code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __UpperCAmelCase ( lowerCamelCase_ : int = 1_00_00_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowerCamelCase_ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCamelCase__ : Tuple = '''facebook/wmt19-en-de''' UpperCamelCase__ : Any = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCamelCase__ : int = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCamelCase__ : List[str] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test UpperCamelCase__ : Optional[int] = tokenizer(['''Making tiny model'''], return_tensors='''pt''') UpperCamelCase__ : Any = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save UpperCamelCase__ : Dict = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
import math def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( lowerCamelCase_ : int = 1_00_01 ) -> int: """simple docstring""" try: SCREAMING_SNAKE_CASE_ : List[str] = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) SCREAMING_SNAKE_CASE_ : list[int] = [] SCREAMING_SNAKE_CASE_ : Dict = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : bool = False ) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(lowerCamelCase_ ), magnitude * sin(lowerCamelCase_ )] return [magnitude * cos(radians(lowerCamelCase_ ) ), magnitude * sin(radians(lowerCamelCase_ ) )] def __UpperCAmelCase ( lowerCamelCase_ : NDArray[floataa] , lowerCamelCase_ : NDArray[floataa] , lowerCamelCase_ : float = 10**-1 ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : NDArray[floataa] = cross(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : float = sum(lowerCamelCase_ ) return abs(lowerCamelCase_ ) < eps if __name__ == "__main__": # Test to check if it works UpperCamelCase__ : List[str] = array( [ polar_force(7_18.4, 1_80 - 30), polar_force(8_79.54, 45), polar_force(1_00, -90), ] ) UpperCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg UpperCamelCase__ : Dict = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) UpperCamelCase__ : str = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg UpperCamelCase__ : List[Any] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) UpperCamelCase__ : Union[str, Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
import argparse import os import re UpperCamelCase__ : List[str] = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCamelCase__ : str = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings UpperCamelCase__ : int = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : bool = False ) -> List[Any]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.read() SCREAMING_SNAKE_CASE_ : List[Any] = content.split('\n' ) SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : str = 0 while line_idx < len(lowerCamelCase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 SCREAMING_SNAKE_CASE_ : Any = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": SCREAMING_SNAKE_CASE_ : Tuple = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers SCREAMING_SNAKE_CASE_ : str = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : _re_identifier.search(lowerCamelCase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(lowerCamelCase_ ) ) elif "\n".join(lowerCamelCase_ ) != content: return True def __UpperCAmelCase ( lowerCamelCase_ : bool = False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [os.path.join(lowerCamelCase_ , lowerCamelCase_ ) for f in os.listdir(lowerCamelCase_ ) if f.endswith('.py' )] SCREAMING_SNAKE_CASE_ : int = [sort_auto_mapping(lowerCamelCase_ , overwrite=lowerCamelCase_ ) for fname in fnames] if not overwrite and any(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = [f for f, d in zip(lowerCamelCase_ , lowerCamelCase_ ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(lowerCamelCase_ )}. Run `make style` to fix' ' this.' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') UpperCamelCase__ : Tuple = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Any = ["pixel_values"] def __init__( self ,snake_case__ = True ,snake_case__ = None ,snake_case__ = PILImageResampling.BICUBIC ,snake_case__ = True ,snake_case__ = None ,snake_case__ = True ,snake_case__ = 1 / 255 ,snake_case__ = True ,snake_case__ = None ,snake_case__ = None ,snake_case__ = True ,**snake_case__ ,): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : Optional[Any] = get_size_dict(snake_case__ ,default_to_square=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Optional[Any] = get_size_dict(snake_case__ ,default_to_square=snake_case__ ,param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : List[Any] = do_resize SCREAMING_SNAKE_CASE_ : Tuple = size SCREAMING_SNAKE_CASE_ : Optional[Any] = resample SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_center_crop SCREAMING_SNAKE_CASE_ : Optional[int] = crop_size SCREAMING_SNAKE_CASE_ : Dict = do_rescale SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE_ : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ : Any = do_convert_rgb def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = PILImageResampling.BICUBIC ,snake_case__ = None ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(snake_case__ ,default_to_square=snake_case__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) SCREAMING_SNAKE_CASE_ : List[Any] = get_resize_output_image_size(snake_case__ ,size=size['shortest_edge'] ,default_to_square=snake_case__ ) return resize(snake_case__ ,size=snake_case__ ,resample=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(snake_case__ ,size=(size['height'], size['width']) ,data_format=snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): return rescale(snake_case__ ,scale=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): return normalize(snake_case__ ,mean=snake_case__ ,std=snake_case__ ,data_format=snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = ChannelDimension.FIRST ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Tuple = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Tuple = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Any = get_size_dict(snake_case__ ,param_name='size' ,default_to_square=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : Any = get_size_dict(snake_case__ ,param_name='crop_size' ,default_to_square=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Any = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[str] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ : Tuple = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ : Optional[int] = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Any = [to_numpy_array(snake_case__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : int = [self.resize(image=snake_case__ ,size=snake_case__ ,resample=snake_case__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : List[str] = [self.center_crop(image=snake_case__ ,size=snake_case__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : List[Any] = [self.rescale(image=snake_case__ ,scale=snake_case__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : int = [self.normalize(image=snake_case__ ,mean=snake_case__ ,std=snake_case__ ) for image in images] SCREAMING_SNAKE_CASE_ : Any = [to_channel_dimension_format(snake_case__ ,snake_case__ ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple = {'pixel_values': images} return BatchFeature(data=snake_case__ ,tensor_type=snake_case__ )
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
from math import pi def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] ) -> float: """simple docstring""" return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCamelCase__ : str = (7_20, 12_80) # Height, Width UpperCamelCase__ : Optional[int] = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCamelCase__ : List[Any] = 1 / 1_00 UpperCamelCase__ : Tuple = '''''' UpperCamelCase__ : Any = '''''' UpperCamelCase__ : Dict = '''''' UpperCamelCase__ : Dict = 2_50 def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = get_dataset(__A , __A ) for index in range(__A ): SCREAMING_SNAKE_CASE_ : List[str] = random.sample(range(len(__A ) ) , 4 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = update_image_and_anno( __A , __A , __A , __A , __A , filter_scale=__A , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE_ : Optional[Any] = random_chars(32 ) SCREAMING_SNAKE_CASE_ : int = path.split(os.sep )[-1].rsplit('.' , 1 )[0] SCREAMING_SNAKE_CASE_ : int = F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(F'{file_root}.jpg' , __A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) SCREAMING_SNAKE_CASE_ : str = [] for anno in new_annos: SCREAMING_SNAKE_CASE_ : Optional[int] = anno[3] - anno[1] SCREAMING_SNAKE_CASE_ : List[str] = anno[4] - anno[2] SCREAMING_SNAKE_CASE_ : Tuple = anno[1] + width / 2 SCREAMING_SNAKE_CASE_ : Any = anno[2] + height / 2 SCREAMING_SNAKE_CASE_ : Optional[int] = F'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__A ) with open(F'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : int = [] for label_file in glob.glob(os.path.join(__A , '*.txt' ) ): SCREAMING_SNAKE_CASE_ : List[str] = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__A ) as in_file: SCREAMING_SNAKE_CASE_ : List[Any] = in_file.readlines() SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(__A , F'{label_name}.jpg' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE_ : Any = obj_list.rstrip('\n' ).split(' ' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ : Dict = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__A ) labels.append(__A ) return img_paths, labels def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = 0.0 , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ : Tuple = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE_ : str = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, index in enumerate(__A ): SCREAMING_SNAKE_CASE_ : Tuple = all_img_list[index] path_list.append(__A ) SCREAMING_SNAKE_CASE_ : List[str] = all_annos[index] SCREAMING_SNAKE_CASE_ : Tuple = cva.imread(__A ) if i == 0: # top-left SCREAMING_SNAKE_CASE_ : List[str] = cva.resize(__A , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ : Dict = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : Union[str, Any] = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ : List[Any] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE_ : List[str] = cva.resize(__A , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ : int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : Tuple = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : Any = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ : Tuple = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : str = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE_ : Any = cva.resize(__A , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ : Dict = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : List[Any] = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ : Tuple = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ : Any = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ : List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE_ : List[str] = cva.resize( __A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ : Tuple = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ : str = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ : int = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE_ : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE_ : str = ascii_lowercase + digits return "".join(random.choice(__A ) for _ in range(__A ) ) if __name__ == "__main__": main() print('''DONE ✅''')
