces" , nargs="+" , default=[] , type=a )
expected.add_argument("--des" , nargs="+" , default=[] , type=a )
UpperCamelCase__ = [OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(a )
for dataclass_type in dataclass_types:
UpperCamelCase__ = HfArgumentParser(a )
self.argparsersEqual(a , a )
UpperCamelCase__ = parser.parse_args([] )
self.assertEqual(a , Namespace(foo=a , bar=a , baz=a , ces=[] , des=[] ) )
UpperCamelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() )
self.assertEqual(a , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--required_list" , nargs="+" , type=a , required=a )
expected.add_argument("--required_str" , type=a , required=a )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , )
self.argparsersEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = argparse.ArgumentParser()
expected.add_argument("--foo" , type=a , required=a )
expected.add_argument(
"--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , )
expected.add_argument("--opt" , type=a , default=a )
expected.add_argument("--baz" , default="toto" , type=a , help="help message" )
expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a )
self.argparsersEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
UpperCamelCase__ = parser.parse_dict(a )[0]
UpperCamelCase__ = BasicExample(**a )
self.assertEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
"extra": 42,
}
self.assertRaises(a , parser.parse_dict , a , allow_extra_keys=a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase__ = os.path.join(a , "temp_json" )
os.mkdir(a )
with open(temp_local_path + ".json" , "w+" ) as f:
json.dump(a , a )
UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0]
UpperCamelCase__ = BasicExample(**a )
self.assertEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
UpperCamelCase__ = {
"foo": 12,
"bar": 3.14,
"baz": "42",
"flag": True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase__ = os.path.join(a , "temp_yaml" )
os.mkdir(a )
with open(temp_local_path + ".yaml" , "w+" ) as f:
yaml.dump(a , a )
UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0]
UpperCamelCase__ = BasicExample(**a )
self.assertEqual(a , a )
def __a ( self ):
UpperCamelCase__ = HfArgumentParser(a )
self.assertIsNotNone(a )
| 80 | import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase )
UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase )
return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : List[str] = CLIPConfig
__lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""]
def __init__( self , snake_case__ ) -> Dict:
'''simple docstring'''
super().__init__(snake_case__ )
UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config )
UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ )
UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ )
UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ )
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy()
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy()
UpperCAmelCase : Tuple =[]
UpperCAmelCase : Dict =image_embeds.shape[0]
for i in range(snake_case__ ):
UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : str =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx]
UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
UpperCAmelCase : int =0.01
for concept_idx in range(len(cos_dist[0] ) ):
UpperCAmelCase : Any =cos_dist[i][concept_idx]
UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item()
UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(snake_case__ )
result.append(snake_case__ )
UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : List[str] =self.visual_projection(snake_case__ )
UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds )
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : Optional[Any] =0.0
UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 )
UpperCAmelCase : List[Any] =special_care * 0.01
UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 348 | 0 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__)
def _A ( lowercase , lowercase ):
"""simple docstring"""
def run_func(lowercase ):
@wraps(lowercase )
def run_in_eager_mode(*lowercase , **lowercase ):
return func(*lowercase , **lowercase )
@wraps(lowercase )
@tf.function(experimental_compile=lowercase )
def run_in_graph_mode(*lowercase , **lowercase ):
return func(*lowercase , **lowercase )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _A ( lowercase , lowercase , lowercase ):
"""simple docstring"""
a =random.Random()
a =[rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(lowercase , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class __A ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase = 42
__lowerCAmelCase = 42
__lowerCAmelCase = "TensorFlow"
@property
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
return tf.__version__
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> float:
# initialize GPU on separate process
a =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
a =self._prepare_inference_func(__A , __A , __A )
return self._measure_speed(_inference )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> float:
a =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
a =self._prepare_train_func(__A , __A , __A )
return self._measure_speed(_train )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> [Memory, Optional[MemorySummary]]:
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A )
a =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
a =self._prepare_inference_func(__A , __A , __A )
return self._measure_memory(_inference )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A )
a =self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
a =self._prepare_train_func(__A , __A , __A )
return self._measure_memory(_train )
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Callable[[], None]:
a =self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
a =(
hasattr(__A , '''architectures''' )
and isinstance(config.architectures , __A )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
a ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
a =__import__('''transformers''' , fromlist=[model_class] )
a =getattr(__A , __A )
a =model_cls(__A )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
a =TF_MODEL_MAPPING[config.__class__](__A )
# encoder-decoder has vocab size saved differently
a =config.vocab_size if hasattr(__A , '''vocab_size''' ) else config.encoder.vocab_size
a =random_input_ids(__A , __A , __A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(__A , decoder_input_ids=__A , training=__A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(__A , training=__A )
a =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Callable[[], None]:
a =self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
a =(
hasattr(__A , '''architectures''' )
and isinstance(config.architectures , __A )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
a ='''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
a =__import__('''transformers''' , fromlist=[model_class] )
a =getattr(__A , __A )
a =model_cls(__A )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
a =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__A )
# encoder-decoder has vocab size saved differently
a =config.vocab_size if hasattr(__A , '''vocab_size''' ) else config.encoder.vocab_size
a =random_input_ids(__A , __A , __A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
a =model(__A , decoder_input_ids=__A , labels=__A , training=__A )[0]
a =tf.gradients(__A , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
a =model(__A , labels=__A , training=__A )[0]
a =tf.gradients(__A , model.trainable_variables )
return gradients
a =encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def SCREAMING_SNAKE_CASE ( self , __A ) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(__A , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
a =timeit.repeat(
__A , repeat=self.args.repeat , number=10 , )
return min(__A ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
def SCREAMING_SNAKE_CASE ( self , __A ) -> [Memory, MemorySummary]:
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
a =start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
a ='''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
a =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
a =nvml.nvmlDeviceGetMemoryInfo(__A )
a =meminfo.used
a =Memory(__A )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
a =None
else:
a =measure_peak_memory_cpu(__A )
a =Memory(__A ) if isinstance(__A , __A ) else memory_bytes
if self.args.trace_memory_line_by_line:
a =stop_memory_tracing(__A )
if memory is None:
a =summary.total
else:
a =None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None | 81 | import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
__snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False)
parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''')
parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''')
__snake_case = parser.parse_args()
__snake_case = '''cpu'''
__snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'''
__snake_case = '''path-to-your-trained-model'''
__snake_case = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
__snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
__snake_case = pipe.to(device)
# to channels last
__snake_case = pipe.unet.to(memory_format=torch.channels_last)
__snake_case = pipe.vae.to(memory_format=torch.channels_last)
__snake_case = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
__snake_case = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
__snake_case = torch.randn(2, 4, 64, 64)
__snake_case = torch.rand(1) * 9_99
__snake_case = torch.randn(2, 77, 7_68)
__snake_case = (sample, timestep, encoder_hidden_status)
try:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
__snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
__snake_case = 6_66
__snake_case = torch.Generator(device).manual_seed(seed)
__snake_case = {'''generator''': generator}
if args.steps is not None:
__snake_case = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
__snake_case = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('''generated.png''')
| 348 | 0 |
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
A__ = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
A__ = direct_transformers_import(PATH_TO_TRANSFORMERS)
A__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
A__ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""")
A__ = {
"""DecisionTransformerConfig""",
"""EncoderDecoderConfig""",
"""MusicgenConfig""",
"""RagConfig""",
"""SpeechEncoderDecoderConfig""",
"""TimmBackboneConfig""",
"""VisionEncoderDecoderConfig""",
"""VisionTextDualEncoderConfig""",
"""LlamaConfig""",
}
def _UpperCAmelCase ( snake_case ):
"""simple docstring"""
_lowerCAmelCase = None
# source code of `config_class`
_lowerCAmelCase = inspect.getsource(snake_case )
_lowerCAmelCase = _re_checkpoint.findall(snake_case )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("""/""" ):
_lowerCAmelCase = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
_lowerCAmelCase = F'https://huggingface.co/{ckpt_name}'
if ckpt_link == ckpt_link_from_name:
_lowerCAmelCase = ckpt_name
break
return checkpoint
def _UpperCAmelCase ( ):
"""simple docstring"""
_lowerCAmelCase = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
_lowerCAmelCase = get_checkpoint_from_config_class(snake_case )
_lowerCAmelCase = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(snake_case )
if len(snake_case ) > 0:
_lowerCAmelCase = """\n""".join(sorted(snake_case ) )
raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 82 | __snake_case = '''Input must be a string of 8 numbers plus letter'''
__snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def lowerCAmelCase_ ( __lowerCAmelCase )-> bool:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}'''
raise TypeError(__lowerCAmelCase )
UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper()
if len(__lowerCAmelCase ) != 9:
raise ValueError(__lowerCAmelCase )
try:
UpperCAmelCase : int =int(spanish_id_clean[0:8] )
UpperCAmelCase : Optional[int] =spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowerCAmelCase ) from ex
if letter.isdigit():
raise ValueError(__lowerCAmelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase__ ( lowercase , unittest.TestCase ):
lowercase__ = MgpstrTokenizer
lowercase__ = False
lowercase__ = {}
lowercase__ = False
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
super().setUp()
# fmt: off
_UpperCamelCase : Optional[Any] = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# fmt: on
_UpperCamelCase : str = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) )
_UpperCamelCase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp:
fp.write(json.dumps(lowerCamelCase__ ) + '\n' )
def UpperCamelCase_ ( self : int ,**lowerCamelCase__ : str ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ )
def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Any ):
'''simple docstring'''
_UpperCamelCase : Any = 'tester'
_UpperCamelCase : Optional[int] = 'tester'
return input_text, output_text
@unittest.skip('MGP-STR always lower cases letters.' )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
_UpperCamelCase : List[Any] = self.get_tokenizers(do_lower_case=lowerCamelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
_UpperCamelCase : Union[str, Any] = '[SPECIAL_TOKEN]'
tokenizer.add_special_tokens({'cls_token': special_token} )
_UpperCamelCase : List[Any] = tokenizer.encode([special_token] ,add_special_tokens=lowerCamelCase__ )
self.assertEqual(len(lowerCamelCase__ ) ,1 )
_UpperCamelCase : Any = tokenizer.decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ )
self.assertTrue(special_token not in decoded )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
_UpperCamelCase , _UpperCamelCase : List[Any] = self.get_input_output_texts(lowerCamelCase__ )
_UpperCamelCase : List[str] = tokenizer.tokenize(lowerCamelCase__ )
_UpperCamelCase : str = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
_UpperCamelCase : List[str] = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
_UpperCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertNotEqual(len(lowerCamelCase__ ) ,0 )
_UpperCamelCase : Dict = tokenizer.decode(lowerCamelCase__ )
self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ )
self.assertEqual(text_a.replace(' ' ,'' ) ,lowerCamelCase__ )
@unittest.skip('MGP-STR tokenizer only handles one sequence.' )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
pass
@unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
pass
| 83 | def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
"""simple docstring"""
import operator as op
__UpperCAmelCase = 'scaler.pt'
__UpperCAmelCase = 'pytorch_model'
__UpperCAmelCase = 'random_states'
__UpperCAmelCase = 'optimizer'
__UpperCAmelCase = 'scheduler'
__UpperCAmelCase = 'pytorch_model.bin'
__UpperCAmelCase = 'pytorch_model.bin.index.json'
__UpperCAmelCase = 'model.safetensors'
__UpperCAmelCase = 'model.safetensors.index.json'
__UpperCAmelCase = '1.10.2'
__UpperCAmelCase = 'py38'
__UpperCAmelCase = '4.17.0'
__UpperCAmelCase = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge']
__UpperCAmelCase = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2']
__UpperCAmelCase = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP']
__UpperCAmelCase = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH']
__UpperCAmelCase = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT']
__UpperCAmelCase = '2.0.1'
__UpperCAmelCase = ['pdsh', 'standard', 'openmpi', 'mvapich']
__UpperCAmelCase = ['default', 'reduce-overhead', 'max-autotune']
__UpperCAmelCase = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
__UpperCAmelCase = [
'nnodes',
'nproc_per_node',
'rdzv_backend',
'rdzv_endpoint',
'rdzv_id',
'rdzv_conf',
'standalone',
'max_restarts',
'monitor_interval',
'start_method',
'role',
'module',
'm',
'no_python',
'run_path',
'log_dir',
'r',
'redirects',
't',
'tee',
'node_rank',
'master_addr',
'master_port',
]
__UpperCAmelCase = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM']
__UpperCAmelCase = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
| 84 | from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
# TODO Update this
__snake_case = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Tuple = """esm"""
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase : List[str] =vocab_size
UpperCAmelCase : str =hidden_size
UpperCAmelCase : List[Any] =num_hidden_layers
UpperCAmelCase : Optional[Any] =num_attention_heads
UpperCAmelCase : str =intermediate_size
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : int =attention_probs_dropout_prob
UpperCAmelCase : Dict =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : Union[str, Any] =layer_norm_eps
UpperCAmelCase : Dict =position_embedding_type
UpperCAmelCase : Optional[Any] =use_cache
UpperCAmelCase : int =emb_layer_norm_before
UpperCAmelCase : List[str] =token_dropout
UpperCAmelCase : Optional[Any] =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
UpperCAmelCase : Optional[Any] =EsmFoldConfig()
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ )
UpperCAmelCase : Tuple =esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
UpperCAmelCase : Any =get_default_vocab_list()
else:
UpperCAmelCase : Tuple =vocab_list
else:
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : Union[str, Any] =None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =super().to_dict()
if isinstance(self.esmfold_config , snake_case__ ):
UpperCAmelCase : str =self.esmfold_config.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : str = None
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : float = 0
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : int = 128
__lowerCamelCase : "TrunkConfig" = None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.trunk is None:
UpperCAmelCase : str =TrunkConfig()
elif isinstance(self.trunk , snake_case__ ):
UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =asdict(self )
UpperCAmelCase : Any =self.trunk.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 48
__lowerCamelCase : int = 1024
__lowerCamelCase : int = 128
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : float = 0
__lowerCamelCase : float = 0
__lowerCamelCase : bool = False
__lowerCamelCase : int = 4
__lowerCamelCase : Optional[int] = 128
__lowerCamelCase : "StructureModuleConfig" = None
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.structure_module is None:
UpperCAmelCase : Any =StructureModuleConfig()
elif isinstance(self.structure_module , snake_case__ ):
UpperCAmelCase : str =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =asdict(self )
UpperCAmelCase : Tuple =self.structure_module.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 384
__lowerCamelCase : int = 128
__lowerCamelCase : int = 16
__lowerCamelCase : int = 128
__lowerCamelCase : int = 12
__lowerCamelCase : int = 4
__lowerCamelCase : int = 8
__lowerCamelCase : float = 0.1
__lowerCamelCase : int = 8
__lowerCamelCase : int = 1
__lowerCamelCase : int = 2
__lowerCamelCase : int = 7
__lowerCamelCase : int = 10
__lowerCamelCase : float = 1E-8
__lowerCamelCase : float = 1E5
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return asdict(self )
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 348 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_SCREAMING_SNAKE_CASE : int = 25_0004
_SCREAMING_SNAKE_CASE : List[str] = 25_0020
@require_sentencepiece
@require_tokenizers
class _snake_case ( lowercase_ , unittest.TestCase ):
lowerCAmelCase_ : str = MBartTokenizer
lowerCAmelCase_ : List[Any] = MBartTokenizerFast
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Any = True
def lowerCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ = MBartTokenizer(a__ , keep_accents=a__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ = MBartTokenizer(a__ , keep_accents=a__ )
snake_case_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
snake_case_ = tokenizer.convert_tokens_to_ids(a__ )
self.assertListEqual(
a__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case_ = tokenizer.convert_ids_to_tokens(a__ )
self.assertListEqual(
a__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
def lowerCAmelCase__ ( self ) -> int:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
snake_case_ = self.rust_tokenizer_class.from_pretrained(a__ , **a__ )
snake_case_ = self.tokenizer_class.from_pretrained(a__ , **a__ )
snake_case_ = tempfile.mkdtemp()
snake_case_ = tokenizer_r.save_pretrained(a__ )
snake_case_ = tokenizer_p.save_pretrained(a__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
snake_case_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(a__ , a__ )
# Checks everything loads correctly in the same way
snake_case_ = tokenizer_r.from_pretrained(a__ )
snake_case_ = tokenizer_p.from_pretrained(a__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ , a__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(a__ )
# Save tokenizer rust, legacy_format=True
snake_case_ = tempfile.mkdtemp()
snake_case_ = tokenizer_r.save_pretrained(a__ , legacy_format=a__ )
snake_case_ = tokenizer_p.save_pretrained(a__ )
# Checks it save with the same files
self.assertSequenceEqual(a__ , a__ )
# Checks everything loads correctly in the same way
snake_case_ = tokenizer_r.from_pretrained(a__ )
snake_case_ = tokenizer_p.from_pretrained(a__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ , a__ ) )
shutil.rmtree(a__ )
# Save tokenizer rust, legacy_format=False
snake_case_ = tempfile.mkdtemp()
snake_case_ = tokenizer_r.save_pretrained(a__ , legacy_format=a__ )
snake_case_ = tokenizer_p.save_pretrained(a__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case_ = tokenizer_r.from_pretrained(a__ )
snake_case_ = tokenizer_p.from_pretrained(a__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a__ , a__ ) )
shutil.rmtree(a__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
lowerCAmelCase_ : Optional[Any] = "facebook/mbart-large-en-ro"
lowerCAmelCase_ : List[Any] = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
lowerCAmelCase_ : Any = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
lowerCAmelCase_ : Optional[Any] = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE]
@classmethod
def lowerCAmelCase__ ( cls ) -> int:
'''simple docstring'''
snake_case_ = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
snake_case_ = 1
return cls
def lowerCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250_001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250_004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250_020 )
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , a__ )
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
self.assertIn(a__ , self.tokenizer.all_special_ids )
snake_case_ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2]
snake_case_ = self.tokenizer.decode(a__ , skip_special_tokens=a__ )
snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a__ )
self.assertEqual(a__ , a__ )
self.assertNotIn(self.tokenizer.eos_token , a__ )
def lowerCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
snake_case_ = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , a__ )
snake_case_ = 10
snake_case_ = self.tokenizer(a__ , max_length=a__ , truncation=a__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , a__ )
self.assertEqual(len(a__ ) , a__ )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250_026, 250_001] )
def lowerCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = tempfile.mkdtemp()
snake_case_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(a__ )
snake_case_ = MBartTokenizer.from_pretrained(a__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a__ )
@require_torch
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
snake_case_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a__ , return_tensors="pt" )
snake_case_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def lowerCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
snake_case_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(a__ , a__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
snake_case_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , a__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = self.tokenizer(self.src_text , padding=a__ , truncation=a__ , max_length=3 , return_tensors="pt" )
snake_case_ = self.tokenizer(
text_target=self.tgt_text , padding=a__ , truncation=a__ , max_length=10 , return_tensors="pt" )
snake_case_ = targets["input_ids"]
snake_case_ = shift_tokens_right(a__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowerCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
snake_case_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(a__ ) , {
# A, test, EOS, en_XX
"input_ids": [[62, 3_034, 2, 250_004]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250_001,
} , )
| 85 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 0 |
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"""tensor(bool)""": np.bool_,
"""tensor(int8)""": np.inta,
"""tensor(uint8)""": np.uinta,
"""tensor(int16)""": np.intaa,
"""tensor(uint16)""": np.uintaa,
"""tensor(int32)""": np.intaa,
"""tensor(uint32)""": np.uintaa,
"""tensor(int64)""": np.intaa,
"""tensor(uint64)""": np.uintaa,
"""tensor(float16)""": np.floataa,
"""tensor(float)""": np.floataa,
"""tensor(double)""": np.floataa,
}
class A__ :
def __init__( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ):
logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' )
__lowerCAmelCase : Optional[int] = model
__lowerCAmelCase : List[str] = kwargs.get('model_save_dir' , _SCREAMING_SNAKE_CASE )
__lowerCAmelCase : str = kwargs.get('latest_model_name' , _SCREAMING_SNAKE_CASE )
def __call__( self , **_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : int = {k: np.array(_SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()}
return self.model.run(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
@staticmethod
def __lowerCamelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ):
if provider is None:
logger.info('No onnxruntime provider specified, using CPUExecutionProvider' )
__lowerCAmelCase : Any = 'CPUExecutionProvider'
return ort.InferenceSession(_SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
__lowerCAmelCase : Any = self.model_save_dir.joinpath(self.latest_model_name )
__lowerCAmelCase : Union[str, Any] = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE )
try:
shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
__lowerCAmelCase : int = self.model_save_dir.joinpath(_SCREAMING_SNAKE_CASE )
if src_path.exists():
__lowerCAmelCase : Tuple = Path(_SCREAMING_SNAKE_CASE ).joinpath(_SCREAMING_SNAKE_CASE )
try:
shutil.copyfile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
except shutil.SameFileError:
pass
def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ):
if os.path.isfile(_SCREAMING_SNAKE_CASE ):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file" )
return
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
# saving model weights/files
self._save_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCamelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ):
__lowerCAmelCase : Union[str, Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(_SCREAMING_SNAKE_CASE ):
__lowerCAmelCase : Dict = OnnxRuntimeModel.load_model(
os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE )
__lowerCAmelCase : int = Path(_SCREAMING_SNAKE_CASE )
# load model from hub
else:
# download model
__lowerCAmelCase : int = hf_hub_download(
repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , )
__lowerCAmelCase : Tuple = Path(_SCREAMING_SNAKE_CASE ).parent
__lowerCAmelCase : Tuple = Path(_SCREAMING_SNAKE_CASE ).name
__lowerCAmelCase : Optional[int] = OnnxRuntimeModel.load_model(_SCREAMING_SNAKE_CASE , provider=_SCREAMING_SNAKE_CASE , sess_options=_SCREAMING_SNAKE_CASE )
return cls(model=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@classmethod
def __lowerCamelCase ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ):
__lowerCAmelCase : int = None
if len(str(_SCREAMING_SNAKE_CASE ).split('@' ) ) == 2:
__lowerCAmelCase , __lowerCAmelCase : Any = model_id.split('@' )
return cls._from_pretrained(
model_id=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) | 86 | import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits
UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean()
UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item())
UpperCAmelCase : List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class snake_case_ :
__A : List[str] = BlenderbotSmallConfig
__A : Union[str, Any] = {}
__A : Union[str, Any] = "gelu"
def __init__( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : str=True , lowercase_ : Optional[Any]=False , lowercase_ : Dict=99 , lowercase_ : Optional[Any]=32 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : Any=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=20 , lowercase_ : Optional[Any]=2 , lowercase_ : int=1 , lowercase_ : Union[str, Any]=0 , ) -> List[str]:
lowercase__ : int = parent
lowercase__ : Dict = batch_size
lowercase__ : List[str] = seq_length
lowercase__ : List[Any] = is_training
lowercase__ : Any = use_labels
lowercase__ : Dict = vocab_size
lowercase__ : Dict = hidden_size
lowercase__ : List[Any] = num_hidden_layers
lowercase__ : Optional[Any] = num_attention_heads
lowercase__ : Optional[Any] = intermediate_size
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : List[str] = attention_probs_dropout_prob
lowercase__ : int = max_position_embeddings
lowercase__ : Tuple = eos_token_id
lowercase__ : Optional[int] = pad_token_id
lowercase__ : Tuple = bos_token_id
def __UpperCamelCase ( self : Any ) -> Tuple:
lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowercase__ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowercase__ : Optional[int] = tf.concat([input_ids, eos_tensor] , axis=1 )
lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : Optional[int] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase__ : Optional[Any] = prepare_blenderbot_small_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def __UpperCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : str ) -> Any:
lowercase__ : Dict = TFBlenderbotSmallModel(config=lowercase_ ).get_decoder()
lowercase__ : Union[str, Any] = inputs_dict["input_ids"]
lowercase__ : str = input_ids[:1, :]
lowercase__ : Any = inputs_dict["attention_mask"][:1, :]
lowercase__ : Union[str, Any] = inputs_dict["head_mask"]
lowercase__ : Optional[int] = 1
# first forward pass
lowercase__ : Dict = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ )
lowercase__ , lowercase__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowercase__ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowercase__ : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowercase__ : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
lowercase__ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowercase__ : List[Any] = model(lowercase_ , attention_mask=lowercase_ )[0]
lowercase__ : str = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowercase__ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowercase__ : str = output_from_no_past[:, -3:, random_slice_idx]
lowercase__ : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 )
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=None , _lowerCamelCase : Union[str, Any]=None , ):
if attention_mask is None:
lowercase__ : Optional[int] = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id) , tf.inta)
if decoder_attention_mask is None:
lowercase__ : List[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta),
] , axis=-1 , )
if head_mask is None:
lowercase__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
lowercase__ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
lowercase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class snake_case_ ( __A ,__A ,unittest.TestCase ):
__A : Optional[int] = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
__A : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
__A : str = (
{
"conversational": TFBlenderbotSmallForConditionalGeneration,
"feature-extraction": TFBlenderbotSmallModel,
"summarization": TFBlenderbotSmallForConditionalGeneration,
"text2text-generation": TFBlenderbotSmallForConditionalGeneration,
"translation": TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
__A : Any = True
__A : Tuple = False
__A : Union[str, Any] = False
def __UpperCamelCase ( self : Dict ) -> List[Any]:
lowercase__ : List[str] = TFBlenderbotSmallModelTester(self )
lowercase__ : Optional[int] = ConfigTester(self , config_class=lowercase_ )
def __UpperCamelCase ( self : str ) -> Tuple:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Tuple ) -> Any:
lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ )
@require_tokenizers
@require_tf
class snake_case_ ( unittest.TestCase ):
__A : Union[str, Any] = [
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like "
" i'm going to throw up.\nand why is that?"