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase_ ( snake_case__ ): __a : Union[str, Any] = """mobilenet_v2""" def __init__( self ,snake_case__=3 ,snake_case__=224 ,snake_case__=1.0 ,snake_case__=8 ,snake_case__=8 ,snake_case__=6 ,snake_case__=32 ,snake_case__=True ,snake_case__=True ,snake_case__="relu6" ,snake_case__=True ,snake_case__=0.8 ,snake_case__=0.02 ,snake_case__=0.001 ,snake_case__=255 ,**snake_case__ ,): super().__init__(**UpperCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) SCREAMING_SNAKE_CASE_ : Dict = num_channels SCREAMING_SNAKE_CASE_ : List[str] = image_size SCREAMING_SNAKE_CASE_ : Tuple = depth_multiplier SCREAMING_SNAKE_CASE_ : Dict = depth_divisible_by SCREAMING_SNAKE_CASE_ : int = min_depth SCREAMING_SNAKE_CASE_ : Union[str, Any] = expand_ratio SCREAMING_SNAKE_CASE_ : Any = output_stride SCREAMING_SNAKE_CASE_ : str = first_layer_is_expansion SCREAMING_SNAKE_CASE_ : str = finegrained_output SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = tf_padding SCREAMING_SNAKE_CASE_ : Dict = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = semantic_loss_ignore_index class lowerCAmelCase_ ( snake_case__ ): __a : int = version.parse("1.11" ) @property def snake_case ( self ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def snake_case ( self ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def snake_case ( self ): return 1E-4
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(A_ ) from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo' ) SCREAMING_SNAKE_CASE_ : str = dataset['train'][0]['image'].convert('RGB' ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(A_ ,return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**A_ ) SCREAMING_SNAKE_CASE_ : List[str] = outputs.logits SCREAMING_SNAKE_CASE_ : str = torch.Size((1, 16) ) self.assertEqual(logits.shape ,A_ ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [-0.4158, -0.4092, -0.4347] ,device=A_ ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,A_ ,atol=1E-4 ) )
703
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_ : def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): return None class lowerCAmelCase_ : def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): return None class lowerCAmelCase_ ( unittest.TestCase ): __a : str = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ ,'tf' ,12 ,**UpperCamelCase_ ) @require_torch @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ ,'pt' ,12 ,**UpperCamelCase_ ) @require_torch @slow def snake_case ( self ): from transformers import BertModel SCREAMING_SNAKE_CASE_ : Optional[Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(UpperCamelCase_ ) ) vocab_file.flush() SCREAMING_SNAKE_CASE_ : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE_ : Any = BertModel(BertConfig(vocab_size=len(UpperCamelCase_ ) ) ) model.save_pretrained(UpperCamelCase_ ) self._test_export(UpperCamelCase_ ,'pt' ,12 ,UpperCamelCase_ ) @require_tf @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE_ : Dict = self._test_export(UpperCamelCase_ ,'tf' ,12 ,**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = quantize(Path(UpperCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def snake_case ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE_ : int = self._test_export(UpperCamelCase_ ,'pt' ,12 ,**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = quantize(UpperCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE_ : int = Path(UpperCamelCase_ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,**UpperCamelCase_ ) return path except Exception as e: self.fail(UpperCamelCase_ ) @require_torch @require_tokenizers @slow def snake_case ( self ): from transformers import BertModel SCREAMING_SNAKE_CASE_ : List[str] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) SCREAMING_SNAKE_CASE_ : List[str] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(UpperCamelCase_ ,UpperCamelCase_ ,'pt' ) @require_tf @require_tokenizers @slow def snake_case ( self ): from transformers import TFBertModel SCREAMING_SNAKE_CASE_ : Any = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(UpperCamelCase_ ,UpperCamelCase_ ,'tf' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = FeatureExtractionPipeline(UpperCamelCase_ ,UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] SCREAMING_SNAKE_CASE_ : Dict = infer_shapes(UpperCamelCase_ ,UpperCamelCase_ ) # Assert all variables are present self.assertEqual(len(UpperCamelCase_ ) ,len(UpperCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] ,UpperCamelCase_ ) self.assertSequenceEqual(variable_names[3:] ,UpperCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] ,{0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] ,{0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] ,{0: 'batch'} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = ['input_ids', 'attention_mask', 'token_type_ids'] SCREAMING_SNAKE_CASE_ : str = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE_ : str = ensure_valid_input(FuncContiguousArgs() ,UpperCamelCase_ ,UpperCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCamelCase_ ) ,3 ) # Should have exactly the same input names self.assertEqual(set(UpperCamelCase_ ) ,set(UpperCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCamelCase_ ,(tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE_ : str = ensure_valid_input(FuncNonContiguousArgs() ,UpperCamelCase_ ,UpperCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCamelCase_ ) ,1 ) self.assertEqual(len(UpperCamelCase_ ) ,1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] ,tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] ,'input_ids' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) ,'-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' ,generated.as_posix() )
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0
from math import factorial UpperCamelCase__ : Tuple = {str(d): factorial(d) for d in range(10)} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Dict: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_A ) ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _A ) if sum_of_digit_factorial(_A ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
705
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Dict = SamImageProcessor() SCREAMING_SNAKE_CASE_ : List[Any] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self ,**snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(UpperCAmelCase_ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : str = processor(images=UpperCAmelCase_ ,return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str = [torch.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ : List[Any] = [[1764, 2646]] SCREAMING_SNAKE_CASE_ : Optional[int] = [[683, 1024]] SCREAMING_SNAKE_CASE_ : int = processor.post_process_masks(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ : Tuple = processor.post_process_masks( UpperCAmelCase_ ,torch.tensor(UpperCAmelCase_ ) ,torch.tensor(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) # should also work with np SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.post_process_masks(UpperCAmelCase_ ,np.array(UpperCAmelCase_ ) ,np.array(UpperCAmelCase_ ) ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : List[Any] = processor.post_process_masks(UpperCAmelCase_ ,np.array(UpperCAmelCase_ ) ,np.array(UpperCAmelCase_ ) ) @require_vision @require_tf class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Tuple = SamImageProcessor() SCREAMING_SNAKE_CASE_ : List[Any] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self ,**snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(UpperCAmelCase_ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(images=UpperCAmelCase_ ,return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) @require_tf def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [tf.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ : Optional[int] = [[1764, 2646]] SCREAMING_SNAKE_CASE_ : Optional[int] = [[683, 1024]] SCREAMING_SNAKE_CASE_ : Optional[Any] = processor.post_process_masks(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,return_tensors='tf' ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ : int = processor.post_process_masks( UpperCAmelCase_ ,tf.convert_to_tensor(UpperCAmelCase_ ) ,tf.convert_to_tensor(UpperCAmelCase_ ) ,return_tensors='tf' ,) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) # should also work with np SCREAMING_SNAKE_CASE_ : List[Any] = [np.ones((1, 3, 5, 5) )] SCREAMING_SNAKE_CASE_ : int = processor.post_process_masks( UpperCAmelCase_ ,np.array(UpperCAmelCase_ ) ,np.array(UpperCAmelCase_ ) ,return_tensors='tf' ) self.assertEqual(masks[0].shape ,(1, 3, 1764, 2646) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): SCREAMING_SNAKE_CASE_ : List[Any] = processor.post_process_masks( UpperCAmelCase_ ,np.array(UpperCAmelCase_ ) ,np.array(UpperCAmelCase_ ) ,return_tensors='tf' ) @require_vision @require_torchvision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = SamImageProcessor() SCREAMING_SNAKE_CASE_ : List[Any] = SamProcessor(UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def snake_case ( self ,**snake_case__ ): return AutoProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ).image_processor def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str = np.random.randint(0 ,2 ,size=(1, 3, 5, 5) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ : List[Any] = [tf.convert_to_tensor(UpperCAmelCase_ )] SCREAMING_SNAKE_CASE_ : str = [torch.tensor(UpperCAmelCase_ )] SCREAMING_SNAKE_CASE_ : List[Any] = [[1764, 2646]] SCREAMING_SNAKE_CASE_ : List[Any] = [[683, 1024]] SCREAMING_SNAKE_CASE_ : Any = processor.post_process_masks( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,return_tensors='tf' ) SCREAMING_SNAKE_CASE_ : Tuple = processor.post_process_masks( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = SamProcessor(image_processor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = image_processor(UpperCAmelCase_ ,return_tensors='pt' )['pixel_values'].numpy() SCREAMING_SNAKE_CASE_ : Tuple = processor(images=UpperCAmelCase_ ,return_tensors='pt' )['pixel_values'].numpy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor(UpperCAmelCase_ ,return_tensors='tf' )['pixel_values'].numpy() SCREAMING_SNAKE_CASE_ : Dict = processor(images=UpperCAmelCase_ ,return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ) ) self.assertTrue(np.allclose(UpperCAmelCase_ ,UpperCAmelCase_ ) )
706
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer UpperCamelCase__ : Tuple = "bart" UpperCamelCase__ : Optional[Any] = True @st.cache(allow_output_mutation=lowerCamelCase_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = qar_model.eval() else: SCREAMING_SNAKE_CASE_ : List[Any] = (None, None) if MODEL_TYPE == "bart": SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) SCREAMING_SNAKE_CASE_ : str = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sas_model.eval() else: SCREAMING_SNAKE_CASE_ : List[Any] = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowerCamelCase_ ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE_ : Any = faiss.StandardGpuResources() SCREAMING_SNAKE_CASE_ : Any = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] SCREAMING_SNAKE_CASE_ : Optional[Any] = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 1_28) , ) SCREAMING_SNAKE_CASE_ : List[str] = faiss.IndexFlatIP(1_28 ) SCREAMING_SNAKE_CASE_ : Tuple = faiss.index_cpu_to_gpu(lowerCamelCase_ , 1 , lowerCamelCase_ ) wikiaab_gpu_index_flat.add(lowerCamelCase_ ) # TODO fix for larger GPU else: SCREAMING_SNAKE_CASE_ : Any = (None, None) SCREAMING_SNAKE_CASE_ : Any = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowerCamelCase_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = datasets.load_dataset('eli5' , name='LFQA_reddit' ) SCREAMING_SNAKE_CASE_ : Tuple = elia['train_eli5'] SCREAMING_SNAKE_CASE_ : List[Any] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 1_28) ) SCREAMING_SNAKE_CASE_ : Optional[int] = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(lowerCamelCase_ ) return (elia_train, eli5_train_q_index) UpperCamelCase__ : List[str] = load_indexes() UpperCamelCase__ : List[str] = load_models() UpperCamelCase__ : List[str] = load_train_data() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any=10 ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = embed_questions_for_retrieval([question] , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = eli5_train_q_index.search(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [elia_train[int(lowerCamelCase_ )] for i in I[0]] return nn_examples def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : int="wiki40b" , lowerCamelCase_ : Optional[int]="dense" , lowerCamelCase_ : int=10 ) -> Dict: """simple docstring""" if source == "none": SCREAMING_SNAKE_CASE_ : Dict = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": SCREAMING_SNAKE_CASE_ : List[str] = query_qa_dense_index( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Any = query_es_index( lowerCamelCase_ , lowerCamelCase_ , index_name='english_wiki40b_snippets_100w' , n_results=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] SCREAMING_SNAKE_CASE_ : Tuple = 'question: {} context: {}'.format(lowerCamelCase_ , lowerCamelCase_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowerCamelCase_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowerCamelCase_ : None), } ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any]=64 , lowerCamelCase_ : str=2_56 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Optional[int]=0.9_5 , lowerCamelCase_ : Tuple=0.8 ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = qa_sas_generate( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , num_answers=1 , num_beams=lowerCamelCase_ , min_len=lowerCamelCase_ , max_len=lowerCamelCase_ , do_sample=lowerCamelCase_ , temp=lowerCamelCase_ , top_p=lowerCamelCase_ , top_k=lowerCamelCase_ , max_input_length=10_24 , device='cuda:0' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar UpperCamelCase__ : int = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" UpperCamelCase__ : int = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia UpperCamelCase__ : Dict = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) UpperCamelCase__ : List[str] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] UpperCamelCase__ : Dict = st.sidebar.checkbox('''Demo options''') if demo_options: UpperCamelCase__ : Optional[Any] = st.sidebar.selectbox( '''''', action_list, index=3, ) UpperCamelCase__ : Optional[Any] = action_list.index(action_st) UpperCamelCase__ : str = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) UpperCamelCase__ : List[Any] = show_type == "Show full text of passages" else: UpperCamelCase__ : Any = 3 UpperCamelCase__ : str = True UpperCamelCase__ : Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: UpperCamelCase__ : List[str] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) UpperCamelCase__ : Dict = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) UpperCamelCase__ : Any = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: UpperCamelCase__ : Dict = "wiki40b" UpperCamelCase__ : List[str] = "dense" UpperCamelCase__ : int = "beam" UpperCamelCase__ : Optional[int] = 2 UpperCamelCase__ : Dict = 64 UpperCamelCase__ : Dict = 2_56 UpperCamelCase__ : str = None UpperCamelCase__ : Dict = None UpperCamelCase__ : Optional[int] = st.sidebar.checkbox('''Generation options''') if generate_options: UpperCamelCase__ : str = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) UpperCamelCase__ : Optional[Any] = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) UpperCamelCase__ : Dict = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) UpperCamelCase__ : Union[str, Any] = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": UpperCamelCase__ : Optional[Any] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: UpperCamelCase__ : int = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) UpperCamelCase__ : Optional[Any] = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) UpperCamelCase__ : Union[str, Any] = None # start main text UpperCamelCase__ : Tuple = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] UpperCamelCase__ : str = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": UpperCamelCase__ : Any = st.text_input('''Enter your question here:''', '''''') else: UpperCamelCase__ : Any = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": UpperCamelCase__ : Optional[int] = make_support(question, source=wiki_source, method='''dense''', n_results=10) UpperCamelCase__ : List[Any] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) UpperCamelCase__ : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] UpperCamelCase__ : int = support_list[:10] UpperCamelCase__ : Optional[int] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: UpperCamelCase__ : Dict = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: UpperCamelCase__ : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): UpperCamelCase__ : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(''' ''', '''_''')) UpperCamelCase__ : List[Any] = res[1].strip() if sec_titles == "": UpperCamelCase__ : Tuple = "[{}]({})".format(res[0], wiki_url) else: UpperCamelCase__ : int = sec_titles.split(''' & ''') UpperCamelCase__ : Any = " & ".join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style=\"font-family:arial; font-size:10pt;\">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: UpperCamelCase__ : List[Any] = find_nearest_training(question) UpperCamelCase__ : Union[str, Any] = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) UpperCamelCase__ : List[Any] = [ "{}. {}".format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) UpperCamelCase__ : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
def __UpperCAmelCase ( lowerCamelCase_ : list ) -> list: """simple docstring""" if len(__A ) <= 1: return [tuple(__A )] SCREAMING_SNAKE_CASE_ : List[str] = [] def generate(lowerCamelCase_ : int , lowerCamelCase_ : list ): SCREAMING_SNAKE_CASE_ : Any = [0] * n res.append(tuple(__A ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE_ : Tuple = arr[i], arr[0] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = arr[i], arr[c[i]] res.append(tuple(__A ) ) c[i] += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 else: SCREAMING_SNAKE_CASE_ : List[str] = 0 i += 1 generate(len(__A ) , __A ) return res if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : Tuple = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
708
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : List[Any] = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : Any = 42 __a : str = 42 __a : Optional[int] = None __a : Any = None __a : List[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str = 42 __a : Any = None __a : Optional[int] = None __a : Any = None __a : Any = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[Any] = 42 def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : List[str] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : str = os.path.join( _lowerCAmelCase ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(_lowerCAmelCase ) ,_lowerCAmelCase ,) ,) SCREAMING_SNAKE_CASE_ : Any = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : List[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : int = cached_features_file + '.lock' with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : str = torch.load(_lowerCAmelCase ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : Dict = ( processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase ) ) logger.info('Training examples: %s' ,len(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) logger.info('Saving features into cached file %s' ,_lowerCAmelCase ) torch.save(self.features ,_lowerCAmelCase ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : str = 42 def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : str = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Tuple = label_list SCREAMING_SNAKE_CASE_ : Any = processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = hans_convert_examples_to_features(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(_lowerCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : Tuple = tf.data.Dataset.from_generator( _lowerCAmelCase ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = [] for i, line in enumerate(_lowerCAmelCase ): if i == 0: continue SCREAMING_SNAKE_CASE_ : Dict = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Any = line[5] SCREAMING_SNAKE_CASE_ : List[str] = line[6] SCREAMING_SNAKE_CASE_ : Any = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[Any] = line[0] examples.append(InputExample(guid=_lowerCAmelCase ,text_a=_lowerCAmelCase ,text_b=_lowerCAmelCase ,label=_lowerCAmelCase ,pairID=_lowerCAmelCase ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {label: i for i, label in enumerate(__lowerCAmelCase )} SCREAMING_SNAKE_CASE_ : Optional[int] = [] for ex_index, example in tqdm.tqdm(enumerate(__lowerCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' , truncation=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : int = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : str = int(example.pairID ) features.append(InputFeatures(**__lowerCAmelCase , label=__lowerCAmelCase , pairID=__lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : List[Any] = { 'hans': 3, } UpperCamelCase__ : Tuple = { 'hans': HansProcessor, }