]
__A : str = "facebook/blenderbot_small-90M"
@cached_property
def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
@cached_property
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __UpperCamelCase ( self : Any ) -> int:
lowercase__ : Tuple = self.tokenizer(self.src_text , return_tensors="tf" )
lowercase__ : List[str] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowercase_ , )
lowercase__ : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 87 | import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : List[Any] =ort.SessionOptions()
UpperCAmelCase : Optional[int] =False
return options
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Optional[Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Dict ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : Any =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Tuple =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : str =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : int =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 348 | 0 |
def a__ ( A_ ):
'''simple docstring'''
if not isinstance(A_, A_ ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(A_ ) == 0:
raise ValueError("""Input list must be a non empty list""" )
if len(A_ ) == 1:
return True
__magic_name__ = series[1] - series[0]
for index in range(len(A_ ) - 1 ):
if series[index + 1] - series[index] != common_diff:
return False
return True
def a__ ( A_ ):
'''simple docstring'''
if not isinstance(A_, A_ ):
raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" )
if len(A_ ) == 0:
raise ValueError("""Input list must be a non empty list""" )
__magic_name__ = 0
for val in series:
answer += val
return answer / len(A_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 88 | from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( )-> int:
'''simple docstring'''
UpperCAmelCase : str ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase )
return dataset
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] =get_dataset()
UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str =get_dataset()
UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
| 348 | 0 |
'''simple docstring'''
import string
def __lowerCamelCase ( lowerCAmelCase_ ) -> None:
for key in range(len(string.ascii_uppercase ) ):
_a : Union[str, Any] = ''
for symbol in message:
if symbol in string.ascii_uppercase:
_a : Optional[Any] = string.ascii_uppercase.find(lowerCAmelCase_ )
_a : List[str] = num - key
if num < 0:
_a : str = num + len(string.ascii_uppercase )
_a : int = translated + string.ascii_uppercase[num]
else:
_a : Dict = translated + symbol
print(f"""Decryption using Key #{key}: {translated}""" )
def __lowerCamelCase ( ) -> None:
_a : int = input('Encrypted message: ' )
_a : Tuple = message.upper()
decrypt(lowerCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 89 | from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Optional[Any] =learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ )
else:
UpperCAmelCase : Union[str, Any] =None
UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : VQModel
__lowerCamelCase : CLIPTextModel
__lowerCamelCase : CLIPTokenizer
__lowerCamelCase : TransformeraDModel
__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings
__lowerCamelCase : VQDiffusionScheduler
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
UpperCAmelCase : Optional[int] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : int =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
UpperCAmelCase : str =[''''''] * batch_size
UpperCAmelCase : Tuple =text_input_ids.shape[-1]
UpperCAmelCase : Optional[Any] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1]
UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =1
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Tuple =len(snake_case__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
UpperCAmelCase : Tuple =batch_size * num_images_per_prompt
UpperCAmelCase : List[str] =guidance_scale > 1.0
UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(snake_case__ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1
UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCAmelCase : Any =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Optional[int] =latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 )
UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase : Optional[Any] =model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim
UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ )
UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ )
UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase : int =keep_mask[:, :-1, :]
UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase : Dict =log_p_x_0.clone()
UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0)
return rv
| 348 | 0 |
import math
import qiskit
def lowerCamelCase_ ( UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if (
isinstance(UpperCamelCase__ , UpperCamelCase__ )
or isinstance(UpperCamelCase__ , UpperCamelCase__ )
or isinstance(UpperCamelCase__ , UpperCamelCase__ )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(UpperCamelCase__ ) != input_a)
or (math.floor(UpperCamelCase__ ) != input_a)
or (math.floor(UpperCamelCase__ ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
__lowerCamelCase = qiskit.QuantumRegister(4 , 'qr' )
__lowerCamelCase = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
__lowerCamelCase = [input_a, input_a, carry_in]
__lowerCamelCase = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(UpperCamelCase__ ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(UpperCamelCase__ ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(UpperCamelCase__ ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , UpperCamelCase__ ) # measure the last two qbits
__lowerCamelCase = qiskit.Aer.get_backend('aer_simulator' )
__lowerCamelCase = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 )
return job.result().get_counts(UpperCamelCase__ )
if __name__ == "__main__":
print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
| 90 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase : Any =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.dummy_uncond_unet
UpperCAmelCase : Optional[int] =KarrasVeScheduler()
UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : List[str] =torch.manual_seed(0 )
UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : str =torch.manual_seed(0 )
UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0]
UpperCAmelCase : Any =image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256'''
UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ )
UpperCAmelCase : Dict =KarrasVeScheduler()
UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Any =torch.manual_seed(0 )
UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 348 | 0 |
"""simple docstring"""
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 91 | import qiskit
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' )
UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
__snake_case = half_adder(1, 1)
print(f'Half Adder Output Qubit Counts: {counts}')
| 348 | 0 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
UpperCamelCase__ = get_logger()
UpperCamelCase__ = None
class a__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ):
def __init__( self , _A=None , _A=None , **_A ):
"""simple docstring"""
super().__init__(features=_A )
import jax
from jaxlib.xla_client import Device
if isinstance(_A , _A ):
raise ValueError(
f"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
__lowerCAmelCase = device if isinstance(_A , _A ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
__lowerCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f"""Device with string identifier {self.device} not listed among the available """
f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
f"""device: {str(jax.devices()[0] )}.""" )
__lowerCAmelCase = str(jax.devices()[0] )
__lowerCAmelCase = jnp_array_kwargs
@staticmethod
def __SCREAMING_SNAKE_CASE( ):
"""simple docstring"""
import jax
return {str(_A ): device for device in jax.devices()}
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_A , _A ) and column:
if all(
isinstance(_A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_A , axis=0 )
return column
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_A , (str, bytes, type(_A )) ):
return value
elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__lowerCAmelCase = {}
if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
__lowerCAmelCase = {"dtype": jnp.intaa}
else:
__lowerCAmelCase = {"dtype": jnp.intaa}
elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__lowerCAmelCase = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_A , PIL.Image.Image ):
__lowerCAmelCase = np.asarray(_A )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
__lowerCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_A , **{**default_dtype, **self.jnp_array_kwargs} )
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_A , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_A , "__array__" ) and not isinstance(_A , jax.Array ):
__lowerCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_A , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
elif isinstance(_A , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] )
return self._tensorize(_A )
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
return map_nested(self._recursive_tensorize , _A , map_list=_A )
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
__lowerCAmelCase = self.numpy_arrow_extractor().extract_row(_A )
__lowerCAmelCase = self.python_features_decoder.decode_row(_A )
return self.recursive_tensorize(_A )
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
__lowerCAmelCase = self.numpy_arrow_extractor().extract_column(_A )
__lowerCAmelCase = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] )
__lowerCAmelCase = self.recursive_tensorize(_A )
__lowerCAmelCase = self._consolidate(_A )
return column
def __SCREAMING_SNAKE_CASE( self , _A ):
"""simple docstring"""
__lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(_A )
__lowerCAmelCase = self.python_features_decoder.decode_batch(_A )
__lowerCAmelCase = self.recursive_tensorize(_A )
for column_name in batch:
__lowerCAmelCase = self._consolidate(batch[column_name] )
return batch
| 92 | from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __snake_case :
__lowerCamelCase : str = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Optional[int] = """gelu"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : Dict =seq_length
UpperCAmelCase : Optional[Any] =is_training
UpperCAmelCase : List[str] =use_labels
UpperCAmelCase : List[Any] =vocab_size
UpperCAmelCase : Optional[int] =hidden_size
UpperCAmelCase : Tuple =num_hidden_layers
UpperCAmelCase : Any =num_attention_heads
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : str =hidden_dropout_prob
UpperCAmelCase : Optional[int] =attention_probs_dropout_prob
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : List[Any] =eos_token_id
UpperCAmelCase : Optional[int] =pad_token_id
UpperCAmelCase : Tuple =bos_token_id
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder()
UpperCAmelCase : Any =inputs_dict['''input_ids''']
UpperCAmelCase : str =input_ids[:1, :]
UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Tuple =inputs_dict['''head_mask''']
UpperCAmelCase : List[Any] =1
# first forward pass
UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : Dict = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Union[str, Any] = True
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[str] =TFBlenderbotModelTester(self )
UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class __snake_case ( unittest.TestCase ):
__lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""]
__lowerCamelCase : Dict = """facebook/blenderbot-400M-distill"""
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase : Optional[int] =self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 348 | 0 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
_lowercase : Union[str, Any] = yaml.safe_load(
"\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n"
)
_lowercase : int = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
_lowercase : Optional[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Any = {
"name": "root",
"text": "",
"is_empty_text": True,
"subsections": [
{
"name": "Dataset Card for My Dataset",
"text": "",
"is_empty_text": True,
"subsections": [
{"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []},
{
"name": "Dataset Description",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Dataset Summary",
"text": "Some text here.",
"is_empty_text": False,
"subsections": [
{
"name": "Extra Ignored Subsection",
"text": "",
"is_empty_text": True,
"subsections": [],
}
],
},
{
"name": "Supported Tasks and Leaderboards",
"text": "",
"is_empty_text": True,
"subsections": [],
},
{"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []},
],
},
],
}
],
}
_lowercase : str = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : List[str] = (
"The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README."
)
_lowercase : Tuple = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = (
"The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README."
)
_lowercase : Tuple = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[int] = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)."
_lowercase : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n"
_lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'."
_lowercase : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n"
_lowercase : int = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n"
_lowercase : int = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty."
_lowercase : List[str] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : str = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README."
_lowercase : Dict = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n"
_lowercase : List[str] = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README."
_lowercase : str = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README."
_lowercase : List[Any] = ""
_lowercase : Optional[Any] = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README."
_lowercase : List[Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n"
_lowercase : Optional[Any] = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections."
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
assert ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ):
lowercase_ : Optional[int] = ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Any ):
"""simple docstring"""
ReadMe.from_string(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : str = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = expected_error.format(path=__SCREAMING_SNAKE_CASE )
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : int = ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Dict = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = expected_error.format(path=__SCREAMING_SNAKE_CASE )
with pytest.raises(__SCREAMING_SNAKE_CASE , match=re.escape(__SCREAMING_SNAKE_CASE ) ):
ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase_ : Optional[int] = Path(__SCREAMING_SNAKE_CASE ) / '''README.md'''
with open(__SCREAMING_SNAKE_CASE , '''w+''' ) as readme_file:
readme_file.write(__SCREAMING_SNAKE_CASE )
ReadMe.from_readme(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , suppress_parsing_errors=__SCREAMING_SNAKE_CASE )
| 93 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """sew-d"""
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase : Union[str, Any] =hidden_size
UpperCAmelCase : Union[str, Any] =feat_extract_norm
UpperCAmelCase : Optional[Any] =feat_extract_activation
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : int =list(snake_case__ )
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : str =conv_bias
UpperCAmelCase : Tuple =num_conv_pos_embeddings
UpperCAmelCase : Dict =num_conv_pos_embedding_groups
UpperCAmelCase : str =len(self.conv_dim )
UpperCAmelCase : Dict =num_hidden_layers
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : List[Any] =squeeze_factor
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : int =position_buckets
UpperCAmelCase : Optional[int] =share_att_key
UpperCAmelCase : Optional[int] =relative_attention
UpperCAmelCase : Tuple =norm_rel_ebd
UpperCAmelCase : List[Any] =list(snake_case__ )
UpperCAmelCase : Dict =hidden_act
UpperCAmelCase : Optional[int] =num_attention_heads
UpperCAmelCase : Any =hidden_dropout
UpperCAmelCase : str =attention_dropout
UpperCAmelCase : Union[str, Any] =activation_dropout
UpperCAmelCase : str =feat_proj_dropout
UpperCAmelCase : Union[str, Any] =final_dropout
UpperCAmelCase : Optional[int] =layer_norm_eps
UpperCAmelCase : str =feature_layer_norm_eps
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Any =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] =apply_spec_augment
UpperCAmelCase : Optional[Any] =mask_time_prob
UpperCAmelCase : Tuple =mask_time_length
UpperCAmelCase : str =mask_time_min_masks
UpperCAmelCase : Optional[int] =mask_feature_prob
UpperCAmelCase : Optional[Any] =mask_feature_length
UpperCAmelCase : List[Any] =mask_feature_min_masks
# ctc loss
UpperCAmelCase : str =ctc_loss_reduction
UpperCAmelCase : Optional[int] =ctc_zero_infinity
# sequence classification
UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum
UpperCAmelCase : int =classifier_proj_size
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class _snake_case :
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=1000 , ):
a :str = parent
a :str = batch_size
a :List[Any] = seq_length
a :Union[str, Any] = is_training
a :str = use_input_mask
a :Tuple = use_token_type_ids
a :Optional[int] = use_labels
a :Union[str, Any] = vocab_size
a :Optional[Any] = hidden_size
a :Any = num_hidden_layers
a :Optional[int] = num_attention_heads
a :Tuple = intermediate_size
a :Dict = hidden_act
a :str = hidden_dropout_prob
a :List[Any] = attention_probs_dropout_prob
a :List[Any] = max_position_embeddings
a :List[str] = type_vocab_size
a :List[Any] = type_sequence_label_size
a :Union[str, Any] = initializer_range
a :Optional[Any] = num_labels
a :Optional[int] = num_choices
a :Union[str, Any] = scope
a :List[str] = range_bbox
def SCREAMING_SNAKE_CASE__ ( self ):
a :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
a :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a :List[Any] = bbox[i, j, 3]
a :List[str] = bbox[i, j, 1]
a :List[str] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a :Dict = bbox[i, j, 2]
a :Dict = bbox[i, j, 0]
a :Any = t
a :Optional[Any] = tf.convert_to_tensor(_lowerCamelCase )
a :int = None
if self.use_input_mask:
a :List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
a :Optional[int] = None
if self.use_token_type_ids:
a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a :List[Any] = None
a :List[Any] = None
a :List[Any] = None
if self.use_labels:
a :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a :List[str] = ids_tensor([self.batch_size] , self.num_choices )
a :List[Any] = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :Optional[int] = TFLayoutLMModel(config=_lowerCamelCase )
a :Dict = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )
a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase , token_type_ids=_lowerCamelCase )
a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :List[str] = TFLayoutLMForMaskedLM(config=_lowerCamelCase )
a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :Optional[int] = self.num_labels
a :List[Any] = TFLayoutLMForSequenceClassification(config=_lowerCamelCase )
a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :int = self.num_labels
a :Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCamelCase )
a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
a :Optional[Any] = TFLayoutLMForQuestionAnswering(config=_lowerCamelCase )
a :Optional[int] = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[str] = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) :List[Any] = config_and_inputs
a :Union[str, Any] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class _snake_case ( _snake_case , _snake_case , unittest.TestCase ):
SCREAMING_SNAKE_CASE__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE__ = (
{
'feature-extraction': TFLayoutLMModel,
'fill-mask': TFLayoutLMForMaskedLM,
'text-classification': TFLayoutLMForSequenceClassification,
'token-classification': TFLayoutLMForTokenClassification,
'zero-shot': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = 10
def SCREAMING_SNAKE_CASE__ ( self ):
a :Dict = TFLayoutLMModelTester(self )
a :Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ):
a :str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self ):
a :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a :str = TFLayoutLMModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
@unittest.skip('''Onnx compliancy broke with TF 2.10''' )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
def __lowerCamelCase ( ):
"""simple docstring"""
a :Tuple = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
a :Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
a :List[str] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
a :List[str] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
a :Any = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
a :List[Any] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' )
a , a , a , a , a :Optional[Any] = prepare_layoutlm_batch_inputs()
# forward pass
a :Tuple = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )
# test the sequence output on [0, :3, :3]
a :List[str] = tf.convert_to_tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-3 ) )
# test the pooled output on [1, :3]
a :List[str] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCamelCase , atol=1e-3 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# initialize model with randomly initialized sequence classification head
a :str = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 )
a , a , a , a , a :List[str] = prepare_layoutlm_batch_inputs()
# forward pass
a :List[Any] = model(
input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
a :Union[str, Any] = outputs.loss
a :Optional[Any] = (2,)
self.assertEqual(loss.shape , _lowerCamelCase )
# test the shape of the logits
a :Any = outputs.logits
a :Tuple = (2, 2)
self.assertEqual(logits.shape , _lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# initialize model with randomly initialized token classification head
a :Dict = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 )
a , a , a , a , a :Dict = prepare_layoutlm_batch_inputs()
# forward pass
a :List[Any] = model(
input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
# test the shape of the logits
a :Optional[Any] = outputs.logits
a :List[Any] = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
# initialize model with randomly initialized token classification head
a :List[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' )
a , a , a , a , a :Any = prepare_layoutlm_batch_inputs()
# forward pass
a :str = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase )
# test the shape of the logits
a :Optional[int] = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _lowerCamelCase )
self.assertEqual(outputs.end_logits.shape , _lowerCamelCase )
| 94 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__snake_case = 4
__snake_case = 3
class __snake_case ( lowerCamelCase__ ):
pass
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]:
'''simple docstring'''
for shard in shards:
for i in range(__lowerCAmelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =int(os.environ['''RANK'''] )
UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] )
UpperCAmelCase : List[Any] =ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCAmelCase )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase )
parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 )
UpperCAmelCase : Any =parser.parse_args()
UpperCAmelCase : List[str] =args.streaming
UpperCAmelCase : Tuple =args.num_workers
UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]}
UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase )
if not streaming:
UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) )
UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase )
UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase )
UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : str =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : List[Any] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 348 | 0 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
UpperCAmelCase : int = logging.get_logger(__name__)
UpperCAmelCase : Any = """Hello, World!"""
UpperCAmelCase : int = """en_XX"""
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ):
"""simple docstring"""
a__ : Any =Path("data_bin" )
a__ : Optional[Any] =FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe="sentencepiece" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
a__ : int =xmod.model.encoder.sentence_encoder
a__ : Any =XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our X-MOD config:" , SCREAMING_SNAKE_CASE )
a__ : str =XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
a__ : Tuple =xmod_sent_encoder.embed_tokens.weight
a__ : int =xmod_sent_encoder.embed_positions.weight
a__ : List[str] =torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
a__ : Tuple =xmod_sent_encoder.layernorm_embedding.weight
a__ : Any =xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
a__ : List[Any] =model.roberta.encoder.layer[i]
a__ : str =xmod_sent_encoder.layers[i]
# self attention
a__ : Union[str, Any] =layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("Dimensions of self-attention weights do not match." )
a__ : Any =xmod_layer.self_attn.q_proj.weight
a__ : Optional[Any] =xmod_layer.self_attn.q_proj.bias
a__ : Optional[int] =xmod_layer.self_attn.k_proj.weight
a__ : Optional[int] =xmod_layer.self_attn.k_proj.bias
a__ : Any =xmod_layer.self_attn.v_proj.weight
a__ : List[str] =xmod_layer.self_attn.v_proj.bias
# self-attention output
a__ : Union[str, Any] =layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("Dimensions of self-attention output weights do not match." )
a__ : Any =xmod_layer.self_attn.out_proj.weight
a__ : str =xmod_layer.self_attn.out_proj.bias
a__ : Dict =xmod_layer.self_attn_layer_norm.weight
a__ : Any =xmod_layer.self_attn_layer_norm.bias
# intermediate
a__ : List[Any] =layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of intermediate weights do not match." )
a__ : Any =xmod_layer.fca.weight
a__ : str =xmod_layer.fca.bias
# output
a__ : Union[str, Any] =layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("Dimensions of feed-forward weights do not match." )
a__ : int =xmod_layer.fca.weight
a__ : str =xmod_layer.fca.bias
a__ : str =xmod_layer.final_layer_norm.weight
a__ : Optional[Any] =xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
a__ : Union[str, Any] =xmod_layer.adapter_layer_norm.weight
a__ : List[str] =xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("Lists of language adapters do not match." )
for lang_code, adapter in xmod_layer.adapter_modules.items():
a__ : int =bert_output.adapter_modules[lang_code]
a__ : List[Any] =xmod_layer.adapter_modules[lang_code]
a__ : List[str] =from_adapter.fca.weight
a__ : List[Any] =from_adapter.fca.bias
a__ : Optional[int] =from_adapter.fca.weight
a__ : List[Any] =from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
a__ : Any =xmod_sent_encoder.layer_norm.weight
a__ : Tuple =xmod_sent_encoder.layer_norm.bias
if classification_head:
a__ : int =xmod.model.classification_heads["mnli"].dense.weight
a__ : Union[str, Any] =xmod.model.classification_heads["mnli"].dense.bias
a__ : List[str] =xmod.model.classification_heads["mnli"].out_proj.weight
a__ : Any =xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
a__ : Optional[Any] =xmod.model.encoder.lm_head.dense.weight
a__ : Dict =xmod.model.encoder.lm_head.dense.bias
a__ : List[str] =xmod.model.encoder.lm_head.layer_norm.weight
a__ : Any =xmod.model.encoder.lm_head.layer_norm.bias
a__ : Dict =xmod.model.encoder.lm_head.weight
a__ : Optional[int] =xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
a__ : Tuple =xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
a__ : List[Any] =model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
a__ : Optional[int] =xmod.model.classification_heads["mnli"](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
a__ : Any =xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
a__ : Any =torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
a__ : List[str] =torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 )
print("Do both models output the same tensors?" , "🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
UpperCAmelCase : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
UpperCAmelCase : List[Any] = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 95 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
# Initialise PyTorch model
_lowerCamelCase : Dict = RemBertConfig.from_json_file(lowercase__ )
print('Building PyTorch model from configuration: {}'.format(str(lowercase__ ) ) )
_lowerCamelCase : Any = RemBertModel(lowercase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print('Save PyTorch model to {}'.format(lowercase__ ) )
torch.save(model.state_dict() , lowercase__ )
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--rembert_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained RemBERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowercase__ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path) | 96 | import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __snake_case :
def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str:
'''simple docstring'''
UpperCAmelCase : str =parent
UpperCAmelCase : Tuple =batch_size
UpperCAmelCase : Optional[int] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Tuple =use_input_mask
UpperCAmelCase : List[Any] =use_token_type_ids
UpperCAmelCase : Optional[Any] =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : List[Any] =hidden_size
UpperCAmelCase : Optional[int] =rotary_dim
UpperCAmelCase : Union[str, Any] =num_hidden_layers
UpperCAmelCase : List[Any] =num_attention_heads
UpperCAmelCase : Dict =intermediate_size
UpperCAmelCase : Union[str, Any] =hidden_act
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : Dict =attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : List[Any] =vocab_size - 1
UpperCAmelCase : Optional[Any] =vocab_size - 1
UpperCAmelCase : List[Any] =vocab_size - 1
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] =None
if self.use_input_mask:
UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict =GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs
UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =20
UpperCAmelCase : Any =model_class_name(snake_case__ )
UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , )
UpperCAmelCase : List[Any] =model(snake_case__ )
UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Dict =20
UpperCAmelCase : Dict =model_class_name(snake_case__ )
UpperCAmelCase : Tuple =jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : int =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : str =model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ )
UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
@tooslow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ )
UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : str =False
UpperCAmelCase : Union[str, Any] =model.config.eos_token_id
UpperCAmelCase : List[Any] =jax.jit(model.generate )
UpperCAmelCase : Dict =jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )
UpperCAmelCase : Tuple =[
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(snake_case__ , snake_case__ )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : int =0
UpperCAmelCase : Optional[int] =1
UpperCAmelCase : Optional[int] =0
UpperCAmelCase : Union[str, Any] =1
UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ )
UpperCAmelCase : Union[str, Any] =fx_state
with torch.no_grad():
UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(snake_case__ )
UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ )
UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : int =getattr(snake_case__ , snake_case__ )
UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params )
UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : str =0
UpperCAmelCase : Any =1
UpperCAmelCase : List[Any] =0
UpperCAmelCase : Tuple =1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(snake_case__ )
UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ )
with torch.no_grad():
UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : Tuple =model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case__ )
| 348 | 0 |
'''simple docstring'''
from typing import Dict
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_torch_dist_unique_port,
require_torch_multi_gpu,
require_torch_neuroncore,
)
from transformers.training_args import ParallelMode
from transformers.utils import logging
__snake_case = logging.get_logger(__name__)
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
from transformers import Trainer
class lowercase ( A__ ):
"""simple docstring"""
def __init__( self , UpperCamelCase_ = 101 ):
'''simple docstring'''
UpperCamelCase__ :int = length
def __len__( self ):
'''simple docstring'''
return self.length
def __getitem__( self , UpperCamelCase_ ):
'''simple docstring'''
return i
class lowercase :
"""simple docstring"""
def __call__( self , UpperCamelCase_ ):
'''simple docstring'''
return {"input_ids": torch.tensor(UpperCamelCase_ ), "labels": torch.tensor(UpperCamelCase_ )}
class lowercase ( nn.Module ):
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
super().__init__()
# Add some (unused) params otherwise DDP will complain.
UpperCamelCase__ :List[Any] = nn.Linear(120 , 80 )
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=None ):
'''simple docstring'''
if labels is not None:
return torch.tensor(0.0 , device=input_ids.device ), input_ids
else:
return input_ids
class lowercase ( A__ ):
"""simple docstring"""
@require_torch_neuroncore
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = F'''--nproc_per_node=2
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
'''.split()
UpperCamelCase__ :Optional[Any] = self.get_auto_remove_tmp_dir()
UpperCamelCase__ :Tuple = F'''--output_dir {output_dir}'''.split()
UpperCamelCase__ :Tuple = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(UpperCamelCase_ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
class lowercase ( A__ ):
"""simple docstring"""
@require_torch_multi_gpu
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = F'''--nproc_per_node={torch.cuda.device_count()}
--master_port={get_torch_dist_unique_port()}
{self.test_file_dir}/test_trainer_distributed.py
'''.split()
UpperCamelCase__ :int = self.get_auto_remove_tmp_dir()
UpperCamelCase__ :List[Any] = F'''--output_dir {output_dir}'''.split()
UpperCamelCase__ :str = ['''torchrun'''] + distributed_args + args
execute_subprocess_async(UpperCamelCase_ , env=self.get_env() )
# successful return here == success - any errors would have caused an error in the sub-call
if __name__ == "__main__":
# The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
#
# PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
__snake_case = HfArgumentParser((TrainingArguments,))
__snake_case = parser.parse_args_into_dataclasses()[0]
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """
F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"""
)
# Essentially, what we want to verify in the distributed case is that we get all samples back,
# in the right order. (this is crucial for prediction for instance)
for dataset_length in [101, 40, 7]:
__snake_case = DummyDataset(dataset_length)
def a ( __a ) -> Dict:
'''simple docstring'''
UpperCamelCase__ :List[Any] = list(range(len(__a ) ) )
UpperCamelCase__ :Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
if not success and training_args.local_rank == 0:
logger.warning(
'''Predictions and/or labels do not match expected results:\n - predictions: '''
f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' )
return {"success": success}
__snake_case = Trainer(
model=DummyModel(),
args=training_args,
data_collator=DummyDataCollator(),
eval_dataset=dataset,
compute_metrics=compute_metrics,
)
__snake_case = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
__snake_case = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
__snake_case = 2
__snake_case = trainer.evaluate()
logger.info(metrics)
if metrics["eval_success"] is not True:
logger.error(metrics)
exit(1)
__snake_case = trainer.predict(dataset)
logger.info(p.metrics)
if p.metrics["test_success"] is not True:
logger.error(p.metrics)
exit(1)
__snake_case = None | 97 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
"""simple docstring"""
def a_ ( lowerCamelCase = 1_0_0_0 ):
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 98 | import os
from typing import Dict, List, Tuple, TypeVar, Union
__snake_case = TypeVar('''T''')
__snake_case = Union[List[T], Tuple[T, ...]]
__snake_case = Union[T, List[T], Dict[str, T]]
__snake_case = Union[str, bytes, os.PathLike]
| 348 | 0 |
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def A_ ( A__ ) -> Union[str, Any]:
a__ : List[str] = split_dict._to_yaml_list()
assert len(A__ ) == len(A__ )
a__ : List[Any] = SplitDict._from_yaml_list(A__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
a__ : Any = None
# the split name of split_dict takes over the name of the split info object
a__ : str = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=A__ ), SplitInfo(dataset_name='my_dataset' )] )
def A_ ( A__ ) -> Any:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
a__ : Any = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 99 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''google/bigbird-roberta-base''': 40_96,
'''google/bigbird-roberta-large''': 40_96,
'''google/bigbird-base-trivia-itc''': 40_96,
}
__snake_case = '''▁'''
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Dict = VOCAB_FILES_NAMES
__lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : List[str] = BigBirdTokenizer
__lowerCamelCase : Any = ["""input_ids""", """attention_mask"""]
__lowerCamelCase : List[int] = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase : Tuple =vocab_file
UpperCAmelCase : Optional[int] =False if not self.vocab_file else True
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : int =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(snake_case__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Optional[int] =os.path.join(
snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 348 | 0 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {"vocab_file": "spiece.model"}
__magic_name__ = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
}
}
__magic_name__ = {
"google/bigbird-roberta-base": 4096,
"google/bigbird-roberta-large": 4096,
"google/bigbird-base-trivia-itc": 4096,
}
class SCREAMING_SNAKE_CASE_ ( __a ):
"""simple docstring"""
__lowercase : Tuple = VOCAB_FILES_NAMES
__lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase : Union[str, Any] = ['''input_ids''', '''attention_mask''']
__lowercase : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ):
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else unk_token
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
__SCREAMING_SNAKE_CASE = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token
__SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE = vocab_file
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(lowerCAmelCase__)
@property
def snake_case_ ( self):
return self.sp_model.get_piece_size()
def snake_case_ ( self):
__SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(lowerCAmelCase__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self):
__SCREAMING_SNAKE_CASE = self.__dict__.copy()
__SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs"""):
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def snake_case_ ( self , lowerCAmelCase__):
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__)
def snake_case_ ( self , lowerCAmelCase__):
return self.sp_model.piece_to_id(lowerCAmelCase__)
def snake_case_ ( self , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(lowerCAmelCase__)
return token
def snake_case_ ( self , lowerCAmelCase__):
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = """"""
__SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__) + token
__SCREAMING_SNAKE_CASE = True
__SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(lowerCAmelCase__)
return out_string.strip()
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ):
__SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" , lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__))
__SCREAMING_SNAKE_CASE = []
sub_texts.append(lowerCAmelCase__)
else:
current_sub_text.append(lowerCAmelCase__)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__))
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
__SCREAMING_SNAKE_CASE = re.sub(R""" (\[(MASK|SEP)\])""" , R"""\1""" , """ """.join(lowerCAmelCase__))
else:
__SCREAMING_SNAKE_CASE = """""".join(lowerCAmelCase__)
__SCREAMING_SNAKE_CASE = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
__SCREAMING_SNAKE_CASE = self.clean_up_tokenization(lowerCAmelCase__)
return clean_text
else:
return text
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None):
if not os.path.isdir(lowerCAmelCase__):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
__SCREAMING_SNAKE_CASE = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , lowerCAmelCase__)
elif not os.path.isfile(self.vocab_file):
with open(lowerCAmelCase__ , """wb""") as fi:
__SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__)
return (out_vocab_file,)
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__SCREAMING_SNAKE_CASE = [self.cls_token_id]
__SCREAMING_SNAKE_CASE = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__)
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__)) + [1]
return [1] + ([0] * len(lowerCAmelCase__)) + [1] + ([0] * len(lowerCAmelCase__)) + [1]
def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None):
__SCREAMING_SNAKE_CASE = [self.sep_token_id]
__SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
| 100 | from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]:
'''simple docstring'''
def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool:
UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
UpperCAmelCase : List[Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__lowerCAmelCase ) )
# The ratio of the area for circle to square is pi/4.
UpperCAmelCase : Dict =proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float:
'''simple docstring'''
return mean(
function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None:
'''simple docstring'''
def identity_function(__lowerCAmelCase ) -> float:
return x
UpperCAmelCase : List[Any] =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2
print('''******************''' )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print('''******************''' )
def lowerCAmelCase_ ( __lowerCAmelCase )-> None:
'''simple docstring'''
def function_to_integrate(__lowerCAmelCase ) -> float:
return sqrt(4.0 - x * x )
UpperCAmelCase : Dict =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 )
print('''******************''' )
print('''Estimating pi using area_under_curve_estimator''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print('''******************''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
lowercase = checkpoint
lowercase = {}
lowercase = vae_state_dict['''encoder.conv_in.weight''']
lowercase = vae_state_dict['''encoder.conv_in.bias''']
lowercase = vae_state_dict['''encoder.conv_out.weight''']
lowercase = vae_state_dict['''encoder.conv_out.bias''']
lowercase = vae_state_dict['''encoder.norm_out.weight''']
lowercase = vae_state_dict['''encoder.norm_out.bias''']
lowercase = vae_state_dict['''decoder.conv_in.weight''']
lowercase = vae_state_dict['''decoder.conv_in.bias''']
lowercase = vae_state_dict['''decoder.conv_out.weight''']
lowercase = vae_state_dict['''decoder.conv_out.bias''']
lowercase = vae_state_dict['''decoder.norm_out.weight''']
lowercase = vae_state_dict['''decoder.norm_out.bias''']
lowercase = vae_state_dict['''quant_conv.weight''']
lowercase = vae_state_dict['''quant_conv.bias''']
lowercase = vae_state_dict['''post_quant_conv.weight''']
lowercase = vae_state_dict['''post_quant_conv.bias''']
# Retrieves the keys for the encoder down blocks only
lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} )
lowercase = {
layer_id: [key for key in vae_state_dict if f'down.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ )
}
# Retrieves the keys for the decoder up blocks only
lowercase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} )
lowercase = {
layer_id: [key for key in vae_state_dict if f'up.{layer_id}' in key] for layer_id in range(lowerCAmelCase__ )
}
for i in range(lowerCAmelCase__ ):
lowercase = [key for key in down_blocks[i] if f'down.{i}' in key and f'down.{i}.downsample' not in key]
if f'encoder.down.{i}.downsample.conv.weight' in vae_state_dict:
lowercase = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.weight' )
lowercase = vae_state_dict.pop(
f'encoder.down.{i}.downsample.conv.bias' )
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'down.{i}.block', '''new''': f'down_blocks.{i}.resnets'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''encoder.mid.block''' in key]
lowercase = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowercase = [key for key in mid_resnets if f'encoder.mid.block_{i}' in key]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key]
lowercase = renew_vae_attention_paths(lowerCAmelCase__ )
lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
for i in range(lowerCAmelCase__ ):
lowercase = num_up_blocks - 1 - i
lowercase = [
key for key in up_blocks[block_id] if f'up.{block_id}' in key and f'up.{block_id}.upsample' not in key
]
if f'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict:
lowercase = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.weight'
]
lowercase = vae_state_dict[
f'decoder.up.{block_id}.upsample.conv.bias'
]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'up.{block_id}.block', '''new''': f'up_blocks.{i}.resnets'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''decoder.mid.block''' in key]
lowercase = 2
for i in range(1 , num_mid_res_blocks + 1 ):
lowercase = [key for key in mid_resnets if f'decoder.mid.block_{i}' in key]
lowercase = renew_vae_resnet_paths(lowerCAmelCase__ )
lowercase = {'''old''': f'mid.block_{i}', '''new''': f'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
lowercase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key]
lowercase = renew_vae_attention_paths(lowerCAmelCase__ )
lowercase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''}
assign_to_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , additional_replacements=[meta_path] , config=lowerCAmelCase__ )
conv_attn_to_linear(lowerCAmelCase__ )
return new_checkpoint
def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , ):
'''simple docstring'''
# Only support V1
lowercase = requests.get(
''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' )
lowercase = io.BytesIO(r.content )
lowercase = OmegaConf.load(lowerCAmelCase__ )
lowercase = 512
lowercase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
if checkpoint_path.endswith('''safetensors''' ):
from safetensors import safe_open
lowercase = {}
with safe_open(lowerCAmelCase__ , framework='''pt''' , device='''cpu''' ) as f:
for key in f.keys():
lowercase = f.get_tensor(lowerCAmelCase__ )
else:
lowercase = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ )['''state_dict''']
# Convert the VAE model.
lowercase = create_vae_diffusers_config(lowerCAmelCase__ , image_size=lowerCAmelCase__ )
lowercase = custom_convert_ldm_vae_checkpoint(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase = AutoencoderKL(**lowerCAmelCase__ )
vae.load_state_dict(lowerCAmelCase__ )
vae.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase__ :List[str] = argparse.ArgumentParser()
parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.")
lowercase__ :int = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 101 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __snake_case :
def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : List[Any] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Union[str, Any] =use_input_mask
UpperCAmelCase : Tuple =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : Tuple =hidden_size
UpperCAmelCase : Dict =projection_dim
UpperCAmelCase : Optional[int] =num_hidden_layers
UpperCAmelCase : Dict =num_attention_heads
UpperCAmelCase : int =intermediate_size
UpperCAmelCase : Any =dropout
UpperCAmelCase : Union[str, Any] =attention_dropout
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : str =scope
UpperCAmelCase : str =bos_token_id
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : int =None
if self.use_input_mask:
UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : Optional[int] =input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape
UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : List[Any] =1
UpperCAmelCase : Tuple =0
UpperCAmelCase : List[Any] =self.get_config()
return config, input_ids, tf.convert_to_tensor(snake_case__ )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ )
UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ )
UpperCAmelCase : str =model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs
UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else ()
__lowerCamelCase : Dict = False
__lowerCamelCase : Optional[Any] = False
__lowerCamelCase : Dict = False
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : str =BlipTextModelTester(self )
UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def UpperCAmelCase__ ( self , snake_case__=True ) -> Any:
'''simple docstring'''
super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
| 348 | 0 |
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {"""vocab_file""": """vocab.txt"""}
SCREAMING_SNAKE_CASE : Optional[Any] = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
SCREAMING_SNAKE_CASE : List[Any] = {
"""openbmb/cpm-ant-10b""": 1024,
}
def lowercase ( _snake_case : List[str] ) ->Optional[Any]:
"""simple docstring"""
__snake_case : int = collections.OrderedDict()
with open(_snake_case , '''r''' , encoding='''utf-8''' ) as reader:
__snake_case : Optional[int] = reader.readlines()
for index, token in enumerate(_snake_case ):
__snake_case : Optional[Any] = token.rstrip('''\n''' )
__snake_case : int = index
return vocab
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_="<unk>" , a_=2_00 ):
'''simple docstring'''
__snake_case : Any = vocab
__snake_case : str = unk_token
__snake_case : Tuple = max_input_chars_per_word
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : str = list(a_ )
if len(a_ ) > self.max_input_chars_per_word:
return [self.unk_token]
__snake_case : List[Any] = 0
__snake_case : Optional[Any] = []
while start < len(a_ ):
__snake_case : List[str] = len(a_ )
__snake_case : List[Any] = None
while start < end:
__snake_case : int = ''''''.join(chars[start:end] )
if substr in self.vocab:
__snake_case : Dict = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(a_ )
__snake_case : List[str] = end
return sub_tokens
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =False
def __init__(self , a_ , a_="<d>" , a_="</d>" , a_="<s>" , a_="</s>" , a_="<pad>" , a_="<unk>" , a_="</n>" , a_="</_>" , a_="left" , **a_ , ):
'''simple docstring'''
requires_backends(self , ['''jieba'''] )
super().__init__(
bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , )
__snake_case : Union[str, Any] = bod_token
__snake_case : List[Any] = eod_token
__snake_case : List[Any] = load_vocab(a_ )
__snake_case : Dict = self.encoder[space_token]
__snake_case : Any = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
__snake_case : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) )
__snake_case : str = {v: k for k, v in self.encoder.items()}
__snake_case : List[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.encoder["\n"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return len(self.encoder )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Any = []
for x in jieba.cut(a_ , cut_all=a_ ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) )
return output_tokens
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = [i for i in token_ids if i >= 0]
__snake_case : Tuple = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return token in self.encoder
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return "".join(a_ )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self.encoder.get(a_ , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self.decoder.get(a_ , self.unk_token )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if os.path.isdir(a_ ):
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
__snake_case : Optional[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
__snake_case : List[str] = 0
if " " in self.encoder:
__snake_case : Optional[Any] = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
__snake_case : int = self.encoder['''\n''']
del self.encoder["\n"]
__snake_case : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) )
with open(a_ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
__snake_case : Union[str, Any] = token_index
writer.write(token + '''\n''' )
index += 1
return (vocab_file,)
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ )
if token_ids_a is not None:
return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ ))
return [1] + ([0] * len(a_ ))
| 102 | import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase )
UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase )
return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : List[str] = CLIPConfig
__lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""]
def __init__( self , snake_case__ ) -> Dict:
'''simple docstring'''
super().__init__(snake_case__ )
UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config )
UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ )
UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ )
UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ )
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy()
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy()
UpperCAmelCase : Tuple =[]
UpperCAmelCase : Dict =image_embeds.shape[0]
for i in range(snake_case__ ):
UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : str =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx]
UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
UpperCAmelCase : int =0.01
for concept_idx in range(len(cos_dist[0] ) ):
UpperCAmelCase : Any =cos_dist[i][concept_idx]
UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item()
UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(snake_case__ )
result.append(snake_case__ )
UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : List[str] =self.visual_projection(snake_case__ )
UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds )
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : Optional[Any] =0.0
UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 )
UpperCAmelCase : List[Any] =special_care * 0.01
UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 348 | 0 |
def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : int ):
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
lowerCAmelCase_ : Optional[int] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b"
lowerCAmelCase_ : List[Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b"
lowerCAmelCase_ : Union[str, Any] = max(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) ,b_binary.zfill(__UpperCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 103 | import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
__snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False)
parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''')
parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''')
__snake_case = parser.parse_args()
__snake_case = '''cpu'''
__snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'''
__snake_case = '''path-to-your-trained-model'''
__snake_case = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
__snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
__snake_case = pipe.to(device)
# to channels last
__snake_case = pipe.unet.to(memory_format=torch.channels_last)
__snake_case = pipe.vae.to(memory_format=torch.channels_last)
__snake_case = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
__snake_case = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
__snake_case = torch.randn(2, 4, 64, 64)
__snake_case = torch.rand(1) * 9_99
__snake_case = torch.randn(2, 77, 7_68)
__snake_case = (sample, timestep, encoder_hidden_status)
try:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
__snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
__snake_case = 6_66
__snake_case = torch.Generator(device).manual_seed(seed)
__snake_case = {'''generator''': generator}
if args.steps is not None:
__snake_case = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
__snake_case = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('''generated.png''')
| 348 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : Dict ,*lowercase__ : Tuple ,**lowercase__ : List[Any] ):
warnings.warn(
'''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use MobileViTImageProcessor instead.''' ,lowercase__ ,)
super().__init__(*lowercase__ ,**lowercase__ )
| 104 | __snake_case = '''Input must be a string of 8 numbers plus letter'''
__snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def lowerCAmelCase_ ( __lowerCAmelCase )-> bool:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}'''
raise TypeError(__lowerCAmelCase )
UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper()
if len(__lowerCAmelCase ) != 9:
raise ValueError(__lowerCAmelCase )
try:
UpperCAmelCase : int =int(spanish_id_clean[0:8] )
UpperCAmelCase : Optional[int] =spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowerCAmelCase ) from ex
if letter.isdigit():
raise ValueError(__lowerCAmelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : Tuple = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __UpperCamelCase :
lowerCamelCase : Any =PegasusConfig
lowerCamelCase : Optional[Any] ={}
lowerCamelCase : Dict ="""gelu"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ) -> List[Any]:
a : str = parent
a : Optional[Any] = batch_size
a : Optional[Any] = seq_length
a : int = is_training
a : Any = use_labels
a : Tuple = vocab_size
a : List[str] = hidden_size
a : Union[str, Any] = num_hidden_layers
a : List[str] = num_attention_heads
a : List[str] = intermediate_size
a : List[Any] = hidden_dropout_prob
a : Union[str, Any] = attention_probs_dropout_prob
a : str = max_position_embeddings
a : Dict = eos_token_id
a : List[str] = pad_token_id
a : Dict = bos_token_id
def __a ( self ) -> List[Any]:
a : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
a : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
a : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a : Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
a : Dict = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
a : List[str] = 20
a : Dict = model_class_name(lowerCAmelCase__ )
a : Union[str, Any] = model.encode(inputs_dict["input_ids"] )
a, a : str = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
a : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
a : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
a : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a : Any = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
a : List[str] = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , )
a : int = model.decode(lowerCAmelCase__ , lowerCAmelCase__ )
a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
a : Any = 20
a : List[Any] = model_class_name(lowerCAmelCase__ )
a : str = model.encode(inputs_dict["input_ids"] )
a, a : Union[str, Any] = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
a : Tuple = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
a : str = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
a : Tuple = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
a : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : Optional[int] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ )
a : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Any , _lowercase : Tuple , _lowercase : List[Any]=None , _lowercase : str=None , ) ->List[Any]:
'''simple docstring'''
if attention_mask is None:
a : Union[str, Any] = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
a : Optional[int] = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __UpperCamelCase ( a__ , unittest.TestCase ):
lowerCamelCase : List[str] =(
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowerCamelCase : str =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowerCamelCase : List[Any] =True
lowerCamelCase : Tuple =False
lowerCamelCase : Any =False
lowerCamelCase : Optional[Any] =False
def __a ( self ) -> List[Any]:
a : Tuple = FlaxPegasusModelTester(self )
a : Dict = ConfigTester(self , config_class=lowerCAmelCase__ )
def __a ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def __a ( self ) -> int:
a, a : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ) -> str:
a, a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ) -> Optional[int]:
a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
a : Any = model_class(lowerCAmelCase__ )
@jax.jit
def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ):
return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
with self.subTest("JIT Enabled" ):
a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ) -> int:
a, a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a : str = model_class(lowerCAmelCase__ )
a : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
a : str = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return model.decode(
decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , )
with self.subTest("JIT Enabled" ):
a : Dict = decode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
a : Any = decode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ) -> Any:
for model_class_name in self.all_model_classes:
a : List[Any] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCAmelCase__ )
a : Any = np.ones((1, 1) )
a : Dict = model(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@slow
def __a ( self ) -> Optional[int]:
a : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
a : List[str] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
a : Tuple = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
a : Any = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
a : Tuple = tokenizer(lowerCAmelCase__ , return_tensors="np" , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ )
a : str = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences
a : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
assert tgt_text == decoded
| 105 | def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class SCREAMING_SNAKE_CASE ( a_ , a_ ):
"""simple docstring"""
lowercase__ = "swin"
lowercase__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : str ,lowercase_ : List[str]=2_2_4 ,lowercase_ : Union[str, Any]=4 ,lowercase_ : Dict=3 ,lowercase_ : Tuple=9_6 ,lowercase_ : Any=[2, 2, 6, 2] ,lowercase_ : Any=[3, 6, 1_2, 2_4] ,lowercase_ : str=7 ,lowercase_ : Optional[Any]=4.0 ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=0.0 ,lowercase_ : Optional[Any]=0.0 ,lowercase_ : int=0.1 ,lowercase_ : Dict="gelu" ,lowercase_ : Optional[Any]=False ,lowercase_ : Any=0.02 ,lowercase_ : str=1E-5 ,lowercase_ : str=3_2 ,lowercase_ : List[Any]=None ,lowercase_ : Union[str, Any]=None ,**lowercase_ : List[str] ,):
super().__init__(**lowercase_ )
lowerCAmelCase__ : Union[str, Any] = image_size
lowerCAmelCase__ : List[str] = patch_size
lowerCAmelCase__ : Optional[Any] = num_channels
lowerCAmelCase__ : str = embed_dim
lowerCAmelCase__ : Optional[int] = depths
lowerCAmelCase__ : Tuple = len(lowercase_ )
lowerCAmelCase__ : List[Any] = num_heads
lowerCAmelCase__ : str = window_size
lowerCAmelCase__ : str = mlp_ratio
lowerCAmelCase__ : Optional[Any] = qkv_bias
lowerCAmelCase__ : str = hidden_dropout_prob
lowerCAmelCase__ : List[str] = attention_probs_dropout_prob
lowerCAmelCase__ : List[str] = drop_path_rate
lowerCAmelCase__ : Dict = hidden_act
lowerCAmelCase__ : int = use_absolute_embeddings
lowerCAmelCase__ : Tuple = layer_norm_eps
lowerCAmelCase__ : Dict = initializer_range
lowerCAmelCase__ : List[str] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCAmelCase__ : Any = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowerCAmelCase__ : List[str] = ['''stem'''] + [F'stage{idx}' for idx in range(1 ,len(lowercase_ ) + 1 )]
lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices(
out_features=lowercase_ ,out_indices=lowercase_ ,stage_names=self.stage_names )
class SCREAMING_SNAKE_CASE ( a_ ):
"""simple docstring"""
lowercase__ = version.parse("1.11" )
@property
def __lowerCAmelCase ( self : Optional[Any] ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __lowerCAmelCase ( self : str ):
return 1E-4
| 106 | from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
# TODO Update this
__snake_case = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Tuple = """esm"""
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase : List[str] =vocab_size
UpperCAmelCase : str =hidden_size
UpperCAmelCase : List[Any] =num_hidden_layers
UpperCAmelCase : Optional[Any] =num_attention_heads
UpperCAmelCase : str =intermediate_size
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : int =attention_probs_dropout_prob
UpperCAmelCase : Dict =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : Union[str, Any] =layer_norm_eps
UpperCAmelCase : Dict =position_embedding_type
UpperCAmelCase : Optional[Any] =use_cache
UpperCAmelCase : int =emb_layer_norm_before
UpperCAmelCase : List[str] =token_dropout
UpperCAmelCase : Optional[Any] =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
UpperCAmelCase : Optional[Any] =EsmFoldConfig()
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ )
UpperCAmelCase : Tuple =esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
UpperCAmelCase : Any =get_default_vocab_list()
else:
UpperCAmelCase : Tuple =vocab_list
else:
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : Union[str, Any] =None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =super().to_dict()
if isinstance(self.esmfold_config , snake_case__ ):
UpperCAmelCase : str =self.esmfold_config.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : str = None
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : float = 0
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : int = 128
__lowerCamelCase : "TrunkConfig" = None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.trunk is None:
UpperCAmelCase : str =TrunkConfig()
elif isinstance(self.trunk , snake_case__ ):
UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =asdict(self )
UpperCAmelCase : Any =self.trunk.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 48
__lowerCamelCase : int = 1024
__lowerCamelCase : int = 128
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : float = 0
__lowerCamelCase : float = 0
__lowerCamelCase : bool = False
__lowerCamelCase : int = 4
__lowerCamelCase : Optional[int] = 128
__lowerCamelCase : "StructureModuleConfig" = None
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.structure_module is None:
UpperCAmelCase : Any =StructureModuleConfig()
elif isinstance(self.structure_module , snake_case__ ):
UpperCAmelCase : str =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =asdict(self )
UpperCAmelCase : Tuple =self.structure_module.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 384
__lowerCamelCase : int = 128
__lowerCamelCase : int = 16
__lowerCamelCase : int = 128
__lowerCamelCase : int = 12
__lowerCamelCase : int = 4
__lowerCamelCase : int = 8
__lowerCamelCase : float = 0.1
__lowerCamelCase : int = 8
__lowerCamelCase : int = 1
__lowerCamelCase : int = 2
__lowerCamelCase : int = 7
__lowerCamelCase : int = 10
__lowerCamelCase : float = 1E-8
__lowerCamelCase : float = 1E5
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return asdict(self )
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 348 | 0 |
import math
def __magic_name__ ( A : int = 100 ):
'''simple docstring'''
a = sum(i * i for i in range(1, n + 1 ) )
a = int(math.pow(sum(range(1, n + 1 ) ), 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F'''{solution() = }''')
| 107 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 0 |
"""simple docstring"""
from collections.abc import Iterable
from typing import Generic, TypeVar
lowerCAmelCase__ = TypeVar('''_T''')
class SCREAMING_SNAKE_CASE__ ( Generic[_T] ):
"""simple docstring"""
def __init__( self , snake_case__ = None ):
"""simple docstring"""
lowerCAmelCase : list[_T] = list(iterable or [] )
lowerCAmelCase : list[_T] = []
def __len__( self ):
"""simple docstring"""
return len(self._stacka ) + len(self._stacka )
def __repr__( self ):
"""simple docstring"""
return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})"""
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
self._stacka.append(snake_case__ )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Optional[int] = self._stacka.pop
lowerCAmelCase : List[str] = self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError("Queue is empty" )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 108 | import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits
UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean()
UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item())
UpperCAmelCase : List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
A: List[str] = {
"sample_size": 3_2,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1_0_0_0,
"block_out_channels": [3_2, 6_4],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
A: Optional[int] = {
"sample_size": 6_4,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1_0_0_0,
"block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4],
"attention_head_dim": 6_4,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
A: Union[str, Any] = {
"sample_size": 2_5_6,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4],
"attention_head_dim": 6_4,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
A: int = {
"num_train_timesteps": 4_0,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
A: int = {
"num_train_timesteps": 2_0_1,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
A: Union[str, Any] = {
"num_train_timesteps": 1_5_1,
"sigma_min": 0.002,
"sigma_max": 80.0,
}
def _snake_case ( UpperCamelCase : List[Any] ):
if isinstance(UpperCamelCase , UpperCamelCase ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("""boolean value expected""" )
def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any]=False ):
UpperCAmelCase : Dict = checkpoint[F"{old_prefix}.in_layers.0.weight"]
UpperCAmelCase : Any = checkpoint[F"{old_prefix}.in_layers.0.bias"]
UpperCAmelCase : Optional[Any] = checkpoint[F"{old_prefix}.in_layers.2.weight"]
UpperCAmelCase : List[Any] = checkpoint[F"{old_prefix}.in_layers.2.bias"]
UpperCAmelCase : Optional[Any] = checkpoint[F"{old_prefix}.emb_layers.1.weight"]
UpperCAmelCase : Optional[Any] = checkpoint[F"{old_prefix}.emb_layers.1.bias"]
UpperCAmelCase : Union[str, Any] = checkpoint[F"{old_prefix}.out_layers.0.weight"]
UpperCAmelCase : Dict = checkpoint[F"{old_prefix}.out_layers.0.bias"]
UpperCAmelCase : str = checkpoint[F"{old_prefix}.out_layers.3.weight"]
UpperCAmelCase : str = checkpoint[F"{old_prefix}.out_layers.3.bias"]
if has_skip:
UpperCAmelCase : List[Any] = checkpoint[F"{old_prefix}.skip_connection.weight"]
UpperCAmelCase : Optional[Any] = checkpoint[F"{old_prefix}.skip_connection.bias"]
return new_checkpoint
def _snake_case ( UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : Optional[Any]=None ):
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 )
UpperCAmelCase : List[str] = checkpoint[F"{old_prefix}.norm.weight"]
UpperCAmelCase : List[Any] = checkpoint[F"{old_prefix}.norm.bias"]
UpperCAmelCase : Dict = weight_q.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : List[Any] = weight_k.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : str = bias_v.squeeze(-1 ).squeeze(-1 )
UpperCAmelCase : Optional[int] = (
checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 )
)
UpperCAmelCase : List[str] = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def _snake_case ( UpperCamelCase : str , UpperCamelCase : List[str] ):
UpperCAmelCase : Tuple = torch.load(UpperCamelCase , map_location="""cpu""" )
UpperCAmelCase : str = {}
UpperCAmelCase : int = checkpoint["""time_embed.0.weight"""]
UpperCAmelCase : Union[str, Any] = checkpoint["""time_embed.0.bias"""]
UpperCAmelCase : List[Any] = checkpoint["""time_embed.2.weight"""]
UpperCAmelCase : str = checkpoint["""time_embed.2.bias"""]
if unet_config["num_class_embeds"] is not None:
UpperCAmelCase : List[Any] = checkpoint["""label_emb.weight"""]
UpperCAmelCase : Optional[Any] = checkpoint["""input_blocks.0.0.weight"""]
UpperCAmelCase : List[str] = checkpoint["""input_blocks.0.0.bias"""]
UpperCAmelCase : Optional[Any] = unet_config["""down_block_types"""]
UpperCAmelCase : Any = unet_config["""layers_per_block"""]
UpperCAmelCase : Any = unet_config["""attention_head_dim"""]
UpperCAmelCase : Optional[int] = unet_config["""block_out_channels"""]
UpperCAmelCase : Tuple = 1
UpperCAmelCase : Dict = channels_list[0]
for i, layer_type in enumerate(UpperCamelCase ):
UpperCAmelCase : List[Any] = channels_list[i]
UpperCAmelCase : Any = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(UpperCamelCase ):
UpperCAmelCase : List[Any] = F"down_blocks.{i}.resnets.{j}"
UpperCAmelCase : Union[str, Any] = F"input_blocks.{current_layer}.0"
UpperCAmelCase : Union[str, Any] = True if j == 0 and downsample_block_has_skip else False
UpperCAmelCase : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(UpperCamelCase ):
UpperCAmelCase : List[Any] = F"down_blocks.{i}.resnets.{j}"
UpperCAmelCase : List[Any] = F"input_blocks.{current_layer}.0"
UpperCAmelCase : int = True if j == 0 and downsample_block_has_skip else False
UpperCAmelCase : Tuple = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase )
UpperCAmelCase : Dict = F"down_blocks.{i}.attentions.{j}"
UpperCAmelCase : int = F"input_blocks.{current_layer}.1"
UpperCAmelCase : List[Any] = convert_attention(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
current_layer += 1
if i != len(UpperCamelCase ) - 1:
UpperCAmelCase : Tuple = F"down_blocks.{i}.downsamplers.0"
UpperCAmelCase : Tuple = F"input_blocks.{current_layer}.0"
UpperCAmelCase : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
current_layer += 1
UpperCAmelCase : List[str] = current_channels
# hardcoded the mid-block for now
UpperCAmelCase : Any = """mid_block.resnets.0"""
UpperCAmelCase : Optional[Any] = """middle_block.0"""
UpperCAmelCase : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
UpperCAmelCase : str = """mid_block.attentions.0"""
UpperCAmelCase : Optional[int] = """middle_block.1"""
UpperCAmelCase : Dict = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
UpperCAmelCase : Any = """mid_block.resnets.1"""
UpperCAmelCase : Tuple = """middle_block.2"""
UpperCAmelCase : Tuple = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
UpperCAmelCase : List[Any] = 0
UpperCAmelCase : str = unet_config["""up_block_types"""]
for i, layer_type in enumerate(UpperCamelCase ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
UpperCAmelCase : str = F"up_blocks.{i}.resnets.{j}"
UpperCAmelCase : str = F"output_blocks.{current_layer}.0"
UpperCAmelCase : Dict = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase )
current_layer += 1
if i != len(UpperCamelCase ) - 1:
UpperCAmelCase : Union[str, Any] = F"up_blocks.{i}.upsamplers.0"
UpperCAmelCase : str = F"output_blocks.{current_layer-1}.1"
UpperCAmelCase : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
UpperCAmelCase : List[str] = F"up_blocks.{i}.resnets.{j}"
UpperCAmelCase : List[str] = F"output_blocks.{current_layer}.0"
UpperCAmelCase : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase )
UpperCAmelCase : Union[str, Any] = F"up_blocks.{i}.attentions.{j}"
UpperCAmelCase : int = F"output_blocks.{current_layer}.1"
UpperCAmelCase : List[Any] = convert_attention(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
current_layer += 1
if i != len(UpperCamelCase ) - 1:
UpperCAmelCase : int = F"up_blocks.{i}.upsamplers.0"
UpperCAmelCase : Dict = F"output_blocks.{current_layer-1}.2"
UpperCAmelCase : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
UpperCAmelCase : List[Any] = checkpoint["""out.0.weight"""]
UpperCAmelCase : str = checkpoint["""out.0.bias"""]
UpperCAmelCase : str = checkpoint["""out.2.weight"""]
UpperCAmelCase : Tuple = checkpoint["""out.2.bias"""]
return new_checkpoint
if __name__ == "__main__":
A: Tuple = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
A: str = parser.parse_args()
A: List[Any] = strabool(args.class_cond)
A: str = os.path.basename(args.unet_path)
print(f"""Checkpoint: {ckpt_name}""")
# Get U-Net config
if "imagenet64" in ckpt_name:
A: str = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A: List[str] = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
A: str = TEST_UNET_CONFIG
else:
raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""")
if not args.class_cond:
A: List[Any] = None
A: Any = con_pt_to_diffuser(args.unet_path, unet_config)
A: str = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
A: Tuple = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
A: Any = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A: int = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""")
A: Tuple = CMStochasticIterativeScheduler(**scheduler_config)
A: Union[str, Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 109 | import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : List[Any] =ort.SessionOptions()
UpperCAmelCase : Optional[int] =False
return options
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Optional[Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Dict ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : Any =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Tuple =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : str =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : int =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 348 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class lowercase :
_SCREAMING_SNAKE_CASE = BlenderbotConfig
_SCREAMING_SNAKE_CASE = {}
_SCREAMING_SNAKE_CASE = """gelu"""
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=False , lowercase=99 , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase=0.1 , lowercase=0.1 , lowercase=20 , lowercase=2 , lowercase=1 , lowercase=0 , ) -> Optional[Any]:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = eos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = bos_token_id
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowerCAmelCase = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def _snake_case ( self , lowercase , lowercase ) -> int:
lowerCAmelCase = TFBlenderbotModel(config=snake_case__ ).get_decoder()
lowerCAmelCase = inputs_dict['''input_ids''']
lowerCAmelCase = input_ids[:1, :]
lowerCAmelCase = inputs_dict['''attention_mask'''][:1, :]
lowerCAmelCase = inputs_dict['''head_mask''']
lowerCAmelCase = 1
# first forward pass
lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
lowerCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ )[0]
lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
lowerCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : List[str]=None , ):
'''simple docstring'''
if attention_mask is None:
lowerCAmelCase = tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowercase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
_SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = False
def _snake_case ( self ) -> Dict:
lowerCAmelCase = TFBlenderbotModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=snake_case__ )
def _snake_case ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class lowercase ( unittest.TestCase ):
_SCREAMING_SNAKE_CASE = ["""My friends are cool but they eat too many carbs."""]