709
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCamelCase__ : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} state_dict.pop('pixel_mean' , lowerCamelCase__ ) state_dict.pop('pixel_std' , lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE_ : str = key.replace(lowerCamelCase__ , lowerCamelCase__ ) if re.match(lowerCamelCase__ , lowerCamelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: SCREAMING_SNAKE_CASE_ : int = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('layers.2' , 'proj_out' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = value SCREAMING_SNAKE_CASE_ : str = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any]="ybelkada/segment-anything" ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = hf_hub_download(lowerCamelCase__ , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: SCREAMING_SNAKE_CASE_ : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: SCREAMING_SNAKE_CASE_ : Dict = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) SCREAMING_SNAKE_CASE_ : Optional[int] = SamConfig( vision_config=lowerCamelCase__ , ) elif "sam_vit_h" in model_name: SCREAMING_SNAKE_CASE_ : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) SCREAMING_SNAKE_CASE_ : Any = SamConfig( vision_config=lowerCamelCase__ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(lowerCamelCase__ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : int = replace_keys(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = SamImageProcessor() SCREAMING_SNAKE_CASE_ : Any = SamProcessor(image_processor=lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = hf_model.to('cuda' ) SCREAMING_SNAKE_CASE_ : List[Any] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" SCREAMING_SNAKE_CASE_ : Tuple = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : List[str] = [[[4_00, 6_50]]] SCREAMING_SNAKE_CASE_ : Any = [[1]] SCREAMING_SNAKE_CASE_ : Any = processor(images=np.array(lowerCamelCase__ ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = hf_model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 SCREAMING_SNAKE_CASE_ : Tuple = processor( images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = hf_model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 SCREAMING_SNAKE_CASE_ : Any = ((75, 2_75, 17_25, 8_50),) SCREAMING_SNAKE_CASE_ : Any = processor(images=np.array(lowerCamelCase__ ) , input_boxes=lowerCamelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = hf_model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. SCREAMING_SNAKE_CASE_ : str = [[[4_00, 6_50], [8_00, 6_50]]] SCREAMING_SNAKE_CASE_ : Tuple = [[1, 1]] SCREAMING_SNAKE_CASE_ : str = processor( images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = hf_model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() UpperCamelCase__ : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) UpperCamelCase__ : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
710
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer SCREAMING_SNAKE_CASE_ : List[str] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.permute(_lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ): # linear layer SCREAMING_SNAKE_CASE_ : Union[str, Any] = flax_key_tuple[:-1] + ("weight",) SCREAMING_SNAKE_CASE_ : int = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: SCREAMING_SNAKE_CASE_ : Tuple = flax_key_tuple[:-1] + ("weight",) return flax_key_tuple, flax_tensor def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any ) -> int: """simple docstring""" if "metadata" in layer: SCREAMING_SNAKE_CASE_ : Optional[int] = layer.split('metadata' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ : Dict = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: SCREAMING_SNAKE_CASE_ : List[str] = layer.split('kvstore' ) SCREAMING_SNAKE_CASE_ : Optional[int] = "".join(split_layer[0] )[:-1] SCREAMING_SNAKE_CASE_ : List[Any] = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: SCREAMING_SNAKE_CASE_ : Tuple = layer.split('/' ) SCREAMING_SNAKE_CASE_ : int = "/".join(split_layer[:-1] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: SCREAMING_SNAKE_CASE_ : int = F'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: SCREAMING_SNAKE_CASE_ : Optional[int] = "file" else: SCREAMING_SNAKE_CASE_ : str = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = rename_keys(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = {} for k, v in current_block.items(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = v SCREAMING_SNAKE_CASE_ : str = new_current_block torch.save(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : str = WEIGHTS_NAME ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = convert_file_size_to_int(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: SCREAMING_SNAKE_CASE_ : Tuple = serialization.msgpack_restore(fp.read() )["optimizer"]["target"] SCREAMING_SNAKE_CASE_ : Union[str, Any] = flatten_dict(_lowerCAmelCase , sep='/' ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} for layer in checkpoint_info.keys(): SCREAMING_SNAKE_CASE_ : int = get_key_and_tensorstore_dict( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if curr_real_layer_name in all_layers: SCREAMING_SNAKE_CASE_ : Optional[int] = content else: SCREAMING_SNAKE_CASE_ : int = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file SCREAMING_SNAKE_CASE_ : Any = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() SCREAMING_SNAKE_CASE_ : int = torch.tensor(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts SCREAMING_SNAKE_CASE_ : Optional[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "/".join(_lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _lowerCAmelCase , weights_name.replace('.bin' , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = raw_weights.to(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(_lowerCAmelCase , weights_name.replace('.bin' , F'-{len(_lowerCAmelCase )+1:05d}-of-???.bin' ) ) rename_and_save_block(_lowerCAmelCase , _lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(_lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : str = {} for idx, shard in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = weights_name.replace( '.bin' , F'-{idx+1:05d}-of-{len(_lowerCAmelCase ):05d}.bin' ) # len(sharded_state_dicts):05d} SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(_lowerCAmelCase , weights_name.replace('.bin' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : Tuple = shard for key in shard: SCREAMING_SNAKE_CASE_ : str = shard_file # Add the metadata SCREAMING_SNAKE_CASE_ : Optional[Any] = {"total_size": total_size} SCREAMING_SNAKE_CASE_ : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : int = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" f.write(_lowerCAmelCase ) return metadata, index if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) UpperCamelCase__ : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) SCREAMING_SNAKE_CASE_ : int = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = TaTokenizer.from_pretrained('t5-small' ) SCREAMING_SNAKE_CASE_ : Tuple = "A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>." SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(_lowerCAmelCase , return_tensors='pt' ).input_ids SCREAMING_SNAKE_CASE_ : List[Any] = model.generate(_lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
711
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): __a : Optional[int] = """pixel_values""" __a : Optional[Any] = False __a : str = TimmBackboneConfig def __init__( self ,snake_case__ ,**snake_case__ ): requires_backends(self ,'timm' ) super().__init__(_a ) SCREAMING_SNAKE_CASE_ : List[str] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(_a ,'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) SCREAMING_SNAKE_CASE_ : Any = getattr(_a ,'use_pretrained_backbone' ,_a ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. SCREAMING_SNAKE_CASE_ : List[str] = config.out_indices if getattr(_a ,'out_indices' ,_a ) is not None else (-1,) SCREAMING_SNAKE_CASE_ : Tuple = timm.create_model( config.backbone ,pretrained=_a ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=_a ,**_a ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. SCREAMING_SNAKE_CASE_ : Dict = self._backbone.return_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = {layer["""module"""]: str(_a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_a ) @classmethod def snake_case ( cls ,snake_case__ ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('config' ,TimmBackboneConfig() ) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('use_timm_backbone' ,_a ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('num_channels' ,config.num_channels ) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('features_only' ,config.features_only ) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('use_pretrained_backbone' ,config.use_pretrained_backbone ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('out_indices' ,config.out_indices ) SCREAMING_SNAKE_CASE_ : List[str] = TimmBackboneConfig( backbone=_a ,num_channels=_a ,features_only=_a ,use_pretrained_backbone=_a ,out_indices=_a ,) return super()._from_config(_a ,**_a ) def snake_case ( self ,snake_case__ ): pass def snake_case ( self ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : List[Any] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone SCREAMING_SNAKE_CASE_ : List[Any] = self._all_layers SCREAMING_SNAKE_CASE_ : Dict = self._backbone(_a ,**_a ) SCREAMING_SNAKE_CASE_ : Tuple = self._return_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(hidden_states[i] for i in self.out_indices ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._backbone(_a ,**_a ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = tuple(_a ) SCREAMING_SNAKE_CASE_ : Dict = tuple(_a ) if hidden_states is not None else None if not return_dict: SCREAMING_SNAKE_CASE_ : Any = (feature_maps,) if output_hidden_states: SCREAMING_SNAKE_CASE_ : Any = output + (hidden_states,) return output return BackboneOutput(feature_maps=_a ,hidden_states=_a ,attentions=_a )
712