_SCREAMING_SNAKE_CASE = """facebook/blenderbot-400M-distill"""
@cached_property
def _snake_case ( self ) -> int:
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def _snake_case ( self ) -> int:
lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def _snake_case ( self ) -> Any:
lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="""tf""" )
lowerCAmelCase = self.model.generate(
model_inputs.input_ids , )
lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 46 | from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( )-> int:
'''simple docstring'''
UpperCAmelCase : str ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase )
return dataset
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] =get_dataset()
UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str =get_dataset()
UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
| 348 | 0 |
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Optional[Any] = logging.get_logger(__name__)
A : int = {
'''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''',
}
class A (lowerCamelCase__ ):
'''simple docstring'''
__lowerCamelCase : Dict = """autoformer"""
__lowerCamelCase : List[Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__( self : Optional[int] , __lowerCAmelCase : str = None , __lowerCAmelCase : List[Any] = None , __lowerCAmelCase : Union[str, Any] = "student_t" , __lowerCAmelCase : Optional[int] = "nll" , __lowerCAmelCase : Optional[int] = 1 , __lowerCAmelCase : List[Any] = [1, 2, 3, 4, 5, 6, 7] , __lowerCAmelCase : str = True , __lowerCAmelCase : List[str] = 0 , __lowerCAmelCase : List[Any] = 0 , __lowerCAmelCase : Any = 0 , __lowerCAmelCase : List[Any] = 0 , __lowerCAmelCase : Optional[Any] = None , __lowerCAmelCase : int = None , __lowerCAmelCase : str = 64 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : int = 2 , __lowerCAmelCase : List[str] = 2 , __lowerCAmelCase : List[str] = 2 , __lowerCAmelCase : Optional[int] = 32 , __lowerCAmelCase : Dict = 32 , __lowerCAmelCase : Dict = "gelu" , __lowerCAmelCase : List[Any] = 0.1 , __lowerCAmelCase : Union[str, Any] = 0.1 , __lowerCAmelCase : int = 0.1 , __lowerCAmelCase : Any = 0.1 , __lowerCAmelCase : Optional[Any] = 0.1 , __lowerCAmelCase : Tuple = 1_00 , __lowerCAmelCase : Dict = 0.0_2 , __lowerCAmelCase : List[Any] = True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Union[str, Any] = 10 , __lowerCAmelCase : Union[str, Any] = 25 , __lowerCAmelCase : int = 3 , **__lowerCAmelCase : Tuple , ) -> Any:
"""simple docstring"""
A__ = prediction_length
A__ = context_length if context_length is not None else prediction_length
A__ = distribution_output
A__ = loss
A__ = input_size
A__ = num_time_features
A__ = lags_sequence
A__ = scaling
A__ = num_dynamic_real_features
A__ = num_static_real_features
A__ = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(snake_case__ ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
A__ = cardinality
else:
A__ = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(snake_case__ ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
A__ = embedding_dimension
else:
A__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
A__ = num_parallel_samples
# Transformer architecture configuration
A__ = input_size * len(self.lags_sequence ) + self._number_of_features
A__ = d_model
A__ = encoder_attention_heads
A__ = decoder_attention_heads
A__ = encoder_ffn_dim
A__ = decoder_ffn_dim
A__ = encoder_layers
A__ = decoder_layers
A__ = dropout
A__ = attention_dropout
A__ = activation_dropout
A__ = encoder_layerdrop
A__ = decoder_layerdrop
A__ = activation_function
A__ = init_std
A__ = use_cache
# Autoformer
A__ = label_length
A__ = moving_average
A__ = autocorrelation_factor
super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ )
@property
def a_ ( self : List[str] ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 274 | from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Optional[Any] =learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ )
else:
UpperCAmelCase : Union[str, Any] =None
UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : VQModel
__lowerCamelCase : CLIPTextModel
__lowerCamelCase : CLIPTokenizer
__lowerCamelCase : TransformeraDModel
__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings
__lowerCamelCase : VQDiffusionScheduler
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
UpperCAmelCase : Optional[int] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : int =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
UpperCAmelCase : str =[''''''] * batch_size
UpperCAmelCase : Tuple =text_input_ids.shape[-1]
UpperCAmelCase : Optional[Any] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1]
UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =1
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Tuple =len(snake_case__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
UpperCAmelCase : Tuple =batch_size * num_images_per_prompt
UpperCAmelCase : List[str] =guidance_scale > 1.0
UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(snake_case__ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1
UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCAmelCase : Any =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Optional[int] =latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 )
UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase : Optional[Any] =model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim
UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ )
UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ )
UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase : int =keep_mask[:, :-1, :]
UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase : Dict =log_p_x_0.clone()
UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0)
return rv
| 348 | 0 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
UpperCAmelCase = ['''small''', '''medium''', '''large''']
UpperCAmelCase = '''lm_head.decoder.weight'''
UpperCAmelCase = '''lm_head.weight'''
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
lowercase = torch.load(__lowerCAmelCase )
lowercase = d.pop(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
UpperCAmelCase = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
UpperCAmelCase = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""")
UpperCAmelCase = F"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 195 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase : Any =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.dummy_uncond_unet
UpperCAmelCase : Optional[int] =KarrasVeScheduler()
UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : List[str] =torch.manual_seed(0 )
UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : str =torch.manual_seed(0 )
UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0]
UpperCAmelCase : Any =image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256'''
UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ )
UpperCAmelCase : Dict =KarrasVeScheduler()
UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Any =torch.manual_seed(0 )
UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 348 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def _UpperCamelCase ( UpperCamelCase__ = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
UpperCAmelCase__ : Dict = nums[0]
for i in range(1 , len(__lowerCAmelCase ) ):
UpperCAmelCase__ : Dict = nums[i]
UpperCAmelCase__ : Any = max(__lowerCAmelCase , ans + num , __lowerCAmelCase )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
__A =int(input('Enter number of elements : ').strip())
__A =list(map(int, input('\nEnter the numbers : ').strip().split()))[:n]
print(max_subsequence_sum(array)) | 163 | import qiskit
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' )
UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
__snake_case = half_adder(1, 1)
print(f'Half Adder Output Qubit Counts: {counts}')
| 348 | 0 |
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> int:
"""simple docstring"""
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
__A = mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
else:
__A = max(
mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , )
__A = val
return f[i][j]
def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Dict:
"""simple docstring"""
__A = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
__A = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
__A = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]:
"""simple docstring"""
if not (isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) )):
raise ValueError(
"Both the weights and values vectors must be either lists or tuples" )
__A = len(__lowerCAmelCase )
if num_items != len(__lowerCAmelCase ):
__A = (
'''The number of weights must be the same as the number of values.\n'''
F'''But got {num_items} weights and {len(__lowerCAmelCase )} values'''
)
raise ValueError(__lowerCAmelCase )
for i in range(__lowerCAmelCase ):
if not isinstance(wt[i] , __lowerCAmelCase ):
__A = (
'''All weights must be integers but got weight of '''
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(__lowerCAmelCase )
__A = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
__A = set()
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return optimal_val, example_optional_set
def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Any:
"""simple docstring"""
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase )
else:
optimal_set.add(__lowerCAmelCase )
_construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , j - wt[i - 1] , __lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE :Tuple = [3, 2, 4, 4]
SCREAMING_SNAKE_CASE :Optional[int] = [4, 3, 2, 3]
SCREAMING_SNAKE_CASE :Union[str, Any] = 4
SCREAMING_SNAKE_CASE :str = 6
SCREAMING_SNAKE_CASE :Optional[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :int = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print('optimal_value = ', optimal_solution)
print('An optimal subset corresponding to the optimal value', optimal_subset)
| 15 | from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __snake_case :
__lowerCamelCase : str = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Optional[int] = """gelu"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : Dict =seq_length
UpperCAmelCase : Optional[Any] =is_training
UpperCAmelCase : List[str] =use_labels
UpperCAmelCase : List[Any] =vocab_size
UpperCAmelCase : Optional[int] =hidden_size
UpperCAmelCase : Tuple =num_hidden_layers
UpperCAmelCase : Any =num_attention_heads
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : str =hidden_dropout_prob
UpperCAmelCase : Optional[int] =attention_probs_dropout_prob
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : List[Any] =eos_token_id
UpperCAmelCase : Optional[int] =pad_token_id
UpperCAmelCase : Tuple =bos_token_id
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder()
UpperCAmelCase : Any =inputs_dict['''input_ids''']
UpperCAmelCase : str =input_ids[:1, :]
UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Tuple =inputs_dict['''head_mask''']
UpperCAmelCase : List[Any] =1
# first forward pass
UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : Dict = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Union[str, Any] = True
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[str] =TFBlenderbotModelTester(self )
UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class __snake_case ( unittest.TestCase ):
__lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""]
__lowerCamelCase : Dict = """facebook/blenderbot-400M-distill"""
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase : Optional[int] =self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 348 | 0 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
_lowercase: Tuple = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
_lowercase: Dict = dataset.iloc[:, 1:2].values
_lowercase: str = dataset.iloc[:, 2].values
_lowercase , _lowercase , _lowercase , _lowercase: Dict = train_test_split(X, y, test_size=0.2, random_state=0)
_lowercase: List[str] = PolynomialFeatures(degree=4)
_lowercase: Tuple = poly_reg.fit_transform(X)
_lowercase: Union[str, Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def a( ) -> str:
"""simple docstring"""
plt.scatter(__lowerCAmelCase , __lowerCAmelCase , color="red" )
plt.plot(__lowerCAmelCase , pol_reg.predict(poly_reg.fit_transform(__lowerCAmelCase ) ) , color="blue" )
plt.title("Truth or Bluff (Linear Regression)" )
plt.xlabel("Position level" )
plt.ylabel("Salary" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 227 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """sew-d"""
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase : Union[str, Any] =hidden_size
UpperCAmelCase : Union[str, Any] =feat_extract_norm
UpperCAmelCase : Optional[Any] =feat_extract_activation
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : int =list(snake_case__ )
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : str =conv_bias
UpperCAmelCase : Tuple =num_conv_pos_embeddings
UpperCAmelCase : Dict =num_conv_pos_embedding_groups
UpperCAmelCase : str =len(self.conv_dim )
UpperCAmelCase : Dict =num_hidden_layers
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : List[Any] =squeeze_factor
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : int =position_buckets
UpperCAmelCase : Optional[int] =share_att_key
UpperCAmelCase : Optional[int] =relative_attention
UpperCAmelCase : Tuple =norm_rel_ebd
UpperCAmelCase : List[Any] =list(snake_case__ )
UpperCAmelCase : Dict =hidden_act
UpperCAmelCase : Optional[int] =num_attention_heads
UpperCAmelCase : Any =hidden_dropout
UpperCAmelCase : str =attention_dropout
UpperCAmelCase : Union[str, Any] =activation_dropout
UpperCAmelCase : str =feat_proj_dropout
UpperCAmelCase : Union[str, Any] =final_dropout
UpperCAmelCase : Optional[int] =layer_norm_eps
UpperCAmelCase : str =feature_layer_norm_eps
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Any =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] =apply_spec_augment
UpperCAmelCase : Optional[Any] =mask_time_prob
UpperCAmelCase : Tuple =mask_time_length
UpperCAmelCase : str =mask_time_min_masks
UpperCAmelCase : Optional[int] =mask_feature_prob
UpperCAmelCase : Optional[Any] =mask_feature_length
UpperCAmelCase : List[Any] =mask_feature_min_masks
# ctc loss
UpperCAmelCase : str =ctc_loss_reduction
UpperCAmelCase : Optional[int] =ctc_zero_infinity
# sequence classification
UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum
UpperCAmelCase : int =classifier_proj_size
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __lowerCAmelCase ( unittest.TestCase ):
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
debug_launcher(test_script.main )
def A__ ( self ) -> Tuple:
'''simple docstring'''
debug_launcher(test_ops.main )
| 205 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__snake_case = 4
__snake_case = 3
class __snake_case ( lowerCamelCase__ ):
pass
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]:
'''simple docstring'''
for shard in shards:
for i in range(__lowerCAmelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =int(os.environ['''RANK'''] )
UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] )
UpperCAmelCase : List[Any] =ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCAmelCase )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase )
parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 )
UpperCAmelCase : Any =parser.parse_args()
UpperCAmelCase : List[str] =args.streaming
UpperCAmelCase : Tuple =args.num_workers
UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]}
UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase )
if not streaming:
UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) )
UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase )
UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase )
UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : str =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : List[Any] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 348 | 0 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __a :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=0.6 , _a=None , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent
SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : Tuple = patch_size
SCREAMING_SNAKE_CASE__ : int = num_channels
SCREAMING_SNAKE_CASE__ : Dict = is_training
SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels
SCREAMING_SNAKE_CASE__ : int = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = mask_ratio
SCREAMING_SNAKE_CASE__ : str = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE__ : Tuple = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : Optional[int] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : Tuple = self.get_config()
return config, pixel_values, labels
def _a ( self ) -> Dict:
"""simple docstring"""
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def _a ( self , _a , _a , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = TFViTMAEModel(config=snake_case__ )
SCREAMING_SNAKE_CASE__ : Any = model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self , _a , _a , _a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFViTMAEForPreTraining(snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(snake_case__ , training=snake_case__ )
# expected sequence length = num_patches
SCREAMING_SNAKE_CASE__ : List[str] = (self.image_size // self.patch_size) ** 2
SCREAMING_SNAKE_CASE__ : str = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
SCREAMING_SNAKE_CASE__ : Dict = 1
SCREAMING_SNAKE_CASE__ : int = TFViTMAEForPreTraining(snake_case__ )
SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : List[Any] = model(snake_case__ , training=snake_case__ )
SCREAMING_SNAKE_CASE__ : List[str] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs()
(SCREAMING_SNAKE_CASE__) : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE__ : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_SCREAMING_SNAKE_CASE :Dict = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
_SCREAMING_SNAKE_CASE :Any = False
_SCREAMING_SNAKE_CASE :Dict = False
_SCREAMING_SNAKE_CASE :Optional[int] = False
_SCREAMING_SNAKE_CASE :str = False
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = TFViTMAEModelTester(self )
SCREAMING_SNAKE_CASE__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def _a ( self ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : List[Any] = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
SCREAMING_SNAKE_CASE__ : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , snake_case__ )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : Tuple = int((config.image_size // config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : List[str] = model_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) )
SCREAMING_SNAKE_CASE__ : Tuple = model(**snake_case__ , noise=snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = outputs_dict[0].numpy()
SCREAMING_SNAKE_CASE__ : List[Any] = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def _a ( self ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : Tuple = int((config.image_size // config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_a ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {}
for k, v in inputs_dict.items():
if tf.is_tensor(snake_case__ ):
SCREAMING_SNAKE_CASE__ : Tuple = v.numpy()
else:
SCREAMING_SNAKE_CASE__ : int = np.array(snake_case__ )
return inputs_np_dict
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : str = self._prepare_for_class(snake_case__ , snake_case__ )
SCREAMING_SNAKE_CASE__ : Dict = prepare_numpy_arrays(snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
def _a ( self , _a , _a , _a ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : Any = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
SCREAMING_SNAKE_CASE__ : Tuple = tf.constant(snake_case__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
SCREAMING_SNAKE_CASE__ : Optional[Any] = tf_noise
super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ )
def _a ( self ) -> List[Any]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : List[str] = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(snake_case__ )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(snake_case__ , snake_case__ ),)
if isinstance(snake_case__ , snake_case__ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(snake_case__ , """_keras_serializable""" , snake_case__ )
}
SCREAMING_SNAKE_CASE__ : str = int((config.image_size // config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
SCREAMING_SNAKE_CASE__ : str = tf.convert_to_tensor(snake_case__ )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
SCREAMING_SNAKE_CASE__ : int = main_layer_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : List[str] = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
SCREAMING_SNAKE_CASE__ : int = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(snake_case__ , """keras_model.h5""" )
model.save(snake_case__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.keras.models.load_model(
snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(snake_case__ , tf.keras.Model )
SCREAMING_SNAKE_CASE__ : Optional[int] = model(snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : Tuple = int((config.image_size // config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : int = model_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.last_hidden_state.numpy()
SCREAMING_SNAKE_CASE__ : str = 0
else:
SCREAMING_SNAKE_CASE__ : str = outputs.logits.numpy()
SCREAMING_SNAKE_CASE__ : List[str] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case__ , saved_model=snake_case__ )
SCREAMING_SNAKE_CASE__ : int = model_class.from_pretrained(snake_case__ )
SCREAMING_SNAKE_CASE__ : Tuple = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
SCREAMING_SNAKE_CASE__ : List[str] = after_outputs['''last_hidden_state'''].numpy()
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = after_outputs['''logits'''].numpy()
SCREAMING_SNAKE_CASE__ : List[str] = 0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case__ , 1E-5 )
def _a ( self ) -> str:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(snake_case__ )
SCREAMING_SNAKE_CASE__ : Tuple = self._prepare_for_class(snake_case__ , snake_case__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(snake_case__ , noise=snake_case__ )
SCREAMING_SNAKE_CASE__ : Dict = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class.from_config(model.config )
SCREAMING_SNAKE_CASE__ : Optional[int] = new_model(snake_case__ ) # Build model
new_model.set_weights(model.get_weights() )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_model(snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def _a ( self ) -> str:
"""simple docstring"""
pass
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(snake_case__ )
def _lowercase ( ) -> Any:
SCREAMING_SNAKE_CASE__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
@cached_property
def _a ( self ) -> int:
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def _a ( self ) -> List[str]:
"""simple docstring"""
np.random.seed(2 )
SCREAMING_SNAKE_CASE__ : int = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
SCREAMING_SNAKE_CASE__ : List[str] = self.default_image_processor
SCREAMING_SNAKE_CASE__ : List[str] = prepare_img()
SCREAMING_SNAKE_CASE__ : str = image_processor(images=snake_case__ , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTMAEConfig()
SCREAMING_SNAKE_CASE__ : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
SCREAMING_SNAKE_CASE__ : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**snake_case__ , noise=snake_case__ )
# verify the logits
SCREAMING_SNAKE_CASE__ : str = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , snake_case__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.convert_to_tensor(
[[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1E-4 )
| 132 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
'''simple docstring'''
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
_UpperCamelCase = data_utils.TransfoXLTokenizer
_UpperCamelCase = data_utils.TransfoXLCorpus
_UpperCamelCase = data_utils
_UpperCamelCase = data_utils
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ):
"""simple docstring"""
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(__lowerCAmelCase , """rb""" ) as fp:
__UpperCAmelCase : Optional[int] = pickle.load(__lowerCAmelCase , encoding="""latin1""" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
__UpperCAmelCase : str = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file''']
print(f'Save vocabulary to {pytorch_vocab_dump_path}' )
__UpperCAmelCase : int = corpus.vocab.__dict__
torch.save(__lowerCAmelCase , __lowerCAmelCase )
__UpperCAmelCase : Any = corpus.__dict__
corpus_dict_no_vocab.pop("""vocab""" , __lowerCAmelCase )
__UpperCAmelCase : int = pytorch_dump_folder_path + '''/''' + CORPUS_NAME
print(f'Save dataset to {pytorch_dataset_dump_path}' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
__UpperCAmelCase : List[Any] = os.path.abspath(__lowerCAmelCase )
__UpperCAmelCase : int = os.path.abspath(__lowerCAmelCase )
print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
__UpperCAmelCase : int = TransfoXLConfig()
else:
__UpperCAmelCase : Dict = TransfoXLConfig.from_json_file(__lowerCAmelCase )
print(f'Building PyTorch model from configuration: {config}' )
__UpperCAmelCase : Dict = TransfoXLLMHeadModel(__lowerCAmelCase )
__UpperCAmelCase : Union[str, Any] = load_tf_weights_in_transfo_xl(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Save pytorch-model
__UpperCAmelCase : Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
__UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(f'Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}' )
torch.save(model.state_dict() , __lowerCAmelCase )
print(f'Save configuration file to {os.path.abspath(__lowerCAmelCase )}' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the folder to store the PyTorch model or dataset/vocab.''',
)
parser.add_argument(
'''--tf_checkpoint_path''',
default='''''',
type=str,
help='''An optional path to a TensorFlow checkpoint path to be converted.''',
)
parser.add_argument(
'''--transfo_xl_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--transfo_xl_dataset_file''',
default='''''',
type=str,
help='''An optional dataset file to be converted in a vocabulary.''',
)
_UpperCamelCase = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 254 | import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __snake_case :
def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str:
'''simple docstring'''
UpperCAmelCase : str =parent
UpperCAmelCase : Tuple =batch_size
UpperCAmelCase : Optional[int] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Tuple =use_input_mask
UpperCAmelCase : List[Any] =use_token_type_ids
UpperCAmelCase : Optional[Any] =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : List[Any] =hidden_size
UpperCAmelCase : Optional[int] =rotary_dim
UpperCAmelCase : Union[str, Any] =num_hidden_layers
UpperCAmelCase : List[Any] =num_attention_heads
UpperCAmelCase : Dict =intermediate_size
UpperCAmelCase : Union[str, Any] =hidden_act
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : Dict =attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : List[Any] =vocab_size - 1
UpperCAmelCase : Optional[Any] =vocab_size - 1
UpperCAmelCase : List[Any] =vocab_size - 1
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] =None
if self.use_input_mask:
UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict =GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs
UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =20
UpperCAmelCase : Any =model_class_name(snake_case__ )
UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , )
UpperCAmelCase : List[Any] =model(snake_case__ )
UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Dict =20
UpperCAmelCase : Dict =model_class_name(snake_case__ )
UpperCAmelCase : Tuple =jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : int =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : str =model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ )
UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
@tooslow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ )
UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : str =False
UpperCAmelCase : Union[str, Any] =model.config.eos_token_id
UpperCAmelCase : List[Any] =jax.jit(model.generate )
UpperCAmelCase : Dict =jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )
UpperCAmelCase : Tuple =[
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(snake_case__ , snake_case__ )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : int =0
UpperCAmelCase : Optional[int] =1
UpperCAmelCase : Optional[int] =0
UpperCAmelCase : Union[str, Any] =1
UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ )
UpperCAmelCase : Union[str, Any] =fx_state
with torch.no_grad():
UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(snake_case__ )
UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ )
UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : int =getattr(snake_case__ , snake_case__ )
UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params )
UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : str =0
UpperCAmelCase : Any =1
UpperCAmelCase : List[Any] =0
UpperCAmelCase : Tuple =1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(snake_case__ )
UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ )
with torch.no_grad():
UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : Tuple =model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case__ )
| 348 | 0 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[str]=30 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = decoder_seq_length
# For common tests
UpperCAmelCase__ = self.decoder_seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = d_model
UpperCAmelCase__ = d_model
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = decoder_ffn_dim
UpperCAmelCase__ = decoder_attention_heads
UpperCAmelCase__ = decoder_attention_heads
UpperCAmelCase__ = eos_token_id
UpperCAmelCase__ = bos_token_id
UpperCAmelCase__ = pad_token_id
UpperCAmelCase__ = decoder_start_token_id
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = None
UpperCAmelCase__ = decoder_seq_length
UpperCAmelCase__ = 2
UpperCAmelCase__ = 1
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_attention_mask:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
UpperCAmelCase__ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ):
"""simple docstring"""
UpperCAmelCase__ = True
UpperCAmelCase__ = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval()
UpperCAmelCase__ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
UpperCAmelCase__ = model(snake_case__ , use_cache=snake_case__ )
UpperCAmelCase__ = model(snake_case__ )
UpperCAmelCase__ = model(snake_case__ , use_cache=snake_case__ )
self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) )
self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 )
UpperCAmelCase__ = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase__ = model(snake_case__ )['''last_hidden_state''']
UpperCAmelCase__ = model(snake_case__ , past_key_values=snake_case__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
UpperCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(snake_case__ , snake_case__ , atol=1E-3 )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCAmelCase_ : int = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCAmelCase_ : Tuple = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
lowerCAmelCase_ : Dict = True
lowerCAmelCase_ : Optional[int] = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ )
UpperCAmelCase__ = ConfigTester(self , config_class=snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return
@unittest.skip("""The model doesn\'t support left padding""" ) # and it's not used enough to be worth fixing :)
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
pass
| 346 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
from __future__ import annotations
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
__magic_name__ : List[str] = []
__magic_name__ : Optional[Any] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
__magic_name__ : str = result + left + right
return input_list
def UpperCamelCase ( _A ):
"""simple docstring"""
if len(__lowerCAmelCase ) <= 1:
return input_list
__magic_name__ : List[str] = list(__lowerCAmelCase )
# iteration for two-way merging
__magic_name__ : Tuple = 2
while p <= len(__lowerCAmelCase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0, len(__lowerCAmelCase ), __lowerCAmelCase ):
__magic_name__ : Tuple = i
__magic_name__ : Any = i + p - 1
__magic_name__ : List[str] = (low + high + 1) // 2
__magic_name__ : Union[str, Any] = merge(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase )
# final merge of last two parts
if p * 2 >= len(__lowerCAmelCase ):
__magic_name__ : List[str] = i
__magic_name__ : List[Any] = merge(__lowerCAmelCase, 0, __lowerCAmelCase, len(__lowerCAmelCase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
__magic_name__: Dict = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
__magic_name__: str = []
else:
__magic_name__: int = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 342 | import os
from typing import Dict, List, Tuple, TypeVar, Union
__snake_case = TypeVar('''T''')
__snake_case = Union[List[T], Tuple[T, ...]]
__snake_case = Union[T, List[T], Dict[str, T]]
__snake_case = Union[str, bytes, os.PathLike]
| 348 | 0 |
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class lowercase ( lowerCamelCase__ ):
_SCREAMING_SNAKE_CASE = """encodec"""
def __init__( self , lowercase=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase=24_000 , lowercase=1 , lowercase=False , lowercase=None , lowercase=None , lowercase=128 , lowercase=32 , lowercase=1 , lowercase=[8, 5, 4, 2] , lowercase="weight_norm" , lowercase=7 , lowercase=7 , lowercase=3 , lowercase=2 , lowercase=True , lowercase="reflect" , lowercase=2 , lowercase=2 , lowercase=1.0 , lowercase=1_024 , lowercase=None , lowercase=True , **lowercase , ) -> List[str]:
lowerCAmelCase = target_bandwidths
lowerCAmelCase = sampling_rate
lowerCAmelCase = audio_channels
lowerCAmelCase = normalize
lowerCAmelCase = chunk_length_s
lowerCAmelCase = overlap
lowerCAmelCase = hidden_size
lowerCAmelCase = num_filters
lowerCAmelCase = num_residual_layers
lowerCAmelCase = upsampling_ratios
lowerCAmelCase = norm_type
lowerCAmelCase = kernel_size
lowerCAmelCase = last_kernel_size
lowerCAmelCase = residual_kernel_size
lowerCAmelCase = dilation_growth_rate
lowerCAmelCase = use_causal_conv
lowerCAmelCase = pad_mode
lowerCAmelCase = compress
lowerCAmelCase = num_lstm_layers
lowerCAmelCase = trim_right_ratio
lowerCAmelCase = codebook_size
lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
lowerCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' )
super().__init__(**snake_case__ )
@property
def _snake_case ( self ) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _snake_case ( self ) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def _snake_case ( self ) -> int:
lowerCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def _snake_case ( self ) -> int:
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 46 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''google/bigbird-roberta-base''': 40_96,
'''google/bigbird-roberta-large''': 40_96,
'''google/bigbird-base-trivia-itc''': 40_96,
}
__snake_case = '''▁'''
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Dict = VOCAB_FILES_NAMES
__lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : List[str] = BigBirdTokenizer
__lowerCamelCase : Any = ["""input_ids""", """attention_mask"""]
__lowerCamelCase : List[int] = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase : Tuple =vocab_file
UpperCAmelCase : Optional[int] =False if not self.vocab_file else True
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : int =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(snake_case__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Optional[int] =os.path.join(
snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 348 | 0 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Any = logging.get_logger(__name__)
A : List[str] = {
'''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''',
}
class A (lowerCamelCase__ ):
'''simple docstring'''
__lowerCamelCase : int = """efficientnet"""
def __init__( self : Dict , __lowerCAmelCase : Optional[Any] = 3 , __lowerCAmelCase : Optional[int] = 6_00 , __lowerCAmelCase : Tuple = 2.0 , __lowerCAmelCase : List[Any] = 3.1 , __lowerCAmelCase : Dict = 8 , __lowerCAmelCase : List[Any] = [3, 3, 5, 3, 5, 5, 3] , __lowerCAmelCase : List[Any] = [32, 16, 24, 40, 80, 1_12, 1_92] , __lowerCAmelCase : Tuple = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __lowerCAmelCase : Optional[Any] = [] , __lowerCAmelCase : Any = [1, 2, 2, 2, 1, 2, 1] , __lowerCAmelCase : Tuple = [1, 2, 2, 3, 3, 4, 1] , __lowerCAmelCase : Optional[Any] = [1, 6, 6, 6, 6, 6, 6] , __lowerCAmelCase : Union[str, Any] = 0.2_5 , __lowerCAmelCase : Optional[Any] = "swish" , __lowerCAmelCase : Tuple = 25_60 , __lowerCAmelCase : List[str] = "mean" , __lowerCAmelCase : List[Any] = 0.0_2 , __lowerCAmelCase : Optional[Any] = 0.0_0_1 , __lowerCAmelCase : str = 0.9_9 , __lowerCAmelCase : Dict = 0.5 , __lowerCAmelCase : List[Any] = 0.2 , **__lowerCAmelCase : List[str] , ) -> List[Any]:
"""simple docstring"""
super().__init__(**snake_case__ )
A__ = num_channels
A__ = image_size
A__ = width_coefficient
A__ = depth_coefficient
A__ = depth_divisor
A__ = kernel_sizes
A__ = in_channels
A__ = out_channels
A__ = depthwise_padding
A__ = strides
A__ = num_block_repeats
A__ = expand_ratios
A__ = squeeze_expansion_ratio
A__ = hidden_act
A__ = hidden_dim
A__ = pooling_type
A__ = initializer_range
A__ = batch_norm_eps
A__ = batch_norm_momentum
A__ = dropout_rate
A__ = drop_connect_rate
A__ = sum(snake_case__ ) * 4
class A (lowerCamelCase__ ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = version.parse('''1.11''' )
@property
def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a_ ( self : Optional[Any] ) -> float:
"""simple docstring"""
return 1e-5
| 274 | from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]:
'''simple docstring'''
def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool:
UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
UpperCAmelCase : List[Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__lowerCAmelCase ) )
# The ratio of the area for circle to square is pi/4.
UpperCAmelCase : Dict =proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float:
'''simple docstring'''
return mean(
function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None:
'''simple docstring'''
def identity_function(__lowerCAmelCase ) -> float:
return x
UpperCAmelCase : List[Any] =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2
print('''******************''' )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print('''******************''' )
def lowerCAmelCase_ ( __lowerCAmelCase )-> None:
'''simple docstring'''
def function_to_integrate(__lowerCAmelCase ) -> float:
return sqrt(4.0 - x * x )
UpperCAmelCase : Dict =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 )
print('''******************''' )
print('''Estimating pi using area_under_curve_estimator''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print('''******************''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase__ )
class A_ ( lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
_UpperCamelCase : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
_UpperCamelCase : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
_UpperCamelCase : str = "question"
_UpperCamelCase : str = "context"
_UpperCamelCase : str = "answers"
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 195 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __snake_case :
def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : List[Any] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Union[str, Any] =use_input_mask
UpperCAmelCase : Tuple =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : Tuple =hidden_size
UpperCAmelCase : Dict =projection_dim
UpperCAmelCase : Optional[int] =num_hidden_layers
UpperCAmelCase : Dict =num_attention_heads
UpperCAmelCase : int =intermediate_size
UpperCAmelCase : Any =dropout
UpperCAmelCase : Union[str, Any] =attention_dropout
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : str =scope
UpperCAmelCase : str =bos_token_id
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : int =None
if self.use_input_mask:
UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : Optional[int] =input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape
UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : List[Any] =1
UpperCAmelCase : Tuple =0
UpperCAmelCase : List[Any] =self.get_config()
return config, input_ids, tf.convert_to_tensor(snake_case__ )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ )
UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ )
UpperCAmelCase : str =model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs
UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else ()
__lowerCamelCase : Dict = False
__lowerCamelCase : Optional[Any] = False
__lowerCamelCase : Dict = False
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : str =BlipTextModelTester(self )
UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def UpperCAmelCase__ ( self , snake_case__=True ) -> Any:
'''simple docstring'''
super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
| 348 | 0 |
'''simple docstring'''
def _UpperCamelCase ( UpperCamelCase__ ):
if not numbers:
return 0
if not isinstance(__lowerCAmelCase , (list, tuple) ) or not all(
isinstance(__lowerCAmelCase , __lowerCAmelCase ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
UpperCAmelCase__ : Tuple = numbers[0]
for i in range(1 , len(__lowerCAmelCase ) ):
# update the maximum and minimum subarray products
UpperCAmelCase__ : Union[str, Any] = numbers[i]
if number < 0:
UpperCAmelCase__ : Optional[int] = min_till_now, max_till_now
UpperCAmelCase__ : Tuple = max(__lowerCAmelCase , max_till_now * number )
UpperCAmelCase__ : Union[str, Any] = min(__lowerCAmelCase , min_till_now * number )
# update the maximum product found till now
UpperCAmelCase__ : Optional[int] = max(__lowerCAmelCase , __lowerCAmelCase )
return max_prod | 163 | import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase )
UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase )
return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : List[str] = CLIPConfig
__lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""]
def __init__( self , snake_case__ ) -> Dict:
'''simple docstring'''
super().__init__(snake_case__ )
UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config )
UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ )
UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ )
UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ )
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy()
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy()
UpperCAmelCase : Tuple =[]
UpperCAmelCase : Dict =image_embeds.shape[0]
for i in range(snake_case__ ):
UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : str =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx]
UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
UpperCAmelCase : int =0.01
for concept_idx in range(len(cos_dist[0] ) ):
UpperCAmelCase : Any =cos_dist[i][concept_idx]
UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item()
UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(snake_case__ )
result.append(snake_case__ )
UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : List[str] =self.visual_projection(snake_case__ )
UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds )
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : Optional[Any] =0.0
UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 )
UpperCAmelCase : List[Any] =special_care * 0.01
UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 348 | 0 |
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
SCREAMING_SNAKE_CASE :Dict = True
except ImportError:
SCREAMING_SNAKE_CASE :Any = False
SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( A : Optional[int] ):
__A = parser.add_parser("add-new-model" )
add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." )
add_new_model_parser.add_argument("--testing_file" ,type=snake_case__ ,help="Configuration file on which to run." )
add_new_model_parser.add_argument(
"--path" ,type=snake_case__ ,help="Path to cookiecutter. Should only be used for testing purposes." )
add_new_model_parser.set_defaults(func=snake_case__ )
def __init__( self : List[str] ,A : Union[str, Any] ,A : Tuple ,A : Tuple=None ,*A : Union[str, Any] ):
__A = testing
__A = testing_file
__A = path
def UpperCamelCase_ ( self : List[str] ):
warnings.warn(
"The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. "
"It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality "
"checks, you should use `transformers-cli add-new-model-like` instead." )
if not _has_cookiecutter:
raise ImportError(
"Model creation dependencies are required to use the `add_new_model` command. Install them by running "
"the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
__A = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]]
if len(snake_case__ ) > 0:
raise ValueError(
"Several directories starting with `cookiecutter-template-` in current working directory. "
"Please clean your directory by removing all folders starting with `cookiecutter-template-` or "
"change your working directory." )
__A = (
Path(snake_case__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
__A = path_to_transformer_root / '''templates''' / '''adding_a_new_model'''
# Execute cookiecutter
if not self._testing:
cookiecutter(str(snake_case__ ) )
else:
with open(self._testing_file ,"r" ) as configuration_file:
__A = json.load(snake_case__ )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=snake_case__ ,extra_context=snake_case__ ,)
__A = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0]
# Retrieve configuration
with open(directory + "/configuration.json" ,"r" ) as configuration_file:
__A = json.load(snake_case__ )
__A = configuration['''lowercase_modelname''']
__A = configuration['''generate_tensorflow_pytorch_and_flax''']
os.remove(f'''{directory}/configuration.json''' )
__A = '''PyTorch''' in generate_tensorflow_pytorch_and_flax
__A = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax
__A = '''Flax''' in generate_tensorflow_pytorch_and_flax
__A = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}'''
os.makedirs(snake_case__ ,exist_ok=snake_case__ )
os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' ,exist_ok=snake_case__ )
# Tests require submodules as they have parent imports
with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' ,"w" ):
pass
shutil.move(
f'''{directory}/__init__.py''' ,f'''{model_dir}/__init__.py''' ,)
shutil.move(
f'''{directory}/configuration_{lowercase_model_name}.py''' ,f'''{model_dir}/configuration_{lowercase_model_name}.py''' ,)
def remove_copy_lines(A : str ):
with open(snake_case__ ,"r" ) as f:
__A = f.readlines()
with open(snake_case__ ,"w" ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(snake_case__ )
if output_pytorch:
if not self._testing:
remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' )
shutil.move(
f'''{directory}/modeling_{lowercase_model_name}.py''' ,f'''{model_dir}/modeling_{lowercase_model_name}.py''' ,)
shutil.move(
f'''{directory}/test_modeling_{lowercase_model_name}.py''' ,f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' ,)
else:
os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' )
os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' )
shutil.move(
f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ,f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' ,)
shutil.move(
f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ,f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' ,)
else:
os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' )
os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' )
if output_flax:
if not self._testing:
remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' )
shutil.move(
f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ,f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' ,)
shutil.move(
f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ,f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' ,)
else:
os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' )
os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' )
shutil.move(
f'''{directory}/{lowercase_model_name}.md''' ,f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' ,)
shutil.move(
f'''{directory}/tokenization_{lowercase_model_name}.py''' ,f'''{model_dir}/tokenization_{lowercase_model_name}.py''' ,)
shutil.move(
f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' ,f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' ,)
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(A : Optional[Any] ,A : Union[str, Any] ,A : int ):
# Create temp file
__A = mkstemp()
__A = False
with fdopen(snake_case__ ,"w" ) as new_file:
with open(snake_case__ ) as old_file:
for line in old_file:
new_file.write(snake_case__ )
if line_to_copy_below in line:
__A = True
for line_to_copy in lines_to_copy:
new_file.write(snake_case__ )
if not line_found:
raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' )
# Copy the file permissions from the old file to the new file
copymode(snake_case__ ,snake_case__ )
# Remove original file
remove(snake_case__ )
# Move new file
move(snake_case__ ,snake_case__ )
def skip_units(A : Union[str, Any] ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(A : List[str] ):
with open(snake_case__ ) as datafile:
__A = []
__A = False
__A = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
__A = line.split("\"" )[1]
__A = skip_units(snake_case__ )
elif "# Below: " in line and "##" not in line:
__A = line.split("\"" )[1]
__A = skip_units(snake_case__ )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(snake_case__ ,snake_case__ ,snake_case__ )
__A = []
elif "# Replace with" in line and "##" not in line:
__A = []
elif "##" not in line:
lines_to_copy.append(snake_case__ )
remove(snake_case__ )
replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' )
os.rmdir(snake_case__ )
| 15 | import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
__snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False)
parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''')
parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''')
__snake_case = parser.parse_args()
__snake_case = '''cpu'''
__snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'''
__snake_case = '''path-to-your-trained-model'''
__snake_case = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
__snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
__snake_case = pipe.to(device)
# to channels last
__snake_case = pipe.unet.to(memory_format=torch.channels_last)
__snake_case = pipe.vae.to(memory_format=torch.channels_last)
__snake_case = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
__snake_case = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
__snake_case = torch.randn(2, 4, 64, 64)
__snake_case = torch.rand(1) * 9_99
__snake_case = torch.randn(2, 77, 7_68)
__snake_case = (sample, timestep, encoder_hidden_status)
try:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
__snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
__snake_case = 6_66
__snake_case = torch.Generator(device).manual_seed(seed)
__snake_case = {'''generator''': generator}
if args.steps is not None:
__snake_case = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
__snake_case = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('''generated.png''')
| 348 | 0 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def a( A : Tuple ) -> int:
"""simple docstring"""
a = []
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
f'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
f'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
f'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
f'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def a( A : Tuple , A : List[Any] ) -> str:
"""simple docstring"""
a = []
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
f'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
f'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def a( A : List[Any] ) -> Tuple:
"""simple docstring"""
a = []
token.append((f'''cvt.encoder.stages.{idx}.cls_token''', "stage2.cls_token") )
return token
def a( ) -> Dict:
"""simple docstring"""
a = []
head.append(("layernorm.weight", "norm.weight") )
head.append(("layernorm.bias", "norm.bias") )
head.append(("classifier.weight", "head.weight") )
head.append(("classifier.bias", "head.bias") )
return head
def a( A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
a = '''imagenet-1k-id2label.json'''
a = 1000
a = '''huggingface/label-files'''
a = num_labels
a = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) ) , "r" ) )
a = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
a = idalabel
a = {v: k for k, v in idalabel.items()}
a = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13":
a = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21":
a = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
a = [2, 2, 20]
a = [3, 12, 16]
a = [192, 768, 1024]
a = CvtForImageClassification(__lowerCAmelCase )
a = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
a = image_size
a = torch.load(__lowerCAmelCase , map_location=torch.device("cpu" ) )
a = OrderedDict()
a = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
a = list_of_state_dict + cls_token(__lowerCAmelCase )
a = list_of_state_dict + embeddings(__lowerCAmelCase )
for cnt in range(config.depth[idx] ):
a = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase )
a = list_of_state_dict + final()
for gg in list_of_state_dict:
print(__lowerCAmelCase )
for i in range(len(__lowerCAmelCase ) ):
a = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_lowercase: Dict = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you\'d like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
_lowercase: int = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 227 | __snake_case = '''Input must be a string of 8 numbers plus letter'''
__snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def lowerCAmelCase_ ( __lowerCAmelCase )-> bool:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}'''
raise TypeError(__lowerCAmelCase )
UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper()
if len(__lowerCAmelCase ) != 9:
raise ValueError(__lowerCAmelCase )
try:
UpperCAmelCase : int =int(spanish_id_clean[0:8] )
UpperCAmelCase : Optional[int] =spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowerCAmelCase ) from ex
if letter.isdigit():
raise ValueError(__lowerCAmelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch
import math
from typing import Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import randn_tensor
from .scheduling_utils import SchedulerMixin
class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ):
_a = 1
@register_to_config
def __init__( self , lowerCAmelCase=2_000 , lowerCAmelCase=0.1 , lowerCAmelCase=20 , lowerCAmelCase=1e-3 ) -> int:
'''simple docstring'''
_lowercase =None
_lowercase =None
_lowercase =None
def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> List[Any]:
'''simple docstring'''
_lowercase =torch.linspace(1 , self.config.sampling_eps , snake_case__ , device=snake_case__ )
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ) -> Any:
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
'`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' )
# TODO(Patrick) better comments + non-PyTorch
# postprocess model score
_lowercase =(
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min
)
_lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) )
_lowercase =std.flatten()
while len(std.shape ) < len(score.shape ):
_lowercase =std.unsqueeze(-1 )
_lowercase =-score / std
# compute
_lowercase =-1.0 / len(self.timesteps )
_lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min)
_lowercase =beta_t.flatten()
while len(beta_t.shape ) < len(x.shape ):
_lowercase =beta_t.unsqueeze(-1 )
_lowercase =-0.5 * beta_t * x
_lowercase =torch.sqrt(snake_case__ )
_lowercase =drift - diffusion**2 * score
_lowercase =x + drift * dt
# add noise
_lowercase =randn_tensor(x.shape , layout=x.layout , generator=snake_case__ , device=x.device , dtype=x.dtype )
_lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise
return x, x_mean
def __len__( self ) -> Dict:
'''simple docstring'''
return self.config.num_train_timesteps
| 205 | def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> set[str]:
SCREAMING_SNAKE_CASE__ : Dict = set(__lowerCAmelCase ), [start]
while stack:
SCREAMING_SNAKE_CASE__ : int = stack.pop()
explored.add(__lowerCAmelCase )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(__lowerCAmelCase )
return explored
a :Tuple = {
"A": ["B", "C", "D"],
"B": ["A", "D", "E"],
"C": ["A", "F"],
"D": ["B", "D"],
"E": ["B", "F"],
"F": ["C", "E", "G"],
"G": ["F"],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, "A"))
| 132 | from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
# TODO Update this
__snake_case = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Tuple = """esm"""
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase : List[str] =vocab_size
UpperCAmelCase : str =hidden_size
UpperCAmelCase : List[Any] =num_hidden_layers
UpperCAmelCase : Optional[Any] =num_attention_heads
UpperCAmelCase : str =intermediate_size
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : int =attention_probs_dropout_prob
UpperCAmelCase : Dict =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : Union[str, Any] =layer_norm_eps
UpperCAmelCase : Dict =position_embedding_type
UpperCAmelCase : Optional[Any] =use_cache
UpperCAmelCase : int =emb_layer_norm_before
UpperCAmelCase : List[str] =token_dropout
UpperCAmelCase : Optional[Any] =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
UpperCAmelCase : Optional[Any] =EsmFoldConfig()
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ )
UpperCAmelCase : Tuple =esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
UpperCAmelCase : Any =get_default_vocab_list()
else:
UpperCAmelCase : Tuple =vocab_list
else:
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : Union[str, Any] =None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =super().to_dict()
if isinstance(self.esmfold_config , snake_case__ ):
UpperCAmelCase : str =self.esmfold_config.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : str = None
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : float = 0
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : int = 128
__lowerCamelCase : "TrunkConfig" = None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.trunk is None:
UpperCAmelCase : str =TrunkConfig()
elif isinstance(self.trunk , snake_case__ ):
UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =asdict(self )
UpperCAmelCase : Any =self.trunk.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 48
__lowerCamelCase : int = 1024
__lowerCamelCase : int = 128
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : float = 0
__lowerCamelCase : float = 0
__lowerCamelCase : bool = False
__lowerCamelCase : int = 4
__lowerCamelCase : Optional[int] = 128
__lowerCamelCase : "StructureModuleConfig" = None
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.structure_module is None:
UpperCAmelCase : Any =StructureModuleConfig()
elif isinstance(self.structure_module , snake_case__ ):
UpperCAmelCase : str =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =asdict(self )
UpperCAmelCase : Tuple =self.structure_module.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 384
__lowerCamelCase : int = 128
__lowerCamelCase : int = 16
__lowerCamelCase : int = 128
__lowerCamelCase : int = 12
__lowerCamelCase : int = 4
__lowerCamelCase : int = 8
__lowerCamelCase : float = 0.1
__lowerCamelCase : int = 8
__lowerCamelCase : int = 1
__lowerCamelCase : int = 2
__lowerCamelCase : int = 7
__lowerCamelCase : int = 10
__lowerCamelCase : float = 1E-8
__lowerCamelCase : float = 1E5
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return asdict(self )
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 348 | 0 |
'''simple docstring'''
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=False ):
"""simple docstring"""
__UpperCAmelCase : Any = OmegaConf.load(__lowerCAmelCase )
if display:
print(yaml.dump(OmegaConf.to_container(__lowerCAmelCase ) ) )
return config
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Tuple=None ):
"""simple docstring"""
if conf_path is None:
__UpperCAmelCase : Any = '''./model_checkpoints/vqgan_only.yaml'''
__UpperCAmelCase : str = load_config(__lowerCAmelCase , display=__lowerCAmelCase )
__UpperCAmelCase : Tuple = VQModel(**config.model.params )
if ckpt_path is None:
__UpperCAmelCase : List[str] = '''./model_checkpoints/vqgan_only.pt'''
__UpperCAmelCase : int = torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase )
if ".ckpt" in ckpt_path:
__UpperCAmelCase : str = sd['''state_dict''']
model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
model.to(__lowerCAmelCase )
del sd
return model
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = model.encode(__lowerCAmelCase )
print(f'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' )
__UpperCAmelCase : Optional[Any] = model.decode(__lowerCAmelCase )
return xrec
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple=False ):
"""simple docstring"""
__UpperCAmelCase : Tuple = string.rsplit(""".""" , 1 )
if reload:
__UpperCAmelCase : List[Any] = importlib.import_module(__lowerCAmelCase )
importlib.reload(__lowerCAmelCase )
return getattr(importlib.import_module(__lowerCAmelCase , package=__lowerCAmelCase ) , cls )
def lowercase_ ( lowerCAmelCase__ : int ):
"""simple docstring"""
if "target" not in config:
raise KeyError("""Expected key `target` to instantiate.""" )
return get_obj_from_str(config["""target"""] )(**config.get("""params""" , {} ) )
def lowercase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=True ):
"""simple docstring"""
__UpperCAmelCase : List[str] = instantiate_from_config(__lowerCAmelCase )
if sd is not None:
model.load_state_dict(__lowerCAmelCase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
if ckpt:
__UpperCAmelCase : List[str] = torch.load(__lowerCAmelCase , map_location="""cpu""" )
__UpperCAmelCase : List[Any] = pl_sd['''global_step''']
print(f'loaded model from global step {global_step}.' )
else:
__UpperCAmelCase : int = {'''state_dict''': None}
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = load_model_from_config(config.model , pl_sd["""state_dict"""] , gpu=__lowerCAmelCase , eval_mode=__lowerCAmelCase )['''model''']
return model, global_step
| 254 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 0 |
'''simple docstring'''
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
UpperCAmelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n'
class lowerCAmelCase_ ( lowerCamelCase__ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = parser.add_parser(
"""convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , )
train_parser.add_argument("""--model_type""" , type=snake_case__ , required=snake_case__ , help="""Model\'s type.""" )
train_parser.add_argument(
"""--tf_checkpoint""" , type=snake_case__ , required=snake_case__ , help="""TensorFlow checkpoint path or folder.""" )
train_parser.add_argument(
"""--pytorch_dump_output""" , type=snake_case__ , required=snake_case__ , help="""Path to the PyTorch saved model output.""" )
train_parser.add_argument("""--config""" , type=snake_case__ , default="""""" , help="""Configuration file path or folder.""" )
train_parser.add_argument(
"""--finetuning_task_name""" , type=snake_case__ , default=snake_case__ , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , )
train_parser.set_defaults(func=snake_case__ )
def __init__( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , *_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = logging.get_logger("""transformers-cli/converting""" )
self._logger.info(f'''Loading model {model_type}''' )
UpperCAmelCase__ = model_type
UpperCAmelCase__ = tf_checkpoint
UpperCAmelCase__ = pytorch_dump_output
UpperCAmelCase__ = config
UpperCAmelCase__ = finetuning_task_name
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(snake_case__ )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
if "ckpt" in self._tf_checkpoint.lower():
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''''''
else:
UpperCAmelCase__ = self._tf_checkpoint
UpperCAmelCase__ = ''''''
convert_transfo_xl_checkpoint_to_pytorch(
snake_case__ , self._config , self._pytorch_dump_output , snake_case__ )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(snake_case__ )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
"""--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
| 346 | import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits
UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean()
UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item())
UpperCAmelCase : List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class snake_case__ ( lowerCamelCase__ ):
lowercase__ : torch.FloatTensor
class snake_case__ ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , lowerCAmelCase__ = 32 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = 20 , lowerCAmelCase__ = 7_68 , lowerCAmelCase__=77 , lowerCAmelCase__=4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = "silu" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "linear" , lowerCAmelCase__ = "prd" , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Tuple:
super().__init__()
__magic_name__ : List[Any] = num_attention_heads
__magic_name__ : Tuple = attention_head_dim
__magic_name__ : Union[str, Any] = num_attention_heads * attention_head_dim
__magic_name__ : int = additional_embeddings
__magic_name__ : List[str] = time_embed_dim or inner_dim
__magic_name__ : List[str] = embedding_proj_dim or embedding_dim
__magic_name__ : Any = clip_embed_dim or embedding_dim
__magic_name__ : Dict = Timesteps(snake_case__ , snake_case__ , 0 )
__magic_name__ : Tuple = TimestepEmbedding(snake_case__ , snake_case__ , out_dim=snake_case__ , act_fn=snake_case__ )
__magic_name__ : Union[str, Any] = nn.Linear(snake_case__ , snake_case__ )
if embedding_proj_norm_type is None:
__magic_name__ : Dict = None
elif embedding_proj_norm_type == "layer":
__magic_name__ : int = nn.LayerNorm(snake_case__ )
else:
raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' )
__magic_name__ : Optional[Any] = nn.Linear(snake_case__ , snake_case__ )
if encoder_hid_proj_type is None:
__magic_name__ : Optional[int] = None
elif encoder_hid_proj_type == "linear":
__magic_name__ : Any = nn.Linear(snake_case__ , snake_case__ )
else:
raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' )
__magic_name__ : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case__ ) )
if added_emb_type == "prd":
__magic_name__ : Dict = nn.Parameter(torch.zeros(1 , 1 , snake_case__ ) )
elif added_emb_type is None:
__magic_name__ : int = None
else:
raise ValueError(
F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' )
__magic_name__ : List[str] = nn.ModuleList(
[
BasicTransformerBlock(
snake_case__ , snake_case__ , snake_case__ , dropout=snake_case__ , activation_fn="""gelu""" , attention_bias=snake_case__ , )
for d in range(snake_case__ )
] )
if norm_in_type == "layer":
__magic_name__ : Optional[Any] = nn.LayerNorm(snake_case__ )
elif norm_in_type is None:
__magic_name__ : Union[str, Any] = None
else:
raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.' )
__magic_name__ : str = nn.LayerNorm(snake_case__ )
__magic_name__ : List[str] = nn.Linear(snake_case__ , snake_case__ )
__magic_name__ : Union[str, Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
__magic_name__ : Optional[Any] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , snake_case__ , persistent=snake_case__ )
__magic_name__ : int = nn.Parameter(torch.zeros(1 , snake_case__ ) )
__magic_name__ : Union[str, Any] = nn.Parameter(torch.zeros(1 , snake_case__ ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __magic_name__ ( self ) -> Dict[str, AttentionProcessor]:
__magic_name__ : Dict = {}
def fn_recursive_add_processors(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if hasattr(snake_case__ , """set_processor""" ):
__magic_name__ : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'{name}.{sub_name}' , snake_case__ , snake_case__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ )
return processors
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
__magic_name__ : int = len(self.attn_processors.keys() )
if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count:
raise ValueError(
F'A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the'
F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' )
def fn_recursive_attn_processor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if hasattr(snake_case__ , """set_processor""" ):
if not isinstance(snake_case__ , snake_case__ ):
module.set_processor(snake_case__ )
else:
module.set_processor(processor.pop(F'{name}.processor' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'{name}.{sub_name}' , snake_case__ , snake_case__ )
for name, module in self.named_children():
fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ )
def __magic_name__ ( self ) -> Optional[Any]:
self.set_attn_processor(AttnProcessor() )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , ) -> Any:
__magic_name__ : List[str] = hidden_states.shape[0]
__magic_name__ : int = timestep
if not torch.is_tensor(snake_case__ ):
__magic_name__ : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0:
__magic_name__ : Optional[int] = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__magic_name__ : Tuple = timesteps * torch.ones(snake_case__ , dtype=timesteps.dtype , device=timesteps.device )
__magic_name__ : Union[str, Any] = self.time_proj(snake_case__ )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
__magic_name__ : Any = timesteps_projected.to(dtype=self.dtype )
__magic_name__ : Any = self.time_embedding(snake_case__ )
if self.embedding_proj_norm is not None:
__magic_name__ : Any = self.embedding_proj_norm(snake_case__ )
__magic_name__ : Dict = self.embedding_proj(snake_case__ )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
__magic_name__ : Tuple = self.encoder_hidden_states_proj(snake_case__ )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
__magic_name__ : int = self.proj_in(snake_case__ )
__magic_name__ : Dict = self.positional_embedding.to(hidden_states.dtype )
__magic_name__ : List[Any] = []
__magic_name__ : List[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(snake_case__ )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
__magic_name__ : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
__magic_name__ : Dict = hidden_states[:, None, :]
__magic_name__ : int = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
__magic_name__ : Optional[Any] = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case__ , -1 , -1 )
additional_embeds.append(snake_case__ )
__magic_name__ : int = torch.cat(
snake_case__ , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
__magic_name__ : Any = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
__magic_name__ : List[Any] = F.pad(
snake_case__ , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
__magic_name__ : Tuple = hidden_states + positional_embeddings
if attention_mask is not None:
__magic_name__ : List[str] = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
__magic_name__ : Tuple = F.pad(snake_case__ , (0, self.additional_embeddings) , value=0.0 )
__magic_name__ : Dict = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
__magic_name__ : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
__magic_name__ : Optional[Any] = self.norm_in(snake_case__ )
for block in self.transformer_blocks:
__magic_name__ : Optional[int] = block(snake_case__ , attention_mask=snake_case__ )
__magic_name__ : Optional[int] = self.norm_out(snake_case__ )
if self.prd_embedding is not None:
__magic_name__ : List[Any] = hidden_states[:, -1]
else:
__magic_name__ : Dict = hidden_states[:, additional_embeddings_len:]
__magic_name__ : List[str] = self.proj_to_clip_embeddings(snake_case__ )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=snake_case__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : str = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 342 | import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : List[Any] =ort.SessionOptions()
UpperCAmelCase : Optional[int] =False
return options
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Optional[Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Dict ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : Any =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Tuple =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : str =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : int =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 348 | 0 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
lowerCAmelCase = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''decoder.output_projection.weight''',
'''_float_tensor''',
'''encoder.embed_positions._float_tensor''',
'''decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
lowerCAmelCase = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
lowerCAmelCase = s_dict.pop(__lowerCAmelCase )
elif "subsample" in key:
lowerCAmelCase = s_dict.pop(__lowerCAmelCase )
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
lowerCAmelCase = emb.weight.shape
lowerCAmelCase = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase )
lowerCAmelCase = emb.weight.data
return lin_layer
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
lowerCAmelCase = torch.load(__lowerCAmelCase , map_location="""cpu""" )
lowerCAmelCase = mam_aaa['''args''']
lowerCAmelCase = mam_aaa['''model''']
lowerCAmelCase = state_dict['''decoder.output_projection.weight''']
remove_ignore_keys_(__lowerCAmelCase )
rename_keys(__lowerCAmelCase )
lowerCAmelCase = state_dict['''decoder.embed_tokens.weight'''].shape[0]
lowerCAmelCase = args.share_decoder_input_output_embed
lowerCAmelCase = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(""",""" )]
lowerCAmelCase = SpeechaTextConfig(
vocab_size=__lowerCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(__lowerCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowerCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowerCAmelCase , num_beams=5 , max_length=2_00 , use_cache=__lowerCAmelCase , decoder_start_token_id=2 , early_stopping=__lowerCAmelCase , )
lowerCAmelCase = SpeechaTextForConditionalGeneration(__lowerCAmelCase )
lowerCAmelCase = model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
F' but all the following weights are missing {missing}' )
if tie_embeds:
lowerCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowerCAmelCase = lm_head_weights
model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 46 | from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( )-> int:
'''simple docstring'''
UpperCAmelCase : str ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase )
return dataset
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] =get_dataset()
UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str =get_dataset()
UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
| 348 | 0 |
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class A (unittest.TestCase ):
'''simple docstring'''
def a_ ( self : str ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def a_ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
A__ = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=snake_case__ , dtype=jnp.bfloataa )
A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=snake_case__ , from_pt=snake_case__ , dtype=jnp.bfloataa )
A__ = controlnet_params
A__ = '''bird'''
A__ = jax.device_count()
A__ = pipe.prepare_text_inputs([prompts] * num_samples )
A__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
A__ = pipe.prepare_image_inputs([canny_image] * num_samples )
A__ = jax.random.PRNGKey(0 )
A__ = jax.random.split(snake_case__ , jax.device_count() )
A__ = replicate(snake_case__ )
A__ = shard(snake_case__ )
A__ = shard(snake_case__ )
A__ = pipe(
prompt_ids=snake_case__ , image=snake_case__ , params=snake_case__ , prng_seed=snake_case__ , num_inference_steps=50 , jit=snake_case__ , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
A__ = images[0, 2_53:2_56, 2_53:2_56, -1]
A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ = jnp.array(
[0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def a_ ( self : int ) -> Optional[int]:
"""simple docstring"""
A__ = FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=snake_case__ , dtype=jnp.bfloataa )
A__ = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=snake_case__ , from_pt=snake_case__ , dtype=jnp.bfloataa )
A__ = controlnet_params
A__ = '''Chef in the kitchen'''
A__ = jax.device_count()
A__ = pipe.prepare_text_inputs([prompts] * num_samples )
A__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
A__ = pipe.prepare_image_inputs([pose_image] * num_samples )
A__ = jax.random.PRNGKey(0 )
A__ = jax.random.split(snake_case__ , jax.device_count() )
A__ = replicate(snake_case__ )
A__ = shard(snake_case__ )
A__ = shard(snake_case__ )
A__ = pipe(
prompt_ids=snake_case__ , image=snake_case__ , params=snake_case__ , prng_seed=snake_case__ , num_inference_steps=50 , jit=snake_case__ , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
A__ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
A__ = images[0, 2_53:2_56, 2_53:2_56, -1]
A__ = jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ = jnp.array(
[[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 274 | from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Optional[Any] =learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ )
else:
UpperCAmelCase : Union[str, Any] =None
UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : VQModel
__lowerCamelCase : CLIPTextModel
__lowerCamelCase : CLIPTokenizer
__lowerCamelCase : TransformeraDModel
__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings
__lowerCamelCase : VQDiffusionScheduler
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
UpperCAmelCase : Optional[int] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : int =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
UpperCAmelCase : str =[''''''] * batch_size
UpperCAmelCase : Tuple =text_input_ids.shape[-1]
UpperCAmelCase : Optional[Any] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1]
UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =1
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Tuple =len(snake_case__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
UpperCAmelCase : Tuple =batch_size * num_images_per_prompt
UpperCAmelCase : List[str] =guidance_scale > 1.0
UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(snake_case__ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1
UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCAmelCase : Any =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Optional[int] =latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 )
UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase : Optional[Any] =model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim
UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ )
UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ )
UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase : int =keep_mask[:, :-1, :]
UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase : Dict =log_p_x_0.clone()
UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0)
return rv
| 348 | 0 |
import heapq
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ):
lowercase = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(__lowerCAmelCase , [-1 * len(__lowerCAmelCase ), (key, value)] )
# chosen_vertices = set of chosen vertices
lowercase = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
lowercase = heapq.heappop(__lowerCAmelCase )[1][0]
chosen_vertices.add(__lowerCAmelCase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
lowercase = elem[1][1].index(__lowerCAmelCase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(__lowerCAmelCase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 195 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase : Any =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.dummy_uncond_unet
UpperCAmelCase : Optional[int] =KarrasVeScheduler()
UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : List[str] =torch.manual_seed(0 )
UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : str =torch.manual_seed(0 )
UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0]
UpperCAmelCase : Any =image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256'''
UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ )
UpperCAmelCase : Dict =KarrasVeScheduler()
UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Any =torch.manual_seed(0 )
UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 348 | 0 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ):
if start is None:
UpperCAmelCase__ : List[str] = 0
if end is None:
UpperCAmelCase__ : str = len(__lowerCAmelCase ) - 1
if start >= end:
return
UpperCAmelCase__ : Any = (start + end) // 2
slowsort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
slowsort(__lowerCAmelCase , mid + 1 , __lowerCAmelCase )
if sequence[end] < sequence[mid]:
UpperCAmelCase__ : int = sequence[mid], sequence[end]
slowsort(__lowerCAmelCase , __lowerCAmelCase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod() | 163 | import qiskit
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' )
UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
__snake_case = half_adder(1, 1)
print(f'Half Adder Output Qubit Counts: {counts}')
| 348 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase__ )
class UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
snake_case_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"text": Value("string" )} )
snake_case_ = Features({"labels": ClassLabel} )
snake_case_ = "text"
snake_case_ = "labels"
def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ):
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] ,snake_case__ ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
__A = copy.deepcopy(self )
__A = self.label_schema.copy()
__A = features[self.label_column]
__A = label_schema
return task_template
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
return {
self.text_column: "text",
self.label_column: "labels",
}
| 15 | from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __snake_case :
__lowerCamelCase : str = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Optional[int] = """gelu"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : Dict =seq_length
UpperCAmelCase : Optional[Any] =is_training
UpperCAmelCase : List[str] =use_labels
UpperCAmelCase : List[Any] =vocab_size
UpperCAmelCase : Optional[int] =hidden_size
UpperCAmelCase : Tuple =num_hidden_layers
UpperCAmelCase : Any =num_attention_heads
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : str =hidden_dropout_prob
UpperCAmelCase : Optional[int] =attention_probs_dropout_prob
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : List[Any] =eos_token_id
UpperCAmelCase : Optional[int] =pad_token_id
UpperCAmelCase : Tuple =bos_token_id
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder()
UpperCAmelCase : Any =inputs_dict['''input_ids''']
UpperCAmelCase : str =input_ids[:1, :]
UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Tuple =inputs_dict['''head_mask''']
UpperCAmelCase : List[Any] =1
# first forward pass
UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : Dict = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Union[str, Any] = True
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[str] =TFBlenderbotModelTester(self )
UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class __snake_case ( unittest.TestCase ):
__lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""]
__lowerCamelCase : Dict = """facebook/blenderbot-400M-distill"""
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase : Optional[int] =self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 348 | 0 |
from __future__ import annotations
def a( A : Union[str, Any] ) -> float:
"""simple docstring"""
a = 0.00
a = 0
for resistor in resistors:
if resistor <= 0:
a = f'''Resistor at index {index} has a negative or zero value!'''