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Any=7 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = None if token is not None: SCREAMING_SNAKE_CASE_ : Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ : int = '636036' SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' SCREAMING_SNAKE_CASE_ : Optional[int] = requests.get(__UpperCAmelCase , headers=__UpperCAmelCase ).json() return result["workflow_runs"] def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_daily_ci_runs(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ : Any = workflow_run['id'] break return workflow_run_id def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_last_daily_ci_runs(__UpperCAmelCase ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ : List[Any] = get_artifacts_links(worflow_run_id=__UpperCAmelCase , token=__UpperCAmelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ : Any = artifacts_links[artifact_name] download_artifact( artifact_name=__UpperCAmelCase , artifact_url=__UpperCAmelCase , output_dir=__UpperCAmelCase , token=__UpperCAmelCase ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ) -> str: """simple docstring""" get_last_daily_ci_artifacts(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(__UpperCAmelCase , F'{artifact_name}.zip' ) if os.path.isfile(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = {} with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file with z.open(__UpperCAmelCase ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = f.read().decode('UTF-8' ) return results
713
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[Any] = "funnel" __a : int = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self ,snake_case__=30522 ,snake_case__=[4, 4, 4] ,snake_case__=None ,snake_case__=2 ,snake_case__=768 ,snake_case__=12 ,snake_case__=64 ,snake_case__=3072 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=0.1 ,snake_case__=None ,snake_case__=1E-9 ,snake_case__="mean" ,snake_case__="relative_shift" ,snake_case__=True ,snake_case__=True ,snake_case__=True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : int = block_sizes SCREAMING_SNAKE_CASE_ : Dict = [1] * len(_UpperCAmelCase ) if block_repeats is None else block_repeats assert len(_UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ : List[str] = num_decoder_layers SCREAMING_SNAKE_CASE_ : Dict = d_model SCREAMING_SNAKE_CASE_ : Any = n_head SCREAMING_SNAKE_CASE_ : Union[str, Any] = d_head SCREAMING_SNAKE_CASE_ : Tuple = d_inner SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout SCREAMING_SNAKE_CASE_ : Dict = attention_dropout SCREAMING_SNAKE_CASE_ : int = activation_dropout SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = initializer_std SCREAMING_SNAKE_CASE_ : str = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' SCREAMING_SNAKE_CASE_ : str = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' SCREAMING_SNAKE_CASE_ : Tuple = attention_type SCREAMING_SNAKE_CASE_ : int = separate_cls SCREAMING_SNAKE_CASE_ : List[str] = truncate_seq SCREAMING_SNAKE_CASE_ : Dict = pool_q_only super().__init__(**_UpperCAmelCase ) @property def snake_case ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def snake_case ( self ,snake_case__ ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def snake_case ( self ): return len(self.block_sizes ) @num_blocks.setter def snake_case ( self ,snake_case__ ): raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
0
from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] ): """simple docstring""" def brightness(lowerCamelCase_ : Optional[Any] ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(__A ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 UpperCamelCase__ : str = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
715
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
0
from __future__ import annotations import math def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" if num <= 0: SCREAMING_SNAKE_CASE_ : int = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [True] * (num + 1) SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : str = int(math.sqrt(_lowerCamelCase ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(_lowerCamelCase ) # Set multiples of start be False for i in range(start * start , num + 1 , _lowerCamelCase ): if sieve[i] is True: SCREAMING_SNAKE_CASE_ : List[Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(_lowerCamelCase ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
716
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowerCAmelCase_ : def __init__( self ,snake_case__ = "cpu" ,snake_case__ = "openai/clip-vit-large-patch14" ): SCREAMING_SNAKE_CASE_ : int = device SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTokenizerFast.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [0.48145466, 0.4578275, 0.40821073] SCREAMING_SNAKE_CASE_ : Tuple = [0.26862954, 0.26130258, 0.27577711] SCREAMING_SNAKE_CASE_ : List[Any] = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) SCREAMING_SNAKE_CASE_ : int = torchvision.transforms.Resize(224 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torchvision.transforms.CenterCrop(224 ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.resize(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = self.center_crop(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = self.normalize(__lowerCamelCase ) return images def __call__( self ,snake_case__=None ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer(text=__lowerCamelCase ,**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.preprocess_img(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__=10 ,snake_case__=0.01 ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=False ,snake_case__=True ,snake_case__="image" ,snake_case__=True ,snake_case__=False ,snake_case__=False ,snake_case__=False ,): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : str = device if device else get_device() if vqgan: SCREAMING_SNAKE_CASE_ : List[str] = vqgan else: SCREAMING_SNAKE_CASE_ : Dict = load_vqgan(self.device ,conf_path=__lowerCamelCase ,ckpt_path=__lowerCamelCase ) self.vqgan.eval() if clip: SCREAMING_SNAKE_CASE_ : Optional[Any] = clip else: SCREAMING_SNAKE_CASE_ : Dict = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ProcessorGradientFlow(device=self.device ) SCREAMING_SNAKE_CASE_ : Dict = iterations SCREAMING_SNAKE_CASE_ : Tuple = lr SCREAMING_SNAKE_CASE_ : Tuple = log SCREAMING_SNAKE_CASE_ : Optional[int] = make_grid SCREAMING_SNAKE_CASE_ : str = return_val SCREAMING_SNAKE_CASE_ : List[Any] = quantize SCREAMING_SNAKE_CASE_ : str = self.vqgan.decoder.z_shape def snake_case ( self ,snake_case__=None ,snake_case__=None ,snake_case__=5 ,snake_case__=True ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] if output_path is None: SCREAMING_SNAKE_CASE_ : List[Any] = "./animation.gif" if input_path is None: SCREAMING_SNAKE_CASE_ : str = self.save_path SCREAMING_SNAKE_CASE_ : Optional[int] = sorted(glob(input_path + '/*' ) ) if not len(__lowerCamelCase ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(__lowerCamelCase ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = total_duration / len(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [frame_duration] * len(__lowerCamelCase ) if extend_frames: SCREAMING_SNAKE_CASE_ : int = 1.5 SCREAMING_SNAKE_CASE_ : int = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(__lowerCamelCase ) ) imageio.mimsave(__lowerCamelCase ,__lowerCamelCase ,duration=__lowerCamelCase ) print(F'gif saved to {output_path}' ) def snake_case ( self ,snake_case__=None ,snake_case__=None ): if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError SCREAMING_SNAKE_CASE_ : List[str] = preprocess(Image.open(__lowerCamelCase ) ,target_image_size=256 ).to(self.device ) SCREAMING_SNAKE_CASE_ : str = preprocess_vqgan(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.vqgan.encode(__lowerCamelCase ) return z def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = self.latent.detach().requires_grad_() SCREAMING_SNAKE_CASE_ : List[str] = base_latent + transform_vector if self.quantize: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vqgan.quantize(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : str = trans_latent return self.vqgan.decode(__lowerCamelCase ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.clip_preprocessor(text=__lowerCamelCase ,images=__lowerCamelCase ,return_tensors='pt' ,padding=__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : int = self.clip(**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = clip_outputs.logits_per_image if weights is not None: SCREAMING_SNAKE_CASE_ : Any = similarity_logits * weights return similarity_logits.sum() def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = self._get_clip_similarity(pos_prompts['prompts'] ,__lowerCamelCase ,weights=(1 / pos_prompts['weights']) ) if neg_prompts: SCREAMING_SNAKE_CASE_ : List[Any] = self._get_clip_similarity(neg_prompts['prompts'] ,__lowerCamelCase ,weights=neg_prompts['weights'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([1] ,device=self.device ) SCREAMING_SNAKE_CASE_ : List[Any] = -torch.log(__lowerCamelCase ) + torch.log(__lowerCamelCase ) return loss def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = torch.randn_like(self.latent ,requires_grad=__lowerCamelCase ,device=self.device ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() SCREAMING_SNAKE_CASE_ : List[str] = self._add_vector(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = loop_post_process(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = self._get_CLIP_loss(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) print('CLIP loss' ,__lowerCamelCase ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=__lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): wandb.init(reinit=__lowerCamelCase ,project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: SCREAMING_SNAKE_CASE_ : List[str] = Image.open(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = image.resize((256, 256) ) wandb.log('Original Image' ,wandb.Image(__lowerCamelCase ) ) def snake_case ( self ,snake_case__ ): if not prompts: return [] SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : int = [] if isinstance(__lowerCamelCase ,__lowerCamelCase ): SCREAMING_SNAKE_CASE_ : int = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(__lowerCamelCase ,(tuple, list) ): SCREAMING_SNAKE_CASE_ : List[Any] = prompt[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: SCREAMING_SNAKE_CASE_ : Optional[Any] = prompt.split(':' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = float(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : Tuple = prompt SCREAMING_SNAKE_CASE_ : Optional[int] = 1.0 processed_prompts.append(__lowerCamelCase ) weights.append(__lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCamelCase ,device=self.device ), } def snake_case ( self ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=True ,snake_case__=None ,): if image_path: SCREAMING_SNAKE_CASE_ : str = self._get_latent(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." SCREAMING_SNAKE_CASE_ : List[str] = self.process_prompts(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = self.process_prompts(__lowerCamelCase ) if save_final and save_path is None: SCREAMING_SNAKE_CASE_ : Any = os.path.join('./outputs/' ,'_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ : List[Any] = save_path + "_" + get_timestamp() os.makedirs(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = save_path SCREAMING_SNAKE_CASE_ : List[str] = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = loop_post_process(__lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ): if show_intermediate: show_pil(__lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'Image': wandb.Image(__lowerCamelCase )} ) if show_final: show_pil(__lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path ,F'iter_{iter:03d}_final.png' ) )