raise ValueError(__lowerCAmelCase )
first_sum += 1 / float(__lowerCAmelCase )
index += 1
return 1 / first_sum
def a( A : Union[str, Any] ) -> float:
"""simple docstring"""
a = 0.00
a = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
a = f'''Resistor at index {index} has a negative value!'''
raise ValueError(__lowerCAmelCase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 227 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """sew-d"""
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase : Union[str, Any] =hidden_size
UpperCAmelCase : Union[str, Any] =feat_extract_norm
UpperCAmelCase : Optional[Any] =feat_extract_activation
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : int =list(snake_case__ )
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : str =conv_bias
UpperCAmelCase : Tuple =num_conv_pos_embeddings
UpperCAmelCase : Dict =num_conv_pos_embedding_groups
UpperCAmelCase : str =len(self.conv_dim )
UpperCAmelCase : Dict =num_hidden_layers
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : List[Any] =squeeze_factor
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : int =position_buckets
UpperCAmelCase : Optional[int] =share_att_key
UpperCAmelCase : Optional[int] =relative_attention
UpperCAmelCase : Tuple =norm_rel_ebd
UpperCAmelCase : List[Any] =list(snake_case__ )
UpperCAmelCase : Dict =hidden_act
UpperCAmelCase : Optional[int] =num_attention_heads
UpperCAmelCase : Any =hidden_dropout
UpperCAmelCase : str =attention_dropout
UpperCAmelCase : Union[str, Any] =activation_dropout
UpperCAmelCase : str =feat_proj_dropout
UpperCAmelCase : Union[str, Any] =final_dropout
UpperCAmelCase : Optional[int] =layer_norm_eps
UpperCAmelCase : str =feature_layer_norm_eps
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Any =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] =apply_spec_augment
UpperCAmelCase : Optional[Any] =mask_time_prob
UpperCAmelCase : Tuple =mask_time_length
UpperCAmelCase : str =mask_time_min_masks
UpperCAmelCase : Optional[int] =mask_feature_prob
UpperCAmelCase : Optional[Any] =mask_feature_length
UpperCAmelCase : List[Any] =mask_feature_min_masks
# ctc loss
UpperCAmelCase : str =ctc_loss_reduction
UpperCAmelCase : Optional[int] =ctc_zero_infinity
# sequence classification
UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum
UpperCAmelCase : int =classifier_proj_size
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class __lowerCAmelCase :
def __init__( self , lowerCAmelCase , lowerCAmelCase=14 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ) -> int:
'''simple docstring'''
_lowercase =parent
_lowercase =batch_size
_lowercase =seq_length
_lowercase =is_training
_lowercase =use_token_type_ids
_lowercase =use_input_mask
_lowercase =use_labels
_lowercase =use_mc_token_ids
_lowercase =vocab_size
_lowercase =hidden_size
_lowercase =num_hidden_layers
_lowercase =num_attention_heads
_lowercase =intermediate_size
_lowercase =hidden_act
_lowercase =hidden_dropout_prob
_lowercase =attention_probs_dropout_prob
_lowercase =max_position_embeddings
_lowercase =type_vocab_size
_lowercase =type_sequence_label_size
_lowercase =initializer_range
_lowercase =num_labels
_lowercase =num_choices
_lowercase =scope
_lowercase =self.vocab_size - 1
def A__ ( self ) -> int:
'''simple docstring'''
_lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase =None
if self.use_input_mask:
_lowercase =random_attention_mask([self.batch_size, self.seq_length] )
_lowercase =None
if self.use_token_type_ids:
_lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase =None
if self.use_mc_token_ids:
_lowercase =ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
_lowercase =None
_lowercase =None
_lowercase =None
if self.use_labels:
_lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase =ids_tensor([self.batch_size] , self.num_choices )
_lowercase =self.get_config()
_lowercase =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def A__ ( self ) -> Dict:
'''simple docstring'''
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ) -> str:
'''simple docstring'''
_lowercase =CTRLModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
model(snake_case__ , token_type_ids=snake_case__ , head_mask=snake_case__ )
model(snake_case__ , token_type_ids=snake_case__ )
_lowercase =model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
_lowercase =CTRLLMHeadModel(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowercase =model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self ) -> Optional[Any]:
'''simple docstring'''
_lowercase =self.prepare_config_and_inputs()
(
_lowercase
) =config_and_inputs
_lowercase ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask}
return config, inputs_dict
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ) -> Tuple:
'''simple docstring'''
_lowercase =self.num_labels
_lowercase =CTRLForSequenceClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase =model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
_a = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
_a = (CTRLLMHeadModel,) if is_torch_available() else ()
_a = (
{
"""feature-extraction""": CTRLModel,
"""text-classification""": CTRLForSequenceClassification,
"""text-generation""": CTRLLMHeadModel,
"""zero-shot""": CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Any:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def A__ ( self ) -> List[Any]:
'''simple docstring'''
_lowercase =CTRLModelTester(self )
_lowercase =ConfigTester(self , config_class=snake_case__ , n_embd=37 )
def A__ ( self ) -> int:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def A__ ( self ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self ) -> Union[str, Any]:
'''simple docstring'''
_lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*snake_case__ )
def A__ ( self ) -> Dict:
'''simple docstring'''
_lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*snake_case__ )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def A__ ( self ) -> Tuple:
'''simple docstring'''
pass
@slow
def A__ ( self ) -> Tuple:
'''simple docstring'''
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase =CTRLModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def A__ ( self ) -> int:
'''simple docstring'''
pass
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
def A__ ( self ) -> Tuple:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def A__ ( self ) -> Tuple:
'''simple docstring'''
_lowercase =CTRLLMHeadModel.from_pretrained('ctrl' )
model.to(snake_case__ )
_lowercase =torch.tensor(
[[11_859, 0, 1_611, 8]] , dtype=torch.long , device=snake_case__ ) # Legal the president is
_lowercase =[
11_859,
0,
1_611,
8,
5,
150,
26_449,
2,
19,
348,
469,
3,
2_595,
48,
20_740,
246_533,
246_533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
_lowercase =model.generate(snake_case__ , do_sample=snake_case__ )
self.assertListEqual(output_ids[0].tolist() , snake_case__ )
| 205 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__snake_case = 4
__snake_case = 3
class __snake_case ( lowerCamelCase__ ):
pass
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]:
'''simple docstring'''
for shard in shards:
for i in range(__lowerCAmelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =int(os.environ['''RANK'''] )
UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] )
UpperCAmelCase : List[Any] =ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCAmelCase )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase )
parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 )
UpperCAmelCase : Any =parser.parse_args()
UpperCAmelCase : List[str] =args.streaming
UpperCAmelCase : Tuple =args.num_workers
UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]}
UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase )
if not streaming:
UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) )
UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase )
UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase )
UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : str =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : List[Any] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 348 | 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] = []
for _ in range(__lowerCAmelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=10 ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = []
for step in range(__lowerCAmelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """schedule.bin""" )
torch.save(scheduler.state_dict() , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = torch.load(__lowerCAmelCase )
scheduler.load_state_dict(__lowerCAmelCase )
return lrs
@require_torch
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self , _a , _a , _a ) -> str:
"""simple docstring"""
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
for a, b in zip(snake_case__ , snake_case__ ):
self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ )
SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([0.4, 0.2, -0.5] )
SCREAMING_SNAKE_CASE__ : str = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
SCREAMING_SNAKE_CASE__ : str = criterion(snake_case__ , snake_case__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=snake_case__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] )
SCREAMING_SNAKE_CASE__ : Dict = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=snake_case__ , weight_decay=0.0 , relative_step=snake_case__ , scale_parameter=snake_case__ , warmup_init=snake_case__ , )
for _ in range(1_000 ):
SCREAMING_SNAKE_CASE__ : Dict = criterion(snake_case__ , snake_case__ )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class __a (unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :int = nn.Linear(50 , 50) if is_torch_available() else None
_SCREAMING_SNAKE_CASE :int = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None
_SCREAMING_SNAKE_CASE :Any = 10
def _a ( self , _a , _a , _a , _a=None ) -> List[Any]:
"""simple docstring"""
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) )
for a, b in zip(snake_case__ , snake_case__ ):
self.assertAlmostEqual(snake_case__ , snake_case__ , delta=snake_case__ , msg=snake_case__ )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{'''num_warmup_steps''': 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, '''num_cycles''': 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{'''num_warmup_steps''': 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
SCREAMING_SNAKE_CASE__ : List[Any] = data
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_func(self.optimizer , **snake_case__ )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = unwrap_schedule(snake_case__ , self.num_steps )
self.assertListAlmostEqual(
snake_case__ , snake_case__ , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_func(self.optimizer , **snake_case__ )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(snake_case__ ) # wrap to test picklability of the schedule
SCREAMING_SNAKE_CASE__ : Optional[Any] = unwrap_and_save_reload_schedule(snake_case__ , self.num_steps )
self.assertListEqual(snake_case__ , snake_case__ , msg=f'''failed for {scheduler_func} in save and reload''' )
class __a :
'''simple docstring'''
def __init__( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = fn
def __call__( self , *_a , **_a ) -> Optional[Any]:
"""simple docstring"""
return self.fn(*snake_case__ , **snake_case__ )
@classmethod
def _a ( self , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = list(map(self , scheduler.lr_lambdas ) )
| 132 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''OPTForCausalLM''',
'''OPTModel''',
'''OPTPreTrainedModel''',
'''OPTForSequenceClassification''',
'''OPTForQuestionAnswering''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxOPTForCausalLM''',
'''FlaxOPTModel''',
'''FlaxOPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : List[Any]="pt" ):
"""simple docstring"""
__UpperCAmelCase : Any = {'''add_prefix_space''': True} if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and not line.startswith(""" """ ) else {}
__UpperCAmelCase : Optional[int] = padding_side
return tokenizer(
[line] , max_length=__lowerCAmelCase , padding="""max_length""" if pad_to_max_length else None , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , )
def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any=None , ):
"""simple docstring"""
__UpperCAmelCase : Tuple = input_ids.ne(__lowerCAmelCase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class _A ( lowerCamelCase__ ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ) -> int:
'''simple docstring'''
super().__init__()
__UpperCAmelCase : Dict = Path(snake_case__ ).joinpath(type_path + """.source""" )
__UpperCAmelCase : int = Path(snake_case__ ).joinpath(type_path + """.target""" )
__UpperCAmelCase : Dict = self.get_char_lens(self.src_file )
__UpperCAmelCase : Any = max_source_length
__UpperCAmelCase : Dict = max_target_length
assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}'
__UpperCAmelCase : List[str] = tokenizer
__UpperCAmelCase : List[Any] = prefix
if n_obs is not None:
__UpperCAmelCase : Union[str, Any] = self.src_lens[:n_obs]
__UpperCAmelCase : List[Any] = src_lang
__UpperCAmelCase : Union[str, Any] = tgt_lang
def __len__( self ) -> Dict:
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]:
'''simple docstring'''
__UpperCAmelCase : int = index + 1 # linecache starts at 1
__UpperCAmelCase : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("""\n""" )
__UpperCAmelCase : List[Any] = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("""\n""" )
assert source_line, f'empty source line for index {index}'
assert tgt_line, f'empty tgt line for index {index}'
# Need to add eos token manually for T5
if isinstance(self.tokenizer , snake_case__ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCAmelCase : Dict = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
)
__UpperCAmelCase : str = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
__UpperCAmelCase : Union[str, Any] = encode_line(snake_case__ , snake_case__ , self.max_source_length , """right""" )
__UpperCAmelCase : Any = encode_line(snake_case__ , snake_case__ , self.max_target_length , """right""" )
__UpperCAmelCase : Union[str, Any] = source_inputs['''input_ids'''].squeeze()
__UpperCAmelCase : str = target_inputs['''input_ids'''].squeeze()
__UpperCAmelCase : Dict = source_inputs['''attention_mask'''].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def __A ( __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()]
def __A ( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]:
'''simple docstring'''
__UpperCAmelCase : int = torch.stack([x["""input_ids"""] for x in batch] )
__UpperCAmelCase : Tuple = torch.stack([x["""attention_mask"""] for x in batch] )
__UpperCAmelCase : List[Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
__UpperCAmelCase : Union[str, Any] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
__UpperCAmelCase : Union[str, Any] = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
__UpperCAmelCase : Tuple = trim_batch(snake_case__ , snake_case__ )
__UpperCAmelCase : Any = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ )
__UpperCAmelCase : Optional[Any] = {
'''input_ids''': source_ids,
'''attention_mask''': source_mask,
'''decoder_input_ids''': y,
}
return batch
_UpperCamelCase = getLogger(__name__)
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(__lowerCAmelCase ) )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
__UpperCAmelCase : str = get_git_info()
save_json(__lowerCAmelCase , os.path.join(__lowerCAmelCase , """git_log.json""" ) )
def lowercase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=4 , **lowerCAmelCase__ : Dict ):
"""simple docstring"""
with open(__lowerCAmelCase , """w""" ) as f:
json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=__lowerCAmelCase , **__lowerCAmelCase )
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
with open(__lowerCAmelCase ) as f:
return json.load(__lowerCAmelCase )
def lowercase_ ( ):
"""simple docstring"""
__UpperCAmelCase : List[str] = git.Repo(search_parent_directories=__lowerCAmelCase )
__UpperCAmelCase : Union[str, Any] = {
'''repo_id''': str(__lowerCAmelCase ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
'''hostname''': str(socket.gethostname() ),
}
return repo_infos
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str ):
"""simple docstring"""
return list(map(__lowerCAmelCase , __lowerCAmelCase ) )
def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ):
"""simple docstring"""
with open(__lowerCAmelCase , """wb""" ) as f:
return pickle.dump(__lowerCAmelCase , __lowerCAmelCase )
def lowercase_ ( lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
def remove_articles(lowerCAmelCase__ : str ):
return re.sub(r"""\b(a|an|the)\b""" , """ """ , __lowerCAmelCase )
def white_space_fix(lowerCAmelCase__ : str ):
return " ".join(text.split() )
def remove_punc(lowerCAmelCase__ : List[Any] ):
__UpperCAmelCase : List[str] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowerCAmelCase__ : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) )
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ):
"""simple docstring"""
__UpperCAmelCase : int = normalize_answer(__lowerCAmelCase ).split()
__UpperCAmelCase : Union[str, Any] = normalize_answer(__lowerCAmelCase ).split()
__UpperCAmelCase : Tuple = Counter(__lowerCAmelCase ) & Counter(__lowerCAmelCase )
__UpperCAmelCase : Union[str, Any] = sum(common.values() )
if num_same == 0:
return 0
__UpperCAmelCase : int = 1.0 * num_same / len(__lowerCAmelCase )
__UpperCAmelCase : Dict = 1.0 * num_same / len(__lowerCAmelCase )
__UpperCAmelCase : List[str] = (2 * precision * recall) / (precision + recall)
return fa
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
return normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase )
def lowercase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ):
"""simple docstring"""
assert len(__lowerCAmelCase ) == len(__lowerCAmelCase )
__UpperCAmelCase : Union[str, Any] = 0
for hypo, pred in zip(__lowerCAmelCase , __lowerCAmelCase ):
em += exact_match_score(__lowerCAmelCase , __lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
em /= len(__lowerCAmelCase )
return {"em": em}
def lowercase_ ( lowerCAmelCase__ : Dict ):
"""simple docstring"""
return model_prefix.startswith("""rag""" )
def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCAmelCase : List[str] = '''dropout_rate'''
for p in extra_params:
if getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
if not hasattr(__lowerCAmelCase , __lowerCAmelCase ) and not hasattr(__lowerCAmelCase , equivalent_param[p] ):
logger.info("""config doesn\'t have a `{}` attribute""".format(__lowerCAmelCase ) )
delattr(__lowerCAmelCase , __lowerCAmelCase )
continue
__UpperCAmelCase : Union[str, Any] = p if hasattr(__lowerCAmelCase , __lowerCAmelCase ) else equivalent_param[p]
setattr(__lowerCAmelCase , __lowerCAmelCase , getattr(__lowerCAmelCase , __lowerCAmelCase ) )
delattr(__lowerCAmelCase , __lowerCAmelCase )
return hparams, config
| 254 | import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __snake_case :
def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str:
'''simple docstring'''
UpperCAmelCase : str =parent
UpperCAmelCase : Tuple =batch_size
UpperCAmelCase : Optional[int] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Tuple =use_input_mask
UpperCAmelCase : List[Any] =use_token_type_ids
UpperCAmelCase : Optional[Any] =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : List[Any] =hidden_size
UpperCAmelCase : Optional[int] =rotary_dim
UpperCAmelCase : Union[str, Any] =num_hidden_layers
UpperCAmelCase : List[Any] =num_attention_heads
UpperCAmelCase : Dict =intermediate_size
UpperCAmelCase : Union[str, Any] =hidden_act
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : Dict =attention_probs_dropout_prob
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : List[Any] =vocab_size - 1
UpperCAmelCase : Optional[Any] =vocab_size - 1
UpperCAmelCase : List[Any] =vocab_size - 1
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : List[Any] =None
if self.use_input_mask:
UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase : Dict =GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs
UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =20
UpperCAmelCase : Any =model_class_name(snake_case__ )
UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , )
UpperCAmelCase : List[Any] =model(snake_case__ )
UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Dict =20
UpperCAmelCase : Dict =model_class_name(snake_case__ )
UpperCAmelCase : Tuple =jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ )
UpperCAmelCase : int =jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
UpperCAmelCase : Optional[Any] =model(
input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
UpperCAmelCase : str =model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , )
UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ )
UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
@tooslow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ )
UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : str =False
UpperCAmelCase : Union[str, Any] =model.config.eos_token_id
UpperCAmelCase : List[Any] =jax.jit(model.generate )
UpperCAmelCase : Dict =jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ )
UpperCAmelCase : Tuple =[
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(snake_case__ , snake_case__ )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ )
UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : int =0
UpperCAmelCase : Optional[int] =1
UpperCAmelCase : Optional[int] =0
UpperCAmelCase : Union[str, Any] =1
UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ )
UpperCAmelCase : Union[str, Any] =fx_state
with torch.no_grad():
UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(snake_case__ )
UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ )
UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase : int =getattr(snake_case__ , snake_case__ )
UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval()
UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa )
UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params )
UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape
UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : str =0
UpperCAmelCase : Any =1
UpperCAmelCase : List[Any] =0
UpperCAmelCase : Tuple =1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple()
UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple()
self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(snake_case__ )
UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ )
with torch.no_grad():
UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple()
self.assertEqual(
len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(snake_case__ , snake_case__ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
UpperCAmelCase : Tuple =model(np.ones((1, 1) ) )
self.assertIsNotNone(snake_case__ )
| 348 | 0 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = tempfile.mkdtemp()
# fmt: off
UpperCAmelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
UpperCAmelCase__ = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
UpperCAmelCase__ = {'''unk_token''': '''<unk>'''}
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(snake_case__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(snake_case__ ) )
UpperCAmelCase__ = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073],
'''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711],
}
UpperCAmelCase__ = os.path.join(self.tmpdirname , snake_case__ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : str ):
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : str , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
UpperCAmelCase__ = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ )
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , snake_case__ )
self.assertIsInstance(processor_fast.tokenizer , snake_case__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , snake_case__ )
self.assertIsInstance(processor_fast.image_processor , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
UpperCAmelCase__ = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 )
UpperCAmelCase__ = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = image_processor(snake_case__ , return_tensors="""np""" )
UpperCAmelCase__ = processor(images=snake_case__ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ = '''lower newer'''
UpperCAmelCase__ = processor(text=snake_case__ )
UpperCAmelCase__ = tokenizer(snake_case__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ = '''lower newer'''
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase__ = processor.batch_decode(snake_case__ )
UpperCAmelCase__ = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
UpperCAmelCase__ = '''lower newer'''
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 346 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 348 | 0 |
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def UpperCamelCase ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
__magic_name__ : Any = '''__test_patch_submodule_mock__'''
with patch_submodule(_test_patching, """os.path.join""", __lowerCAmelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os, _PatchedModuleObj )
assert isinstance(_test_patching.os.path, _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path, _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os, _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path, _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def UpperCamelCase ( ):
"""simple docstring"""
assert _test_patching.open is open
__magic_name__ : Optional[Any] = '''__test_patch_submodule_builtin_mock__'''
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching, """open""", __lowerCAmelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = '''__test_patch_submodule_missing_mock__'''
with patch_submodule(_test_patching, """pandas.read_csv""", __lowerCAmelCase ):
pass
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Tuple = '''__test_patch_submodule_missing_builtin_mock__'''
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching, """len""", __lowerCAmelCase ) is None
with patch_submodule(_test_patching, """len""", __lowerCAmelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[int] = '''__test_patch_submodule_start_and_stop_mock__'''
__magic_name__ : str = patch_submodule(_test_patching, """open""", __lowerCAmelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def UpperCamelCase ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
__magic_name__ : Tuple = '''__test_patch_submodule_successive_join__'''
__magic_name__ : str = '''__test_patch_submodule_successive_dirname__'''
__magic_name__ : List[str] = '''__test_patch_submodule_successive_rename__'''
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching, """os.path.join""", __lowerCAmelCase ):
with patch_submodule(_test_patching, """os.rename""", __lowerCAmelCase ):
with patch_submodule(_test_patching, """os.path.dirname""", __lowerCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching, """os.rename""", __lowerCAmelCase ):
with patch_submodule(_test_patching, """os.path.join""", __lowerCAmelCase ):
with patch_submodule(_test_patching, """os.path.dirname""", __lowerCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : int = '''__test_patch_submodule_doesnt_exist_mock__'''
with patch_submodule(_test_patching, """__module_that_doesn_exist__.__attribute_that_doesn_exist__""", __lowerCAmelCase ):
pass
with patch_submodule(_test_patching, """os.__attribute_that_doesn_exist__""", __lowerCAmelCase ):
pass
| 342 | import os
from typing import Dict, List, Tuple, TypeVar, Union
__snake_case = TypeVar('''T''')
__snake_case = Union[List[T], Tuple[T, ...]]
__snake_case = Union[T, List[T], Dict[str, T]]
__snake_case = Union[str, bytes, os.PathLike]
| 348 | 0 |
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.6_02_17_66_34e-19,
"britishthermalunit_it": 1_055.05_585,
"footpound": 1.35_58_18,
}
def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
lowerCAmelCase = (
F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'
F'Valid values are: {", ".join(__lowerCAmelCase )}'
)
raise ValueError(__lowerCAmelCase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {
'''google/bigbird-roberta-base''': 40_96,
'''google/bigbird-roberta-large''': 40_96,
'''google/bigbird-base-trivia-itc''': 40_96,
}
__snake_case = '''▁'''
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Dict = VOCAB_FILES_NAMES
__lowerCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : List[str] = BigBirdTokenizer
__lowerCamelCase : Any = ["""input_ids""", """attention_mask"""]
__lowerCamelCase : List[int] = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
UpperCAmelCase : Optional[int] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
UpperCAmelCase : List[str] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
UpperCAmelCase : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
UpperCAmelCase : int =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
UpperCAmelCase : str =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase : List[Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
UpperCAmelCase : Tuple =vocab_file
UpperCAmelCase : Optional[int] =False if not self.vocab_file else True
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : int =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> List[int]:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =[self.sep_token_id]
UpperCAmelCase : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(snake_case__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase : Optional[int] =os.path.join(
snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 348 | 0 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
A : str = logging.get_logger(__name__)
A : Union[str, Any] = ['''model.decoder.embed_positions.weights''']
def __lowerCamelCase ( __a :Union[str, Any] ) -> Dict:
"""simple docstring"""
if "emb" in name:
A__ = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
A__ = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
A__ = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
A__ = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
A__ = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
A__ = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
A__ = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
A__ = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
A__ = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
A__ = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
A__ = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def __lowerCamelCase ( __a :Dict , __a :str ) -> Tuple[Dict, Dict]:
"""simple docstring"""
A__ = list(state_dict.keys() )
A__ = {}
for key in keys:
A__ = state_dict.pop(__lowerCAmelCase )
A__ = rename_keys(__lowerCAmelCase )
if "in_proj_weight" in key:
# split fused qkv proj
A__ = val[:hidden_size, :]
A__ = val[hidden_size : 2 * hidden_size, :]
A__ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
A__ = val
else:
A__ = val
return state_dict, enc_dec_proj_state_dict
def __lowerCamelCase ( __a :Union[str, Any] ) -> MusicgenDecoderConfig:
"""simple docstring"""
if checkpoint == "small":
# default config values
A__ = 1_0_2_4
A__ = 2_4
A__ = 1_6
elif checkpoint == "medium":
A__ = 1_5_3_6
A__ = 4_8
A__ = 2_4
elif checkpoint == "large":
A__ = 2_0_4_8
A__ = 4_8
A__ = 3_2
else:
raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
A__ = MusicgenDecoderConfig(
hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , )
return config
@torch.no_grad()
def __lowerCamelCase ( __a :Optional[Any] , __a :str=None , __a :Optional[int]=None , __a :Optional[Any]="cpu" ) -> Any:
"""simple docstring"""
A__ = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase )
A__ = decoder_config_from_checkpoint(__lowerCAmelCase )
A__ = fairseq_model.lm.state_dict()
A__ = rename_state_dict(
__lowerCAmelCase , hidden_size=decoder_config.hidden_size )
A__ = TaEncoderModel.from_pretrained("""t5-base""" )
A__ = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
A__ = MusicgenForCausalLM(__lowerCAmelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
A__ = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' )
if len(__lowerCAmelCase ) > 0:
raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
A__ = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase )
# check we can do a forward pass
A__ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
A__ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
A__ = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits
if logits.shape != (8, 1, 2_0_4_8):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
A__ = AutoTokenizer.from_pretrained("""t5-base""" )
A__ = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
A__ = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase )
# set the appropriate bos/pad token ids
A__ = 2_0_4_8
A__ = 2_0_4_8
# set other default generation config params
A__ = int(3_0 * audio_encoder.config.frame_rate )
A__ = True
A__ = 3.0
if pytorch_dump_folder is not None:
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(__lowerCAmelCase )
processor.save_pretrained(__lowerCAmelCase )
if repo_id:
logger.info(F'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(__lowerCAmelCase )
processor.push_to_hub(__lowerCAmelCase )
if __name__ == "__main__":
A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
A : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 274 | from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[Any]:
'''simple docstring'''
def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool:
UpperCAmelCase : List[Any] =sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
UpperCAmelCase : List[Any] =mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(__lowerCAmelCase ) )