717
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase__ : Dict = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize UpperCamelCase__ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" UpperCamelCase__ : Optional[int] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" UpperCamelCase__ : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] ,reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] ,) def snake_case ( self ,snake_case__ ): import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=0.9 ,snake_case__=3 ,snake_case__=0.5 ): if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) ,word_tokenize(lowerCamelCase_ ) ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] else: SCREAMING_SNAKE_CASE_ : Dict = [ meteor_score.single_meteor_score(lowerCamelCase_ ,lowerCamelCase_ ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
718
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
0
import numpy as np UpperCamelCase__ : Union[str, Any] = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : str = np.array(__UpperCamelCase ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = np.where(letter == self.SQUARE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = message.lower() SCREAMING_SNAKE_CASE_ : Tuple = message.replace(' ' ,'' ) SCREAMING_SNAKE_CASE_ : int = message.replace('j' ,'i' ) SCREAMING_SNAKE_CASE_ : int = np.empty((2, len(__UpperCamelCase )) ) for letter_index in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ : Dict = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ : str = numbers[0] SCREAMING_SNAKE_CASE_ : int = numbers[1] SCREAMING_SNAKE_CASE_ : Tuple = first_step.reshape(2 * len(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] = '' for numbers_index in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ : str = int(second_step[numbers_index * 2] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(second_step[(numbers_index * 2) + 1] ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.numbers_to_letter(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = encoded_message + letter return encoded_message def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = message.lower() message.replace(' ' ,'' ) SCREAMING_SNAKE_CASE_ : Tuple = np.empty(2 * len(__UpperCamelCase ) ) for letter_index in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ : Any = numbers[0] SCREAMING_SNAKE_CASE_ : Tuple = numbers[1] SCREAMING_SNAKE_CASE_ : str = first_step.reshape((2, len(__UpperCamelCase )) ) SCREAMING_SNAKE_CASE_ : List[Any] = '' for numbers_index in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(second_step[0, numbers_index] ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(second_step[1, numbers_index] ) SCREAMING_SNAKE_CASE_ : Any = self.numbers_to_letter(__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Any = decoded_message + letter return decoded_message
719
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ) -> float: """simple docstring""" if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0
def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [False] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [-1] * len(__UpperCamelCase ) def dfs(lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : int = c for u in graph[v]: if not visited[u]: dfs(__UpperCamelCase , 1 - c ) for i in range(len(__UpperCamelCase ) ): if not visited[i]: dfs(__UpperCamelCase , 0 ) for i in range(len(__UpperCamelCase ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase__ : Optional[Any] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
721
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=24 ,snake_case__=2 ,snake_case__=6 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=None ,snake_case__=1000 ,): SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : int = scope SCREAMING_SNAKE_CASE_ : Union[str, Any] = range_bbox def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : Dict = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : int = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : List[str] = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : List[Any] = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : Tuple = t SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case ( self ): return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Any = LiltModel(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(A_ ,bbox=A_ ,token_type_ids=A_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(A_ ,bbox=A_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = LiltForTokenClassification(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ,labels=A_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Any = LiltForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( A_ ,bbox=A_ ,attention_mask=A_ ,token_type_ids=A_ ,start_positions=A_ ,end_positions=A_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): __a : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : str = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = False __a : List[str] = False def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): return True def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = LiltModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=A_ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*A_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def snake_case ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = LiltModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(A_ ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[1, 2]] ,device=A_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=A_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(input_ids=A_ ,bbox=A_ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.Size([1, 2, 768] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] ,device=A_ ,) self.assertTrue(outputs.last_hidden_state.shape ,A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,A_ ,atol=1E-3 ) )
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
import os import time import numpy as np import onnxruntime as ort UpperCamelCase__ : Union[str, Any] = '''1''' UpperCamelCase__ : List[Any] = '''0''' UpperCamelCase__ : str = '''1''' UpperCamelCase__ : List[Any] = ort.SessionOptions() UpperCamelCase__ : int = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') UpperCamelCase__ : Any = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] UpperCamelCase__ : Tuple = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) UpperCamelCase__ : Any = ort.RunOptions() UpperCamelCase__ : str = 1_28 UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase__ : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase__ : str = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') UpperCamelCase__ : int = time.time() UpperCamelCase__ : str = 20_00 UpperCamelCase__ : Optional[int] = {} for iter in range(max_iters): UpperCamelCase__ : Optional[int] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 10_00 / max_iters))
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" return getitem, k def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return setitem, k, v def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" return delitem, k def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , *lowerCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" try: return fun(lowerCamelCase_ , *lowerCamelCase_ ), None except Exception as e: return None, e UpperCamelCase__ : Any = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) UpperCamelCase__ : Any = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] UpperCamelCase__ : Union[str, Any] = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] UpperCamelCase__ : Union[str, Any] = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] UpperCamelCase__ : Optional[int] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCamelCase__ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = HashMap(initial_block_size=4 ) SCREAMING_SNAKE_CASE_ : Any = {} for _, (fun, *args) in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = _run_operation(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = _run_operation(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ ) assert my_res == py_res assert str(lowerCamelCase_ ) == str(lowerCamelCase_ ) assert set(lowerCamelCase_ ) == set(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) assert set(my.items() ) == set(py.items() ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" def is_public(lowerCamelCase_ : str ) -> bool: return not name.startswith('_' ) SCREAMING_SNAKE_CASE_ : int = {name for name in dir({} ) if is_public(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Union[str, Any] = {name for name in dir(HashMap() ) if is_public(lowerCamelCase_ )} assert dict_public_names > hash_public_names
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE_ : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
703
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=[1, 1, 2] ,snake_case__=1 ,snake_case__=32 ,snake_case__=4 ,snake_case__=8 ,snake_case__=37 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=512 ,snake_case__=3 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : int = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = block_sizes SCREAMING_SNAKE_CASE_ : int = num_decoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = d_model SCREAMING_SNAKE_CASE_ : Union[str, Any] = n_head SCREAMING_SNAKE_CASE_ : Any = d_head SCREAMING_SNAKE_CASE_ : int = d_inner SCREAMING_SNAKE_CASE_ : List[str] = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout SCREAMING_SNAKE_CASE_ : Dict = attention_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = num_labels SCREAMING_SNAKE_CASE_ : Any = num_choices SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_std # Used in the tests to check the size of the first attention layer SCREAMING_SNAKE_CASE_ : Any = n_head # Used in the tests to check the size of the first hidden state SCREAMING_SNAKE_CASE_ : Tuple = self.d_model # Used in the tests to check the number of output hidden states/attentions SCREAMING_SNAKE_CASE_ : Optional[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: SCREAMING_SNAKE_CASE_ : Optional[int] = self.num_hidden_layers + 2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : int = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[int] = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Tuple = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Dict = TFFunnelModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : str = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFFunnelBaseModel(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = TFFunnelForPreTraining(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : str = TFFunnelForMaskedLM(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = TFFunnelForSequenceClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Any = self.num_choices SCREAMING_SNAKE_CASE_ : int = TFFunnelForMultipleChoice(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : List[str] = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.tile(tf.expand_dims(snake_case__ ,1 ) ,(1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : str = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Tuple = TFFunnelForTokenClassification(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelForQuestionAnswering(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase__ , lowercase__ , unittest.TestCase ): __a : str = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __a : Union[str, Any] = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __a : int = False __a : Optional[Any] = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = TFFunnelModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = ConfigTester(self ,config_class=snake_case__ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @require_tf class lowerCAmelCase_ ( lowercase__ , unittest.TestCase ): __a : Union[str, Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __a : Tuple = False __a : int = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = TFFunnelModelTester(self ,base=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ )
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0
import operator as op UpperCamelCase__ : List[str] = '''scaler.pt''' UpperCamelCase__ : Union[str, Any] = '''pytorch_model''' UpperCamelCase__ : Optional[Any] = '''random_states''' UpperCamelCase__ : int = '''optimizer''' UpperCamelCase__ : int = '''scheduler''' UpperCamelCase__ : int = '''pytorch_model.bin''' UpperCamelCase__ : Dict = '''pytorch_model.bin.index.json''' UpperCamelCase__ : Tuple = '''model.safetensors''' UpperCamelCase__ : Optional[Any] = '''model.safetensors.index.json''' UpperCamelCase__ : Optional[Any] = '''1.10.2''' UpperCamelCase__ : str = '''py38''' UpperCamelCase__ : Union[str, Any] = '''4.17.0''' UpperCamelCase__ : Dict = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] UpperCamelCase__ : Union[str, Any] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] UpperCamelCase__ : Tuple = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] UpperCamelCase__ : int = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] UpperCamelCase__ : Dict = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] UpperCamelCase__ : List[Any] = '''2.0.1''' UpperCamelCase__ : int = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] UpperCamelCase__ : str = ['''default''', '''reduce-overhead''', '''max-autotune'''] UpperCamelCase__ : Any = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase__ : List[str] = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] UpperCamelCase__ : Dict = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] UpperCamelCase__ : Optional[int] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
705
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
0
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCAmelCase_ ( __a ): __a : Union[str, Any] = "segformer" def __init__( self ,snake_case__=3 ,snake_case__=4 ,snake_case__=[2, 2, 2, 2] ,snake_case__=[8, 4, 2, 1] ,snake_case__=[32, 64, 160, 256] ,snake_case__=[7, 3, 3, 3] ,snake_case__=[4, 2, 2, 2] ,snake_case__=[1, 2, 5, 8] ,snake_case__=[4, 4, 4, 4] ,snake_case__="gelu" ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=0.1 ,snake_case__=0.02 ,snake_case__=0.1 ,snake_case__=1E-6 ,snake_case__=256 ,snake_case__=255 ,**snake_case__ ,): super().__init__(**a_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' ,a_ ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Tuple = num_encoder_blocks SCREAMING_SNAKE_CASE_ : Dict = depths SCREAMING_SNAKE_CASE_ : Dict = sr_ratios SCREAMING_SNAKE_CASE_ : Tuple = hidden_sizes SCREAMING_SNAKE_CASE_ : Dict = patch_sizes SCREAMING_SNAKE_CASE_ : List[str] = strides SCREAMING_SNAKE_CASE_ : Optional[int] = mlp_ratios SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = decoder_hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.get('reshape_last_stage' ,a_ ) SCREAMING_SNAKE_CASE_ : Any = semantic_loss_ignore_index class lowerCAmelCase_ ( __a ): __a : int = version.parse("1.11" ) @property def snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): return 1E-4 @property def snake_case ( self ): return 12
706
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Any = "SpeechT5FeatureExtractor" __a : int = "SpeechT5Tokenizer" def __init__( self ,snake_case__ ,snake_case__ ): super().__init__(__lowerCAmelCase ,__lowerCAmelCase ) def __call__( self ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('audio' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('text' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('text_target' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('audio_target' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('sampling_rate' ,__lowerCAmelCase ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor(__lowerCAmelCase ,*__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,**__lowerCAmelCase ) elif text is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer(__lowerCAmelCase ,**__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extractor(audio_target=__lowerCAmelCase ,*__lowerCAmelCase ,sampling_rate=__lowerCAmelCase ,**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = targets['input_values'] elif text_target is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(__lowerCAmelCase ,**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = targets['input_ids'] else: SCREAMING_SNAKE_CASE_ : str = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Any = labels SCREAMING_SNAKE_CASE_ : Tuple = targets.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : str = decoder_attention_mask return inputs def snake_case ( self ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('input_values' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('input_ids' ,__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('labels' ,__lowerCAmelCase ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor.pad(__lowerCAmelCase ,*__lowerCAmelCase ,**__lowerCAmelCase ) elif input_ids is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.pad(__lowerCAmelCase ,**__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = None if labels is not None: if "input_ids" in labels or (isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE_ : str = self.tokenizer.pad(__lowerCAmelCase ,**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = targets['input_ids'] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor.pad(__lowerCAmelCase ,*__lowerCAmelCase ,**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = feature_size_hack SCREAMING_SNAKE_CASE_ : List[str] = targets['input_values'] else: SCREAMING_SNAKE_CASE_ : int = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : List[Any] = labels SCREAMING_SNAKE_CASE_ : Any = targets.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : str = decoder_attention_mask return inputs def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.batch_decode(*__lowerCAmelCase ,**__lowerCAmelCase ) def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.decode(*__lowerCAmelCase ,**__lowerCAmelCase )
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = s.rsplit(UpperCAmelCase__ , UpperCAmelCase__ ) return new.join(UpperCAmelCase__ ) def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> int: """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : Any = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: SCREAMING_SNAKE_CASE_ : Tuple = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: SCREAMING_SNAKE_CASE_ : Any = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): SCREAMING_SNAKE_CASE_ : int = rreplace(UpperCAmelCase__ , '.w' , '.weight' , 1 ) if key.endswith('.b' ): SCREAMING_SNAKE_CASE_ : int = rreplace(UpperCAmelCase__ , '.b' , '.bias' , 1 ) SCREAMING_SNAKE_CASE_ : int = value.float() return upgrade @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Optional[Any]=True ) -> Tuple: """simple docstring""" from dall_e import Encoder SCREAMING_SNAKE_CASE_ : Tuple = Encoder() if os.path.exists(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = torch.load(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.hub.load_state_dict_from_url(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = ckpt.state_dict() encoder.load_state_dict(UpperCAmelCase__ ) if config_path is not None: SCREAMING_SNAKE_CASE_ : Dict = FlavaImageCodebookConfig.from_pretrained(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE_ : Any = FlavaImageCodebookConfig() SCREAMING_SNAKE_CASE_ : Optional[int] = FlavaImageCodebook(UpperCAmelCase__ ).eval() SCREAMING_SNAKE_CASE_ : int = encoder.state_dict() SCREAMING_SNAKE_CASE_ : Optional[Any] = upgrade_state_dict(UpperCAmelCase__ ) hf_model.load_state_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = hf_model.state_dict() SCREAMING_SNAKE_CASE_ : Dict = count_parameters(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = count_parameters(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(UpperCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase__ : Optional[int] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
708