# The ratio of the area for circle to square is pi/4.
UpperCAmelCase : Dict =proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , )-> float:
'''simple docstring'''
return mean(
function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 )-> None:
'''simple docstring'''
def identity_function(__lowerCAmelCase ) -> float:
return x
UpperCAmelCase : List[Any] =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
UpperCAmelCase : Dict =(max_value * max_value - min_value * min_value) / 2
print('''******************''' )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print('''******************''' )
def lowerCAmelCase_ ( __lowerCAmelCase )-> None:
'''simple docstring'''
def function_to_integrate(__lowerCAmelCase ) -> float:
return sqrt(4.0 - x * x )
UpperCAmelCase : Dict =area_under_curve_estimator(
__lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 )
print('''******************''' )
print('''Estimating pi using area_under_curve_estimator''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print('''******************''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class A_ ( lowerCamelCase__ ):
'''simple docstring'''
@staticmethod
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( snake_case ):
raise NotImplementedError()
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self ):
raise NotImplementedError()
| 195 | from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class __snake_case :
def __init__( self , snake_case__ , snake_case__=12 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=0 , snake_case__=None , ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : List[Any] =seq_length
UpperCAmelCase : Optional[int] =is_training
UpperCAmelCase : Union[str, Any] =use_input_mask
UpperCAmelCase : Tuple =use_labels
UpperCAmelCase : Union[str, Any] =vocab_size
UpperCAmelCase : Tuple =hidden_size
UpperCAmelCase : Dict =projection_dim
UpperCAmelCase : Optional[int] =num_hidden_layers
UpperCAmelCase : Dict =num_attention_heads
UpperCAmelCase : int =intermediate_size
UpperCAmelCase : Any =dropout
UpperCAmelCase : Union[str, Any] =attention_dropout
UpperCAmelCase : Union[str, Any] =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : str =scope
UpperCAmelCase : str =bos_token_id
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : int =None
if self.use_input_mask:
UpperCAmelCase : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
UpperCAmelCase : Optional[int] =input_mask.numpy()
UpperCAmelCase , UpperCAmelCase : List[Any] =input_mask.shape
UpperCAmelCase : Optional[Any] =np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(snake_case__ ):
UpperCAmelCase : List[Any] =1
UpperCAmelCase : Tuple =0
UpperCAmelCase : List[Any] =self.get_config()
return config, input_ids, tf.convert_to_tensor(snake_case__ )
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Dict:
'''simple docstring'''
UpperCAmelCase : Tuple =TFBlipTextModel(config=snake_case__ )
UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ , training=snake_case__ )
UpperCAmelCase : str =model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] =config_and_inputs
UpperCAmelCase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Optional[int] = (TFBlipTextModel,) if is_tf_available() else ()
__lowerCamelCase : Dict = False
__lowerCamelCase : Optional[Any] = False
__lowerCamelCase : Dict = False
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : str =BlipTextModelTester(self )
UpperCAmelCase : Optional[int] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip(reason='''Blip does not use inputs_embeds''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
pass
@slow
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] =TFBlipTextModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def UpperCAmelCase__ ( self , snake_case__=True ) -> Any:
'''simple docstring'''
super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case__ )
| 348 | 0 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A ={
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
__A =logging.get_logger(__name__)
class _snake_case ( lowerCamelCase__ ):
lowerCAmelCase :List[Any] = """mask2former"""
lowerCAmelCase :List[Any] = ["""swin"""]
lowerCAmelCase :Union[str, Any] = {"""hidden_size""": """hidden_dim"""}
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = 256 , _lowerCamelCase = 256 , _lowerCamelCase = 256 , _lowerCamelCase = 1024 , _lowerCamelCase = "relu" , _lowerCamelCase = 6 , _lowerCamelCase = 10 , _lowerCamelCase = 8 , _lowerCamelCase = 0.0 , _lowerCamelCase = 2048 , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = 4 , _lowerCamelCase = 255 , _lowerCamelCase = 100 , _lowerCamelCase = 0.1 , _lowerCamelCase = 2.0 , _lowerCamelCase = 5.0 , _lowerCamelCase = 5.0 , _lowerCamelCase = 1_2544 , _lowerCamelCase = 3.0 , _lowerCamelCase = 0.75 , _lowerCamelCase = 0.02 , _lowerCamelCase = 1.0 , _lowerCamelCase = True , _lowerCamelCase = [4, 8, 16, 32] , _lowerCamelCase = None , **_lowerCamelCase , ):
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""")
UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING['''swin'''](
image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=snake_case__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(snake_case__ , snake_case__):
UpperCAmelCase__ : Union[str, Any] = backbone_config.pop("""model_type""")
UpperCAmelCase__ : str = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ : Any = config_class.from_dict(snake_case__)
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
f'''Supported model types: {','.join(self.backbones_supported)}''')
UpperCAmelCase__ : Tuple = backbone_config
UpperCAmelCase__ : Dict = feature_size
UpperCAmelCase__ : Dict = mask_feature_size
UpperCAmelCase__ : Dict = hidden_dim
UpperCAmelCase__ : Optional[int] = encoder_feedforward_dim
UpperCAmelCase__ : str = activation_function
UpperCAmelCase__ : int = encoder_layers
UpperCAmelCase__ : Tuple = decoder_layers
UpperCAmelCase__ : Tuple = num_attention_heads
UpperCAmelCase__ : Optional[Any] = dropout
UpperCAmelCase__ : Optional[int] = dim_feedforward
UpperCAmelCase__ : Any = pre_norm
UpperCAmelCase__ : Optional[int] = enforce_input_projection
UpperCAmelCase__ : str = common_stride
UpperCAmelCase__ : Any = ignore_value
UpperCAmelCase__ : List[Any] = num_queries
UpperCAmelCase__ : List[Any] = no_object_weight
UpperCAmelCase__ : List[Any] = class_weight
UpperCAmelCase__ : int = mask_weight
UpperCAmelCase__ : int = dice_weight
UpperCAmelCase__ : Tuple = train_num_points
UpperCAmelCase__ : Any = oversample_ratio
UpperCAmelCase__ : Any = importance_sample_ratio
UpperCAmelCase__ : int = init_std
UpperCAmelCase__ : Union[str, Any] = init_xavier_std
UpperCAmelCase__ : Any = use_auxiliary_loss
UpperCAmelCase__ : Optional[Any] = feature_strides
UpperCAmelCase__ : Optional[int] = output_auxiliary_logits
UpperCAmelCase__ : Any = decoder_layers
super().__init__(**snake_case__)
@classmethod
def snake_case__ ( cls , _lowerCamelCase , **_lowerCamelCase):
return cls(
backbone_config=snake_case__ , **snake_case__ , )
def snake_case__ ( self):
UpperCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__)
UpperCAmelCase__ : Any = self.backbone_config.to_dict()
UpperCAmelCase__ : int = self.__class__.model_type
return output | 163 | import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase )
UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase )
return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : List[str] = CLIPConfig
__lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""]
def __init__( self , snake_case__ ) -> Dict:
'''simple docstring'''
super().__init__(snake_case__ )
UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config )
UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ )
UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ )
UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ )
UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ )
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy()
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy()
UpperCAmelCase : Tuple =[]
UpperCAmelCase : Dict =image_embeds.shape[0]
for i in range(snake_case__ ):
UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : str =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx]
UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
UpperCAmelCase : int =0.01
for concept_idx in range(len(cos_dist[0] ) ):
UpperCAmelCase : Any =cos_dist[i][concept_idx]
UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item()
UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(snake_case__ )
result.append(snake_case__ )
UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output
UpperCAmelCase : List[str] =self.visual_projection(snake_case__ )
UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds )
UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
UpperCAmelCase : Optional[Any] =0.0
UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 )
UpperCAmelCase : List[Any] =special_care * 0.01
UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 348 | 0 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
snake_case_ = GPTaTokenizer
snake_case_ = GPTaTokenizerFast
snake_case_ = True
snake_case_ = {"""add_prefix_space""": True}
snake_case_ = False
def UpperCamelCase_ ( self : str ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__A = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
'''<|endoftext|>''',
]
__A = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) )
__A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__A = {'''unk_token''': '''<unk>'''}
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] )
__A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case__ ) + "\n" )
with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp:
fp.write("\n".join(snake_case__ ) )
def UpperCamelCase_ ( self : Optional[Any] ,**A : List[str] ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ )
def UpperCamelCase_ ( self : int ,**A : List[Any] ):
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ )
def UpperCamelCase_ ( self : Dict ,A : Optional[Any] ):
__A = '''lower newer'''
__A = '''lower newer'''
return input_text, output_text
def UpperCamelCase_ ( self : Optional[int] ):
__A = GPTaTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
__A = '''lower newer'''
__A = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__A = tokenizer.tokenize(snake_case__ ,add_prefix_space=snake_case__ )
self.assertListEqual(snake_case__ ,snake_case__ )
__A = tokens + [tokenizer.unk_token]
__A = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ )
def UpperCamelCase_ ( self : List[str] ):
if not self.test_rust_tokenizer:
return
__A = self.get_tokenizer()
__A = self.get_rust_tokenizer(add_prefix_space=snake_case__ )
__A = '''lower newer'''
# Testing tokenization
__A = tokenizer.tokenize(snake_case__ ,add_prefix_space=snake_case__ )
__A = rust_tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ ,snake_case__ )
# Testing conversion to ids without special tokens
__A = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ,add_prefix_space=snake_case__ )
__A = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ )
self.assertListEqual(snake_case__ ,snake_case__ )
# Testing conversion to ids with special tokens
__A = self.get_rust_tokenizer(add_prefix_space=snake_case__ )
__A = tokenizer.encode(snake_case__ ,add_prefix_space=snake_case__ )
__A = rust_tokenizer.encode(snake_case__ )
self.assertListEqual(snake_case__ ,snake_case__ )
# Testing the unknown token
__A = tokens + [rust_tokenizer.unk_token]
__A = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ )
def UpperCamelCase_ ( self : Optional[Any] ,*A : int ,**A : Dict ):
pass
def UpperCamelCase_ ( self : Dict ,A : List[str]=15 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__A = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ )
# Simple input
__A = '''This is a simple input'''
__A = ['''This is a simple input 1''', '''This is a simple input 2''']
__A = ('''This is a simple input''', '''This is a pair''')
__A = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(snake_case__ ,tokenizer_r.encode ,snake_case__ ,max_length=snake_case__ ,padding="max_length" )
# Simple input
self.assertRaises(snake_case__ ,tokenizer_r.encode_plus ,snake_case__ ,max_length=snake_case__ ,padding="max_length" )
# Simple input
self.assertRaises(
snake_case__ ,tokenizer_r.batch_encode_plus ,snake_case__ ,max_length=snake_case__ ,padding="max_length" ,)
# Pair input
self.assertRaises(snake_case__ ,tokenizer_r.encode ,snake_case__ ,max_length=snake_case__ ,padding="max_length" )
# Pair input
self.assertRaises(snake_case__ ,tokenizer_r.encode_plus ,snake_case__ ,max_length=snake_case__ ,padding="max_length" )
# Pair input
self.assertRaises(
snake_case__ ,tokenizer_r.batch_encode_plus ,snake_case__ ,max_length=snake_case__ ,padding="max_length" ,)
def UpperCamelCase_ ( self : Any ):
__A = GPTaTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" )
# Simple input
__A = '''This is a simple input'''
__A = ['''This is a simple input looooooooong''', '''This is a simple input''']
__A = ('''This is a simple input''', '''This is a pair''')
__A = [
('''This is a simple input loooooong''', '''This is a simple input'''),
('''This is a simple pair loooooong''', '''This is a simple pair'''),
]
__A = tokenizer.pad_token_id
__A = tokenizer(snake_case__ ,padding="max_length" ,max_length=30 ,return_tensors="np" )
__A = tokenizer(snake_case__ ,padding=snake_case__ ,truncate=snake_case__ ,return_tensors="np" )
__A = tokenizer(*snake_case__ ,padding="max_length" ,max_length=60 ,return_tensors="np" )
__A = tokenizer(snake_case__ ,padding=snake_case__ ,truncate=snake_case__ ,return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] ,30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] ,33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] ,60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] ,52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def UpperCamelCase_ ( self : Dict ):
__A = '''$$$'''
__A = GPTaTokenizer.from_pretrained(self.tmpdirname ,bos_token=snake_case__ ,add_bos_token=snake_case__ )
__A = '''This is a simple input'''
__A = ['''This is a simple input 1''', '''This is a simple input 2''']
__A = tokenizer.bos_token_id
__A = tokenizer(snake_case__ )
__A = tokenizer(snake_case__ )
self.assertEqual(out_s.input_ids[0] ,snake_case__ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__A = tokenizer.decode(out_s.input_ids )
__A = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] ,snake_case__ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def UpperCamelCase_ ( self : Optional[int] ):
pass
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = [self.get_tokenizer(do_lower_case=snake_case__ ,add_bos_token=snake_case__ )]
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__A = '''Encode this.'''
__A = '''This one too please.'''
__A = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ )
encoded_sequence += tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ )
__A = tokenizer.encode_plus(
snake_case__ ,snake_case__ ,add_special_tokens=snake_case__ ,return_special_tokens_mask=snake_case__ ,)
__A = encoded_sequence_dict['''input_ids''']
__A = encoded_sequence_dict['''special_tokens_mask''']
self.assertEqual(len(snake_case__ ) ,len(snake_case__ ) )
__A = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(snake_case__ )
]
__A = [x for x in filtered_sequence if x is not None]
self.assertEqual(snake_case__ ,snake_case__ )
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : int ):
__A = AutoTokenizer.from_pretrained("facebook/opt-350m" ,from_slow=snake_case__ )
__A = '''A photo of a cat'''
__A = tokenizer.encode(
snake_case__ ,)
self.assertEqual(snake_case__ ,[2, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained("test_opt" )
__A = AutoTokenizer.from_pretrained("./test_opt" )
__A = tokenizer.encode(
snake_case__ ,)
self.assertEqual(snake_case__ ,[2, 2_50, 13_45, 9, 10, 47_58] )
def UpperCamelCase_ ( self : Optional[Any] ):
__A = AutoTokenizer.from_pretrained("facebook/opt-350m" ,use_slow=snake_case__ )
__A = '''A photo of a cat'''
__A = tokenizer.encode(
snake_case__ ,)
# Same as above
self.assertEqual(snake_case__ ,[2, 2_50, 13_45, 9, 10, 47_58] )
@unittest.skip("This test is failing because of a bug in the fast tokenizer" )
def UpperCamelCase_ ( self : Any ):
__A = AutoTokenizer.from_pretrained("facebook/opt-350m" ,from_slow=snake_case__ )
__A = '''bos'''
__A = tokenizer.get_vocab()['''bos''']
__A = '''A photo of a cat'''
__A = tokenizer.encode(
snake_case__ ,)
# We changed the bos token
self.assertEqual(snake_case__ ,[3_19_57, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained("./tok" )
__A = AutoTokenizer.from_pretrained("./tok" )
self.assertTrue(tokenizer.is_fast )
__A = tokenizer.encode(
snake_case__ ,)
self.assertEqual(snake_case__ ,[3_19_57, 2_50, 13_45, 9, 10, 47_58] )
| 15 | import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
__snake_case = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False)
parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''')
parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''')
__snake_case = parser.parse_args()
__snake_case = '''cpu'''
__snake_case = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'''
__snake_case = '''path-to-your-trained-model'''
__snake_case = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
__snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
__snake_case = pipe.to(device)
# to channels last
__snake_case = pipe.unet.to(memory_format=torch.channels_last)
__snake_case = pipe.vae.to(memory_format=torch.channels_last)
__snake_case = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
__snake_case = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
__snake_case = torch.randn(2, 4, 64, 64)
__snake_case = torch.rand(1) * 9_99
__snake_case = torch.randn(2, 77, 7_68)
__snake_case = (sample, timestep, encoder_hidden_status)
try:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
__snake_case = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
__snake_case = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
__snake_case = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
__snake_case = 6_66
__snake_case = torch.Generator(device).manual_seed(seed)
__snake_case = {'''generator''': generator}
if args.steps is not None:
__snake_case = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
__snake_case = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('''generated.png''')
| 348 | 0 |
from __future__ import annotations
from fractions import Fraction
def a( A : int , A : int ) -> bool:
"""simple docstring"""
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def a( A : str ) -> list[str]:
"""simple docstring"""
a = []
a = 11
a = int("1" + "0" * digit_len )
for num in range(__lowerCAmelCase , __lowerCAmelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ):
solutions.append(f'''{num}/{den}''' )
den += 1
num += 1
a = 10
return solutions
def a( A : List[Any] = 2 ) -> int:
"""simple docstring"""
a = 1.0
for fraction in fraction_list(__lowerCAmelCase ):
a = Fraction(__lowerCAmelCase )
result *= frac.denominator / frac.numerator
return int(__lowerCAmelCase )
if __name__ == "__main__":
print(solution())
| 227 | __snake_case = '''Input must be a string of 8 numbers plus letter'''
__snake_case = '''TRWAGMYFPDXBNJZSQVHLCKE'''
def lowerCAmelCase_ ( __lowerCAmelCase )-> bool:
'''simple docstring'''
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
UpperCAmelCase : Optional[Any] =f'''Expected string as input, found {type(__lowerCAmelCase ).__name__}'''
raise TypeError(__lowerCAmelCase )
UpperCAmelCase : List[Any] =spanish_id.replace('''-''' , '''''' ).upper()
if len(__lowerCAmelCase ) != 9:
raise ValueError(__lowerCAmelCase )
try:
UpperCAmelCase : int =int(spanish_id_clean[0:8] )
UpperCAmelCase : Optional[int] =spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__lowerCAmelCase ) from ex
if letter.isdigit():
raise ValueError(__lowerCAmelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
lowercase_ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCAmelCase ( lowerCamelCase__ ):
_a = field(default=lowerCamelCase__ , metadata={"""help""": """Whether to use SortishSampler or not."""} )
_a = field(
default=lowerCamelCase__ , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
_a = field(
default=lowerCamelCase__ , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
_a = field(
default=lowerCamelCase__ , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
_a = field(
default=lowerCamelCase__ , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def A__ ( self ) -> List[str]:
'''simple docstring'''
_lowercase =super().to_dict()
for k, v in d.items():
if isinstance(snake_case__ , snake_case__ ):
_lowercase =v.to_dict()
return d
| 205 | def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348 | 0 |
"""simple docstring"""
import numpy as np
from PIL import Image
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray:
SCREAMING_SNAKE_CASE__ : Any = np.array(__lowerCAmelCase )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE__ : Optional[Any] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
SCREAMING_SNAKE_CASE__ : List[str] = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
SCREAMING_SNAKE_CASE__ : int = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
return updated_arr
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray:
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(__lowerCAmelCase )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
SCREAMING_SNAKE_CASE__ : List[str] = 0
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE__ : Any = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
SCREAMING_SNAKE_CASE__ : List[Any] = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
SCREAMING_SNAKE_CASE__ : int = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
SCREAMING_SNAKE_CASE__ : Any = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name="avgpooling", verbose=True)
# Loading the image
a :str = Image.open("path_to_image")
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 132 | from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
# TODO Update this
__snake_case = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Tuple = """esm"""
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1026 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__="absolute" , snake_case__=True , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , mask_token_id=snake_case__ , **snake_case__ )
UpperCAmelCase : List[str] =vocab_size
UpperCAmelCase : str =hidden_size
UpperCAmelCase : List[Any] =num_hidden_layers
UpperCAmelCase : Optional[Any] =num_attention_heads
UpperCAmelCase : str =intermediate_size
UpperCAmelCase : Any =hidden_dropout_prob
UpperCAmelCase : int =attention_probs_dropout_prob
UpperCAmelCase : Dict =max_position_embeddings
UpperCAmelCase : List[str] =initializer_range
UpperCAmelCase : Union[str, Any] =layer_norm_eps
UpperCAmelCase : Dict =position_embedding_type
UpperCAmelCase : Optional[Any] =use_cache
UpperCAmelCase : int =emb_layer_norm_before
UpperCAmelCase : List[str] =token_dropout
UpperCAmelCase : Optional[Any] =is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('''No esmfold_config supplied for folding model, using default values.''' )
UpperCAmelCase : Optional[Any] =EsmFoldConfig()
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =EsmFoldConfig(**snake_case__ )
UpperCAmelCase : Tuple =esmfold_config
if vocab_list is None:
logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' )
UpperCAmelCase : Any =get_default_vocab_list()
else:
UpperCAmelCase : Tuple =vocab_list
else:
UpperCAmelCase : Optional[int] =None
UpperCAmelCase : Union[str, Any] =None
if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , snake_case__ ):
raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =super().to_dict()
if isinstance(self.esmfold_config , snake_case__ ):
UpperCAmelCase : str =self.esmfold_config.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : str = None
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : bool = False
__lowerCamelCase : float = 0
__lowerCamelCase : bool = True
__lowerCamelCase : bool = False
__lowerCamelCase : int = 128
__lowerCamelCase : "TrunkConfig" = None
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
if self.trunk is None:
UpperCAmelCase : str =TrunkConfig()
elif isinstance(self.trunk , snake_case__ ):
UpperCAmelCase : Optional[int] =TrunkConfig(**self.trunk )
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =asdict(self )
UpperCAmelCase : Any =self.trunk.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 48
__lowerCamelCase : int = 1024
__lowerCamelCase : int = 128
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : int = 32
__lowerCamelCase : float = 0
__lowerCamelCase : float = 0
__lowerCamelCase : bool = False
__lowerCamelCase : int = 4
__lowerCamelCase : Optional[int] = 128
__lowerCamelCase : "StructureModuleConfig" = None
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
if self.structure_module is None:
UpperCAmelCase : Any =StructureModuleConfig()
elif isinstance(self.structure_module , snake_case__ ):
UpperCAmelCase : str =StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'''
f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'''
f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
UpperCAmelCase : Optional[int] =self.sequence_state_dim // self.sequence_head_width
UpperCAmelCase : Any =self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'''
f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'''
f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =asdict(self )
UpperCAmelCase : Tuple =self.structure_module.to_dict()
return output
@dataclass
class __snake_case :
__lowerCamelCase : int = 384
__lowerCamelCase : int = 128
__lowerCamelCase : int = 16
__lowerCamelCase : int = 128
__lowerCamelCase : int = 12
__lowerCamelCase : int = 4
__lowerCamelCase : int = 8
__lowerCamelCase : float = 0.1
__lowerCamelCase : int = 8
__lowerCamelCase : int = 1
__lowerCamelCase : int = 2
__lowerCamelCase : int = 7
__lowerCamelCase : int = 10
__lowerCamelCase : float = 1E-8
__lowerCamelCase : float = 1E5
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return asdict(self )
def lowerCAmelCase_ ( )-> Tuple:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 348 | 0 |
'''simple docstring'''
def lowercase_ ( lowerCAmelCase__ : List[str] ):
"""simple docstring"""
__UpperCAmelCase : int = abs(__lowerCAmelCase )
__UpperCAmelCase : Dict = 0
while n > 0:
res += n % 10
n //= 10
return res
def lowercase_ ( lowerCAmelCase__ : Optional[Any] ):
"""simple docstring"""
__UpperCAmelCase : Any = abs(__lowerCAmelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def lowercase_ ( lowerCAmelCase__ : List[Any] ):
"""simple docstring"""
return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) )
def lowercase_ ( ):
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ) -> None:
__UpperCAmelCase : Optional[Any] = f'{func.__name__}({value})'
__UpperCAmelCase : List[str] = timeit(f'__main__.{call}' , setup="""import __main__""" )
print(f'{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds' )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 254 | import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = (KDPMaDiscreteScheduler,)
__lowerCamelCase : List[str] = 10
def UpperCAmelCase__ ( self , **snake_case__ ) -> str:
'''simple docstring'''
UpperCAmelCase : int ={
'''num_train_timesteps''': 1100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**snake_case__ )
return config
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=snake_case__ )
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case__ )
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
UpperCAmelCase : Optional[Any] =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config(prediction_type='''v_prediction''' )
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : str =self.dummy_model()
UpperCAmelCase : Optional[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : Union[str, Any] =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : str =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Any =model(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : int =output.prev_sample
UpperCAmelCase : Dict =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Optional[Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2
assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : Any =self.scheduler_classes[0]
UpperCAmelCase : Optional[int] =self.get_scheduler_config()
UpperCAmelCase : Optional[Any] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase : Optional[int] =self.dummy_model()
UpperCAmelCase : Union[str, Any] =self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase : str =sample.to(snake_case__ )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase : Dict =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : Union[str, Any] =model(snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =output.prev_sample
UpperCAmelCase : Any =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Union[str, Any] =torch.mean(torch.abs(snake_case__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def UpperCAmelCase__ ( self ) -> str:
'''simple docstring'''
if torch_device == "mps":
return
UpperCAmelCase : List[Any] =self.scheduler_classes[0]
UpperCAmelCase : Dict =self.get_scheduler_config()
UpperCAmelCase : List[str] =scheduler_class(**snake_case__ )
scheduler.set_timesteps(self.num_inference_steps , device=snake_case__ )
UpperCAmelCase : int =self.dummy_model()
UpperCAmelCase : Tuple =self.dummy_sample_deter.to(snake_case__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase : Optional[Any] =scheduler.scale_model_input(snake_case__ , snake_case__ )
UpperCAmelCase : int =model(snake_case__ , snake_case__ )
UpperCAmelCase : str =scheduler.step(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : List[str] =output.prev_sample
UpperCAmelCase : List[str] =torch.sum(torch.abs(snake_case__ ) )
UpperCAmelCase : Dict =torch.mean(torch.abs(snake_case__ ) )
if str(snake_case__ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 348 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
UpperCAmelCase_ = False
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
return 12
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return 12
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return 32
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(snake_case__ )
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = 12
UpperCAmelCase__ = 12
UpperCAmelCase__ = {
'''attention_bias''': True,
'''cross_attention_dim''': 32,
'''attention_head_dim''': height * width,
'''num_attention_heads''': 1,
'''num_vector_embeds''': self.num_embed,
'''num_embeds_ada_norm''': self.num_embeds_ada_norm,
'''norm_num_groups''': 32,
'''sample_size''': width,
'''activation_fn''': '''geglu-approximate''',
}
UpperCAmelCase__ = TransformeraDModel(**snake_case__ )
return model
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = '''cpu'''
UpperCAmelCase__ = self.dummy_vqvae
UpperCAmelCase__ = self.dummy_text_encoder
UpperCAmelCase__ = self.dummy_tokenizer
UpperCAmelCase__ = self.dummy_transformer
UpperCAmelCase__ = VQDiffusionScheduler(self.num_embed )
UpperCAmelCase__ = LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case__ )
UpperCAmelCase__ = VQDiffusionPipeline(
vqvae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , transformer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
UpperCAmelCase__ = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ = '''teddy bear playing in the pool'''
UpperCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 )
UpperCAmelCase__ = pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 )
UpperCAmelCase__ = pipe(
[prompt] , generator=snake_case__ , output_type="""np""" , return_dict=snake_case__ , num_inference_steps=2 )[0]
UpperCAmelCase__ = image[0, -3:, -3:, -1]
UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCAmelCase__ = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = '''cpu'''
UpperCAmelCase__ = self.dummy_vqvae
UpperCAmelCase__ = self.dummy_text_encoder
UpperCAmelCase__ = self.dummy_tokenizer
UpperCAmelCase__ = self.dummy_transformer
UpperCAmelCase__ = VQDiffusionScheduler(self.num_embed )
UpperCAmelCase__ = LearnedClassifierFreeSamplingEmbeddings(
learnable=snake_case__ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
UpperCAmelCase__ = VQDiffusionPipeline(
vqvae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , transformer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
UpperCAmelCase__ = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase__ = '''teddy bear playing in the pool'''
UpperCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 )
UpperCAmelCase__ = pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="""np""" )
UpperCAmelCase__ = output.images
UpperCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 )
UpperCAmelCase__ = pipe(
[prompt] , generator=snake_case__ , output_type="""np""" , return_dict=snake_case__ , num_inference_steps=2 )[0]
UpperCAmelCase__ = image[0, -3:, -3:, -1]
UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
UpperCAmelCase__ = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" )
UpperCAmelCase__ = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" )
UpperCAmelCase__ = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
UpperCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(0 )
UpperCAmelCase__ = pipeline(
"""teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=snake_case__ , output_type="""np""" , )
UpperCAmelCase__ = output.images[0]
assert image.shape == (2_56, 2_56, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 346 | import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class __snake_case ( unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' )
UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids
UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id )
UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits
UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean()
UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item())
UpperCAmelCase : List[str] =-84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 348 | 0 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__: Optional[Any] = logging.get_logger(__name__)
__magic_name__: Optional[int] = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class snake_case__ ( lowerCamelCase__ ):
lowercase__ : Any = """mvp"""
lowercase__ : Any = ["""past_key_values"""]
lowercase__ : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__( self , lowerCAmelCase__=5_02_67 , lowerCAmelCase__=10_24 , lowerCAmelCase__=12 , lowerCAmelCase__=40_96 , lowerCAmelCase__=16 , lowerCAmelCase__=12 , lowerCAmelCase__=40_96 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10_24 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=1_00 , lowerCAmelCase__=8_00 , **lowerCAmelCase__ , ) -> Optional[Any]:
__magic_name__ : Optional[int] = vocab_size
__magic_name__ : List[Any] = max_position_embeddings
__magic_name__ : List[str] = d_model
__magic_name__ : List[str] = encoder_ffn_dim
__magic_name__ : int = encoder_layers
__magic_name__ : Any = encoder_attention_heads
__magic_name__ : List[Any] = decoder_ffn_dim
__magic_name__ : Optional[Any] = decoder_layers
__magic_name__ : int = decoder_attention_heads
__magic_name__ : Dict = dropout
__magic_name__ : List[str] = attention_dropout
__magic_name__ : List[str] = activation_dropout
__magic_name__ : int = activation_function
__magic_name__ : int = init_std
__magic_name__ : str = encoder_layerdrop
__magic_name__ : int = decoder_layerdrop
__magic_name__ : Union[str, Any] = classifier_dropout
__magic_name__ : Optional[Any] = use_cache
__magic_name__ : Tuple = encoder_layers
__magic_name__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True
__magic_name__ : int = use_prompt
__magic_name__ : Union[str, Any] = prompt_length
__magic_name__ : Union[str, Any] = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , snake_case__ ):
__magic_name__ : Dict = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
"""The config can simply be saved and uploaded again to be fixed.""" )
| 342 | import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __snake_case ( lowerCamelCase__ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> List[str]:
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : List[Any] =ort.SessionOptions()
UpperCAmelCase : Optional[int] =False
return options
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : int =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Optional[Any] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Dict ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : Any =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : Optional[int] =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Tuple =np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[str] =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase : Tuple =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase : List[str] =LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
UpperCAmelCase : int =OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Union[str, Any] ='''A red cat sitting on a park bench'''
UpperCAmelCase : int =np.random.RandomState(0 )
UpperCAmelCase : str =pipe(
prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case__ , output_type='''np''' , )
UpperCAmelCase : Dict =output.images
UpperCAmelCase : int =images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
UpperCAmelCase : Union[str, Any] =np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 348 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE__ = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["CLIPFeatureExtractor"]
SCREAMING_SNAKE_CASE__ = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 46 | from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowerCAmelCase_ ( )-> int:
'''simple docstring'''
UpperCAmelCase : str ={
'''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''],
'''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''],
'''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7],
}
UpperCAmelCase : Union[str, Any] =Dataset.from_dict(__lowerCAmelCase )
return dataset
class __snake_case ( lowerCamelCase__ ):
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : List[str] =get_dataset()
UpperCAmelCase : Optional[int] =make_duplicate_clusters(snake_case__ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def UpperCAmelCase__ ( self ) -> Tuple:
'''simple docstring'''
UpperCAmelCase : str =get_dataset()
UpperCAmelCase , UpperCAmelCase : Tuple =deduplicate_dataset(snake_case__ )
self.assertEqual(len(snake_case__ ) , 2 )
print(snake_case__ )
self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 )
self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , snake_case__ )
| 348 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : int = {
'''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''',
}
class A (lowerCamelCase__ ):
'''simple docstring'''
__lowerCamelCase : Dict = """mra"""
def __init__( self : int , __lowerCAmelCase : Tuple=5_02_65 , __lowerCAmelCase : Optional[int]=7_68 , __lowerCAmelCase : List[str]=12 , __lowerCAmelCase : Any=12 , __lowerCAmelCase : Tuple=30_72 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=5_12 , __lowerCAmelCase : str=1 , __lowerCAmelCase : int=0.0_2 , __lowerCAmelCase : List[str]=1e-5 , __lowerCAmelCase : Union[str, Any]="absolute" , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : Any="full" , __lowerCAmelCase : Optional[int]=0 , __lowerCAmelCase : List[str]=0 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Any=2 , **__lowerCAmelCase : int , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
A__ = vocab_size
A__ = max_position_embeddings
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = type_vocab_size
A__ = layer_norm_eps
A__ = position_embedding_type
A__ = block_per_row
A__ = approx_mode
A__ = initial_prior_first_n_blocks
A__ = initial_prior_diagonal_n_blocks
| 274 | from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ):
@register_to_config
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None ) -> str:
'''simple docstring'''
super().__init__()
UpperCAmelCase : Optional[Any] =learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
UpperCAmelCase : Any =torch.zeros(snake_case__ , snake_case__ )
else:
UpperCAmelCase : Union[str, Any] =None
UpperCAmelCase : Optional[int] =torch.nn.Parameter(snake_case__ )
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : VQModel
__lowerCamelCase : CLIPTextModel
__lowerCamelCase : CLIPTokenizer
__lowerCamelCase : TransformeraDModel
__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings
__lowerCamelCase : VQDiffusionScheduler
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> int:
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=snake_case__ , transformer=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , scheduler=snake_case__ , learned_classifier_free_sampling_embeddings=snake_case__ , )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase : int =len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1
# get prompt text embeddings
UpperCAmelCase : Optional[int] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
UpperCAmelCase : int =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
UpperCAmelCase : List[str] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
UpperCAmelCase : Optional[Any] =text_input_ids[:, : self.tokenizer.model_max_length]
UpperCAmelCase : List[Any] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
UpperCAmelCase : int =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate text embeddings for each generation per prompt
UpperCAmelCase : int =prompt_embeds.repeat_interleave(snake_case__ , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
UpperCAmelCase : Optional[int] =self.learned_classifier_free_sampling_embeddings.embeddings
UpperCAmelCase : str =negative_prompt_embeds.unsqueeze(0 ).repeat(snake_case__ , 1 , 1 )
else:
UpperCAmelCase : str =[''''''] * batch_size
UpperCAmelCase : Tuple =text_input_ids.shape[-1]
UpperCAmelCase : Optional[Any] =self.tokenizer(
snake_case__ , padding='''max_length''' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='''pt''' , )
UpperCAmelCase : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
UpperCAmelCase : Optional[int] =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case__ )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.shape[1]
UpperCAmelCase : Union[str, Any] =negative_prompt_embeds.repeat(1 , snake_case__ , 1 )
UpperCAmelCase : Optional[Any] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCAmelCase : int =torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self , snake_case__ , snake_case__ = 100 , snake_case__ = 5.0 , snake_case__ = 1.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Optional[int] =1
elif isinstance(snake_case__ , snake_case__ ):
UpperCAmelCase : Tuple =len(snake_case__ )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
UpperCAmelCase : Tuple =batch_size * num_images_per_prompt
UpperCAmelCase : List[str] =guidance_scale > 1.0
UpperCAmelCase : List[Any] =self._encode_prompt(snake_case__ , snake_case__ , snake_case__ )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(snake_case__ )}.''' )
# get the initial completely masked latents unless the user supplied it
UpperCAmelCase : int =(batch_size, self.transformer.num_latent_pixels)
if latents is None:
UpperCAmelCase : Union[str, Any] =self.transformer.num_vector_embeds - 1
UpperCAmelCase : str =torch.full(snake_case__ , snake_case__ ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
UpperCAmelCase : Any =latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case__ , device=self.device )
UpperCAmelCase : Any =self.scheduler.timesteps.to(self.device )
UpperCAmelCase : Optional[int] =latents
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the sample if we are doing classifier free guidance
UpperCAmelCase : Optional[Any] =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
UpperCAmelCase : Optional[int] =self.transformer(snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ ).sample
if do_classifier_free_guidance:
UpperCAmelCase , UpperCAmelCase : str =model_output.chunk(2 )
UpperCAmelCase : Optional[int] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(snake_case__ , dim=1 , keepdim=snake_case__ )
UpperCAmelCase : Tuple =self.truncate(snake_case__ , snake_case__ )
# remove `log(0)`'s (`-inf`s)
UpperCAmelCase : Optional[Any] =model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase : int =self.scheduler.step(snake_case__ , timestep=snake_case__ , sample=snake_case__ , generator=snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
UpperCAmelCase : Optional[int] =self.vqvae.config.vq_embed_dim
UpperCAmelCase : Optional[Any] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels)
UpperCAmelCase : Dict =self.vqvae.quantize.get_codebook_entry(snake_case__ , shape=snake_case__ )
UpperCAmelCase : Tuple =self.vqvae.decode(snake_case__ , force_not_quantize=snake_case__ ).sample
UpperCAmelCase : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase : Any =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=snake_case__ )
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> torch.FloatTensor:
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : int =torch.sort(snake_case__ , 1 , descending=snake_case__ )
UpperCAmelCase : Union[str, Any] =torch.exp(snake_case__ )
UpperCAmelCase : Union[str, Any] =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
UpperCAmelCase : Optional[Any] =torch.full_like(keep_mask[:, 0:1, :] , snake_case__ )
UpperCAmelCase : Tuple =torch.cat((all_true, keep_mask) , dim=1 )
UpperCAmelCase : int =keep_mask[:, :-1, :]
UpperCAmelCase : int =keep_mask.gather(1 , indices.argsort(1 ) )
UpperCAmelCase : Dict =log_p_x_0.clone()
UpperCAmelCase : List[Any] =-torch.inf # -inf = log(0)
return rv
| 348 | 0 |
from ..utils import DummyObject, requires_backends
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Dict = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Tuple = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : int = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Tuple = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : int = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Tuple = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[str] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : str = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Dict = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Any = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Dict = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Any = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[str] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Any = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[str] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Any = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : List[Any] = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : str = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : int = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Tuple = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
class A_ ( metaclass=lowerCamelCase__ ):
'''simple docstring'''
_UpperCamelCase : Tuple = ["""sentencepiece"""]
def __init__( self , *snake_case , **snake_case ):
requires_backends(self , ['sentencepiece'] )
| 195 | import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
@property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
torch.manual_seed(0 )
UpperCAmelCase : Any =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase : Tuple =self.dummy_uncond_unet
UpperCAmelCase : Optional[int] =KarrasVeScheduler()
UpperCAmelCase : List[Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : List[str] =torch.manual_seed(0 )
UpperCAmelCase : List[str] =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : str =torch.manual_seed(0 )
UpperCAmelCase : str =pipe(num_inference_steps=2 , generator=snake_case__ , output_type='''numpy''' , return_dict=snake_case__ )[0]
UpperCAmelCase : Any =image[0, -3:, -3:, -1]
UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase : int =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : Tuple ='''google/ncsnpp-celebahq-256'''
UpperCAmelCase : int =UNetaDModel.from_pretrained(snake_case__ )
UpperCAmelCase : Dict =KarrasVeScheduler()
UpperCAmelCase : Union[str, Any] =KarrasVePipeline(unet=snake_case__ , scheduler=snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
UpperCAmelCase : Any =torch.manual_seed(0 )
UpperCAmelCase : Tuple =pipe(num_inference_steps=20 , generator=snake_case__ , output_type='''numpy''' ).images
UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase : Tuple =np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 348 | 0 |
'''simple docstring'''
import requests
__A ='https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey='
def _UpperCamelCase ( UpperCamelCase__ ):
UpperCAmelCase__ : List[str] = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page["""articles"""] , 1 ):
print(f'''{i}.) {article['title']}''' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>') | 163 | import qiskit
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> qiskit.result.counts.Counts:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =qiskit.Aer.get_backend('''aer_simulator''' )
UpperCAmelCase : List[str] =qiskit.QuantumCircuit(4 , 2 )
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0 )
if bita == 1:
qc_ha.x(1 )
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2 )
qc_ha.cx(1 , 2 )
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3 )
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0 ) # extract XOR value
qc_ha.measure(3 , 1 ) # extract AND value
# Execute the circuit on the qasm simulator
UpperCAmelCase : Dict =qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=10_00 )
# Return the histogram data of the results of the experiment
return job.result().get_counts(__lowerCAmelCase )
if __name__ == "__main__":
__snake_case = half_adder(1, 1)
print(f'Half Adder Output Qubit Counts: {counts}')
| 348 | 0 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE :Dict = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
class UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
'''simple docstring'''
snake_case_ = XLMProphetNetTokenizer
snake_case_ = False
snake_case_ = True
def UpperCamelCase_ ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
__A = XLMProphetNetTokenizer(snake_case__ ,keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase_ ( self : str ):
__A = '''[PAD]'''
__A = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) ,snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) ,snake_case__ )
def UpperCamelCase_ ( self : Dict ):
__A = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,"[PAD]" )
self.assertEqual(vocab_keys[1] ,"[CLS]" )
self.assertEqual(vocab_keys[-1] ,"j" )
self.assertEqual(len(snake_case__ ) ,10_12 )
def UpperCamelCase_ ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size ,10_12 )
def UpperCamelCase_ ( self : Optional[int] ):
__A = XLMProphetNetTokenizer(snake_case__ ,keep_accents=snake_case__ )
__A = tokenizer.tokenize("This is a test" )
self.assertListEqual(snake_case__ ,["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,)
__A = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
snake_case__ ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] ,)
__A = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ ,[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] ,)
__A = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ ,[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"[UNK]",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"[UNK]",
".",
] ,)
@cached_property
def UpperCamelCase_ ( self : List[Any] ):
return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" )
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
__A = '''Hello World!'''
__A = [3_53_89, 66_72, 49, 2]
self.assertListEqual(snake_case__ ,self.big_tokenizer.encode(snake_case__ ) )
@slow
def UpperCamelCase_ ( self : Optional[Any] ):
__A = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ ,model_name="microsoft/xprophetnet-large-wiki100-cased" ,revision="1acad1643ddd54a44df6a1b797ada8373685d90e" ,)
| 15 | from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class __snake_case :
__lowerCamelCase : str = BlenderbotConfig
__lowerCamelCase : Optional[Any] = {}
__lowerCamelCase : Optional[int] = """gelu"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =parent
UpperCAmelCase : Optional[int] =batch_size
UpperCAmelCase : Dict =seq_length
UpperCAmelCase : Optional[Any] =is_training
UpperCAmelCase : List[str] =use_labels
UpperCAmelCase : List[Any] =vocab_size
UpperCAmelCase : Optional[int] =hidden_size
UpperCAmelCase : Tuple =num_hidden_layers
UpperCAmelCase : Any =num_attention_heads
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : str =hidden_dropout_prob
UpperCAmelCase : Optional[int] =attention_probs_dropout_prob
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : List[Any] =eos_token_id
UpperCAmelCase : Optional[int] =pad_token_id
UpperCAmelCase : Tuple =bos_token_id
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase : List[Any] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCAmelCase : List[Any] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase : Optional[Any] =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase : List[str] =prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ )
return config, inputs_dict
def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> int:
'''simple docstring'''
UpperCAmelCase : Union[str, Any] =TFBlenderbotModel(config=snake_case__ ).get_decoder()
UpperCAmelCase : Any =inputs_dict['''input_ids''']
UpperCAmelCase : str =input_ids[:1, :]
UpperCAmelCase : Tuple =inputs_dict['''attention_mask'''][:1, :]
UpperCAmelCase : Tuple =inputs_dict['''head_mask''']
UpperCAmelCase : List[Any] =1
# first forward pass
UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ )
UpperCAmelCase , UpperCAmelCase : str =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase : Union[str, Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase : List[Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCAmelCase : Tuple =tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCAmelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ )[0]
UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCAmelCase : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCAmelCase : List[Any] =output_from_no_past[:, -3:, random_slice_idx]
UpperCAmelCase : Dict =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-3 )
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , )-> str:
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase : int =tf.cast(tf.math.not_equal(__lowerCAmelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCAmelCase : Tuple =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCAmelCase : str =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCAmelCase : Union[str, Any] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCAmelCase : int =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : List[str] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__lowerCamelCase : Dict = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__lowerCamelCase : Dict = (
{
"""conversational""": TFBlenderbotForConditionalGeneration,
"""feature-extraction""": TFBlenderbotModel,
"""summarization""": TFBlenderbotForConditionalGeneration,
"""text2text-generation""": TFBlenderbotForConditionalGeneration,
"""translation""": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__lowerCamelCase : Union[str, Any] = True
__lowerCamelCase : Union[str, Any] = False
__lowerCamelCase : Union[str, Any] = False
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
UpperCAmelCase : List[str] =TFBlenderbotModelTester(self )
UpperCAmelCase : List[Any] =ConfigTester(self , config_class=snake_case__ )
def UpperCAmelCase__ ( self ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ )
@require_tokenizers
@require_tf
class __snake_case ( unittest.TestCase ):
__lowerCamelCase : List[str] = ["""My friends are cool but they eat too many carbs."""]
__lowerCamelCase : Dict = """facebook/blenderbot-400M-distill"""
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
UpperCAmelCase : int =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def UpperCAmelCase__ ( self ) -> Any:
'''simple docstring'''
UpperCAmelCase : Optional[int] =self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCAmelCase : Optional[int] =self.model.generate(
model_inputs.input_ids , )
UpperCAmelCase : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 348 | 0 |
def a( A : Optional[int] ) -> list:
"""simple docstring"""
a = int(__lowerCAmelCase )
if n_element < 1:
a = ValueError("a should be a positive number" )
raise my_error
a = [1]
a = (0, 0, 0)
a = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
_lowercase: Dict = input("Enter the last number (nth term) of the Hamming Number Series: ")
print("Formula of Hamming Number Series => 2^i * 3^j * 5^k")
_lowercase: List[str] = hamming(int(n))
print("-----------------------------------------------------")
print(F"""The list with nth numbers is: {hamming_numbers}""")
print("-----------------------------------------------------")
| 227 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class __snake_case ( lowerCamelCase__ ):
__lowerCamelCase : Optional[Any] = """sew-d"""
def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int:
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
UpperCAmelCase : Union[str, Any] =hidden_size
UpperCAmelCase : Union[str, Any] =feat_extract_norm
UpperCAmelCase : Optional[Any] =feat_extract_activation
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : int =list(snake_case__ )
UpperCAmelCase : List[str] =list(snake_case__ )
UpperCAmelCase : str =conv_bias
UpperCAmelCase : Tuple =num_conv_pos_embeddings
UpperCAmelCase : Dict =num_conv_pos_embedding_groups
UpperCAmelCase : str =len(self.conv_dim )
UpperCAmelCase : Dict =num_hidden_layers
UpperCAmelCase : Optional[int] =intermediate_size
UpperCAmelCase : List[Any] =squeeze_factor
UpperCAmelCase : str =max_position_embeddings
UpperCAmelCase : int =position_buckets
UpperCAmelCase : Optional[int] =share_att_key
UpperCAmelCase : Optional[int] =relative_attention
UpperCAmelCase : Tuple =norm_rel_ebd
UpperCAmelCase : List[Any] =list(snake_case__ )
UpperCAmelCase : Dict =hidden_act
UpperCAmelCase : Optional[int] =num_attention_heads
UpperCAmelCase : Any =hidden_dropout
UpperCAmelCase : str =attention_dropout
UpperCAmelCase : Union[str, Any] =activation_dropout
UpperCAmelCase : str =feat_proj_dropout
UpperCAmelCase : Union[str, Any] =final_dropout
UpperCAmelCase : Optional[int] =layer_norm_eps
UpperCAmelCase : str =feature_layer_norm_eps
UpperCAmelCase : str =initializer_range
UpperCAmelCase : Any =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase : Union[str, Any] =apply_spec_augment
UpperCAmelCase : Optional[Any] =mask_time_prob
UpperCAmelCase : Tuple =mask_time_length
UpperCAmelCase : str =mask_time_min_masks
UpperCAmelCase : Optional[int] =mask_feature_prob
UpperCAmelCase : Optional[Any] =mask_feature_length
UpperCAmelCase : List[Any] =mask_feature_min_masks
# ctc loss
UpperCAmelCase : str =ctc_loss_reduction
UpperCAmelCase : Optional[int] =ctc_zero_infinity
# sequence classification
UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum
UpperCAmelCase : int =classifier_proj_size
@property
def UpperCAmelCase__ ( self ) -> List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 348 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase_ = logging.get_logger(__name__)
def a ( A__ : List[str] ) -> Tuple:
"""simple docstring"""
_lowercase =MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
_lowercase =[144, 192, 240]
_lowercase =[16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
_lowercase =[96, 120, 144]
_lowercase =[16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
_lowercase =[64, 80, 96]
_lowercase =[16, 16, 24, 48, 64, 80, 320]
_lowercase =0.05
_lowercase =2.0
if mobilevit_name.startswith('deeplabv3_' ):
_lowercase =512
_lowercase =16
_lowercase =21
_lowercase ='''pascal-voc-id2label.json'''
else:
_lowercase =1000
_lowercase ='''imagenet-1k-id2label.json'''
_lowercase ='''huggingface/label-files'''
_lowercase =json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) )
_lowercase ={int(__lowerCAmelCase ): v for k, v in idalabel.items()}
_lowercase =idalabel
_lowercase ={v: k for k, v in idalabel.items()}
return config
def a ( A__ : int , A__ : List[Any]=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(1 , 6 ):
if F'''layer_{i}.''' in name:
_lowercase =name.replace(F'''layer_{i}.''' , F'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
_lowercase =name.replace('conv_1.' , 'conv_stem.' )
if ".block." in name:
_lowercase =name.replace('.block.' , '.' )
if "exp_1x1" in name:
_lowercase =name.replace('exp_1x1' , 'expand_1x1' )
if "red_1x1" in name:
_lowercase =name.replace('red_1x1' , 'reduce_1x1' )
if ".local_rep.conv_3x3." in name:
_lowercase =name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' )
if ".local_rep.conv_1x1." in name:
_lowercase =name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' )
if ".norm." in name:
_lowercase =name.replace('.norm.' , '.normalization.' )
if ".conv." in name:
_lowercase =name.replace('.conv.' , '.convolution.' )
if ".conv_proj." in name:
_lowercase =name.replace('.conv_proj.' , '.conv_projection.' )
for i in range(0 , 2 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
_lowercase =name.replace(F'''.{i}.{j}.''' , F'''.{i}.layer.{j}.''' )
for i in range(2 , 6 ):
for j in range(0 , 4 ):
if F'''.{i}.{j}.''' in name:
_lowercase =name.replace(F'''.{i}.{j}.''' , F'''.{i}.''' )
if "expand_1x1" in name:
_lowercase =name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' )
if "conv_3x3" in name:
_lowercase =name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' )
if "reduce_1x1" in name:
_lowercase =name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' )
for i in range(2 , 5 ):
if F'''.global_rep.{i}.weight''' in name:
_lowercase =name.replace(F'''.global_rep.{i}.weight''' , '.layernorm.weight' )
if F'''.global_rep.{i}.bias''' in name:
_lowercase =name.replace(F'''.global_rep.{i}.bias''' , '.layernorm.bias' )
if ".global_rep." in name:
_lowercase =name.replace('.global_rep.' , '.transformer.' )
if ".pre_norm_mha.0." in name:
_lowercase =name.replace('.pre_norm_mha.0.' , '.layernorm_before.' )
if ".pre_norm_mha.1.out_proj." in name:
_lowercase =name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' )
if ".pre_norm_ffn.0." in name:
_lowercase =name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' )
if ".pre_norm_ffn.1." in name:
_lowercase =name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' )
if ".pre_norm_ffn.4." in name:
_lowercase =name.replace('.pre_norm_ffn.4.' , '.output.dense.' )
if ".transformer." in name:
_lowercase =name.replace('.transformer.' , '.transformer.layer.' )
if ".aspp_layer." in name:
_lowercase =name.replace('.aspp_layer.' , '.' )
if ".aspp_pool." in name:
_lowercase =name.replace('.aspp_pool.' , '.' )
if "seg_head." in name:
_lowercase =name.replace('seg_head.' , 'segmentation_head.' )
if "segmentation_head.classifier.classifier." in name:
_lowercase =name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' )
if "classifier.fc." in name:
_lowercase =name.replace('classifier.fc.' , 'classifier.' )
elif (not base_model) and ("segmentation_head." not in name):
_lowercase ='''mobilevit.''' + name
return name
def a ( A__ : Optional[int] , A__ : Tuple , A__ : Any=False ) -> List[Any]:
"""simple docstring"""
if base_model:
_lowercase =''''''
else:
_lowercase ='''mobilevit.'''
for key in orig_state_dict.copy().keys():
_lowercase =orig_state_dict.pop(__lowerCAmelCase )
if key[:8] == "encoder.":
_lowercase =key[8:]
if "qkv" in key:
_lowercase =key.split('.' )
_lowercase =int(key_split[0][6:] ) - 1
_lowercase =int(key_split[3] )
_lowercase =model.get_submodule(F'''{model_prefix}encoder.layer.{layer_num}''' )
_lowercase =layer.transformer.layer[transformer_num].attention.attention.all_head_size
_lowercase =(
F'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
_lowercase =val[:dim, :]
_lowercase =val[dim : dim * 2, :]
_lowercase =val[-dim:, :]
else:
_lowercase =val[:dim]
_lowercase =val[dim : dim * 2]
_lowercase =val[-dim:]
else:
_lowercase =val
return orig_state_dict
def a ( ) -> Optional[int]:
"""simple docstring"""
_lowercase ='''http://images.cocodataset.org/val2017/000000039769.jpg'''
_lowercase =Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def a ( A__ : Tuple , A__ : Union[str, Any] , A__ : int , A__ : int=False ) -> str:
"""simple docstring"""
_lowercase =get_mobilevit_config(__lowerCAmelCase )
# load original state_dict
_lowercase =torch.load(__lowerCAmelCase , map_location='cpu' )
# load 🤗 model
if mobilevit_name.startswith('deeplabv3_' ):
_lowercase =MobileViTForSemanticSegmentation(__lowerCAmelCase ).eval()
else:
_lowercase =MobileViTForImageClassification(__lowerCAmelCase ).eval()
_lowercase =convert_state_dict(__lowerCAmelCase , __lowerCAmelCase )
model.load_state_dict(__lowerCAmelCase )
# Check outputs on an image, prepared by MobileViTImageProcessor
_lowercase =MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
_lowercase =image_processor(images=prepare_img() , return_tensors='pt' )
_lowercase =model(**__lowerCAmelCase )
_lowercase =outputs.logits
if mobilevit_name.startswith('deeplabv3_' ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
_lowercase =torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
_lowercase =torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
_lowercase =torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
_lowercase =torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
_lowercase =torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
_lowercase =torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(F'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3] , __lowerCAmelCase , atol=1e-4 )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
print(F'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__lowerCAmelCase )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
_lowercase ={
'''mobilevit_s''': '''mobilevit-small''',
'''mobilevit_xs''': '''mobilevit-x-small''',
'''mobilevit_xxs''': '''mobilevit-xx-small''',
'''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''',
'''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''',
'''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''',
}
print('Pushing to the hub...' )
_lowercase =model_mapping[mobilevit_name]
image_processor.push_to_hub(__lowerCAmelCase , organization='apple' )
model.push_to_hub(__lowerCAmelCase , organization='apple' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
lowercase_ = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 205 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__snake_case = 4
__snake_case = 3
class __snake_case ( lowerCamelCase__ ):
pass
def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]:
'''simple docstring'''
for shard in shards:
for i in range(__lowerCAmelCase ):
yield {"i": i, "shard": shard}
def lowerCAmelCase_ ( )-> Optional[int]:
'''simple docstring'''
UpperCAmelCase : List[str] =int(os.environ['''RANK'''] )
UpperCAmelCase : Optional[Any] =int(os.environ['''WORLD_SIZE'''] )
UpperCAmelCase : List[Any] =ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCAmelCase )
parser.add_argument('''--local_rank''' , type=__lowerCAmelCase )
parser.add_argument('''--num_workers''' , type=__lowerCAmelCase , default=0 )
UpperCAmelCase : Any =parser.parse_args()
UpperCAmelCase : List[str] =args.streaming
UpperCAmelCase : Tuple =args.num_workers
UpperCAmelCase : int ={'''shards''': [f'''shard_{shard_idx}''' for shard_idx in range(__lowerCAmelCase )]}
UpperCAmelCase : Optional[int] =IterableDataset.from_generator(__lowerCAmelCase , gen_kwargs=__lowerCAmelCase )
if not streaming:
UpperCAmelCase : List[Any] =Dataset.from_list(list(__lowerCAmelCase ) )
UpperCAmelCase : Dict =split_dataset_by_node(__lowerCAmelCase , rank=__lowerCAmelCase , world_size=__lowerCAmelCase )
UpperCAmelCase : List[Any] =torch.utils.data.DataLoader(__lowerCAmelCase , num_workers=__lowerCAmelCase )
UpperCAmelCase : Dict =NUM_SHARDS * NUM_ITEMS_PER_SHARD
UpperCAmelCase : str =full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
UpperCAmelCase : List[Any] =sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main()
| 348 | 0 |