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ ,'num_attention_heads' ) ) class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=32 ,snake_case__=2 ,snake_case__=3 ,snake_case__=640 ,snake_case__=4 ,snake_case__="silu" ,snake_case__=3 ,snake_case__=32 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.02 ,snake_case__=True ,snake_case__=True ,snake_case__=10 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : int = image_size SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : str = last_hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = conv_kernel_size SCREAMING_SNAKE_CASE_ : Any = output_stride SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = use_labels SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Tuple = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case ( self ): return MobileViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,conv_kernel_size=self.conv_kernel_size ,output_stride=self.output_stride ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : List[Any] = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) SCREAMING_SNAKE_CASE_ : List[str] = model(lowerCAmelCase__ ,labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Any = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): __a : str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __a : List[Any] = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __a : Optional[int] = False __a : List[str] = False __a : List[str] = False __a : Any = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileViTConfigTester(self ,config_class=lowerCAmelCase__ ,has_text_modality=lowerCAmelCase__ ) def snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def snake_case ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def snake_case ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def snake_case ( self ): pass def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCAmelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self ): pass def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case ( self ): def check_hidden_states_output(snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(**self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Any = outputs.hidden_states SCREAMING_SNAKE_CASE_ : int = 5 self.assertEqual(len(lowerCAmelCase__ ) ,lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE_ : int = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) ,[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] ,) divisor *= 2 self.assertEqual(self.model_tester.output_stride ,divisor // 2 ) SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Dict = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def snake_case ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : str = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.default_image_processor SCREAMING_SNAKE_CASE_ : Dict = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=lowerCAmelCase__ ,return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE_ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCAmelCase__ ,atol=1E-4 ) ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ : int = model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Any = image_processor(images=lowerCAmelCase__ ,return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] ,device=lowerCAmelCase__ ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,lowerCAmelCase__ ,atol=1E-4 ) ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ : Dict = model.to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_ : Tuple = image_processor(images=lowerCAmelCase__ ,return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ : int = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ,target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape ,lowerCAmelCase__ )
709
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
0
import json import sys def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] ) -> str: """simple docstring""" with open(UpperCAmelCase__ , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = json.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = results[benchmark_name] SCREAMING_SNAKE_CASE_ : int = benchmark_name.split('/' )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) SCREAMING_SNAKE_CASE_ : str = '| metric |' SCREAMING_SNAKE_CASE_ : List[str] = '|--------|' SCREAMING_SNAKE_CASE_ : Dict = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE_ : List[str] = benchmark_res[metric_name] SCREAMING_SNAKE_CASE_ : Optional[int] = metric_vals['new'] SCREAMING_SNAKE_CASE_ : Tuple = metric_vals.get('old' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = metric_vals.get('diff' , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = F' {new_val:f}' if isinstance(UpperCAmelCase__ , (int, float) ) else 'None' if old_val is not None: val_str += F' / {old_val:f}' if isinstance(UpperCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(UpperCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase__ ) ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = sys.argv[1] UpperCamelCase__ : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
710
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCamelCase__ : int = logging.get_logger(__name__) class lowerCAmelCase_ ( __UpperCAmelCase ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use CLIPImageProcessor instead.' ,UpperCAmelCase_ ,) super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ )
711
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ : List[str] = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ : Optional[Any] = 'UperNetConfig' class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 0 ,snake_case__ = False ,snake_case__ = 1 ,): super().__init__() SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Convad( in_channels=UpperCamelCase__ ,out_channels=UpperCamelCase__ ,kernel_size=UpperCamelCase__ ,padding=UpperCamelCase__ ,bias=UpperCamelCase__ ,dilation=UpperCamelCase__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.BatchNormad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.ReLU() def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.batch_norm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.activation(UpperCamelCase__ ) return output class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Dict = [ nn.AdaptiveAvgPoolad(UpperCamelCase__ ), UperNetConvModule(UpperCamelCase__ ,UpperCamelCase__ ,kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCamelCase__ ) ,UpperCamelCase__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = input for layer in self.layers: SCREAMING_SNAKE_CASE_ : int = layer(UpperCamelCase__ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Any = pool_scales SCREAMING_SNAKE_CASE_ : List[Any] = align_corners SCREAMING_SNAKE_CASE_ : List[Any] = in_channels SCREAMING_SNAKE_CASE_ : str = channels SCREAMING_SNAKE_CASE_ : List[Any] = [] for i, pool_scale in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=UpperCamelCase__ ,in_channels=UpperCamelCase__ ,channels=UpperCamelCase__ ) self.blocks.append(UpperCamelCase__ ) self.add_module(str(UpperCamelCase__ ) ,UpperCamelCase__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE_ : Tuple = ppm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = nn.functional.interpolate( UpperCamelCase__ ,size=x.size()[2:] ,mode='bilinear' ,align_corners=self.align_corners ) ppm_outs.append(UpperCamelCase__ ) return ppm_outs class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : str = config SCREAMING_SNAKE_CASE_ : Dict = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE_ : Any = in_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = config.hidden_size SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : int = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE_ : Tuple = UperNetPyramidPoolingModule( self.pool_scales ,self.in_channels[-1] ,self.channels ,align_corners=self.align_corners ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) # FPN Module SCREAMING_SNAKE_CASE_ : Tuple = nn.ModuleList() SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE_ : int = UperNetConvModule(UpperCamelCase__ ,self.channels ,kernel_size=1 ) SCREAMING_SNAKE_CASE_ : List[str] = UperNetConvModule(self.channels ,self.channels ,kernel_size=3 ,padding=1 ) self.lateral_convs.append(UpperCamelCase__ ) self.fpn_convs.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels ,self.channels ,kernel_size=3 ,padding=1 ,) def snake_case ( self ): self.apply(self._init_weights ) def snake_case ( self ,snake_case__ ): if isinstance(UpperCamelCase__ ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = inputs[-1] SCREAMING_SNAKE_CASE_ : List[Any] = [x] psp_outs.extend(self.psp_modules(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat(UpperCamelCase__ ,dim=1 ) SCREAMING_SNAKE_CASE_ : List[str] = self.bottleneck(UpperCamelCase__ ) return output def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCamelCase__ ) ) # build top-down path SCREAMING_SNAKE_CASE_ : List[Any] = len(UpperCamelCase__ ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): SCREAMING_SNAKE_CASE_ : List[Any] = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE_ : str = laterals[i - 1] + nn.functional.interpolate( laterals[i] ,size=UpperCamelCase__ ,mode='bilinear' ,align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE_ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 ,0 ,-1 ): SCREAMING_SNAKE_CASE_ : List[Any] = nn.functional.interpolate( fpn_outs[i] ,size=fpn_outs[0].shape[2:] ,mode='bilinear' ,align_corners=self.align_corners ) SCREAMING_SNAKE_CASE_ : Any = torch.cat(UpperCamelCase__ ,dim=1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.fpn_bottleneck(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.classifier(UpperCamelCase__ ) return output class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ = 2 ,snake_case__ = 3 ,snake_case__ = 1 ): super().__init__() SCREAMING_SNAKE_CASE_ : Dict = config SCREAMING_SNAKE_CASE_ : List[str] = config.auxiliary_in_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = config.auxiliary_channels SCREAMING_SNAKE_CASE_ : int = config.auxiliary_num_convs SCREAMING_SNAKE_CASE_ : Union[str, Any] = config.auxiliary_concat_input SCREAMING_SNAKE_CASE_ : List[str] = in_index SCREAMING_SNAKE_CASE_ : Tuple = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE_ : str = [] convs.append( UperNetConvModule( self.in_channels ,self.channels ,kernel_size=UpperCamelCase__ ,padding=UpperCamelCase__ ,dilation=UpperCamelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels ,self.channels ,kernel_size=UpperCamelCase__ ,padding=UpperCamelCase__ ,dilation=UpperCamelCase__ ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Identity() else: SCREAMING_SNAKE_CASE_ : List[Any] = nn.Sequential(*UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE_ : Any = UperNetConvModule( self.in_channels + self.channels ,self.channels ,kernel_size=UpperCamelCase__ ,padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ : List[Any] = nn.Convad(self.channels ,config.num_labels ,kernel_size=1 ) def snake_case ( self ): self.apply(self._init_weights ) def snake_case ( self ,snake_case__ ): if isinstance(UpperCamelCase__ ,nn.Convad ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.convs(UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.conv_cat(torch.cat([hidden_states, output] ,dim=1 ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.classifier(UpperCamelCase__ ) return output class lowerCAmelCase_ ( UpperCamelCase_ ): __a : str = UperNetConfig __a : Tuple = "pixel_values" __a : Optional[Any] = True def snake_case ( self ,snake_case__ ): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case ( self ,snake_case__ ,snake_case__=False ): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = value UpperCamelCase__ : str = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase__ : int = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes." , UpperCamelCase_ , ) class lowerCAmelCase_ ( UpperCamelCase_ ): def __init__( self ,snake_case__ ): super().__init__(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE_ : List[Any] = UperNetHead(UpperCamelCase__ ,in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE_ : List[Any] = UperNetFCNHead(UpperCamelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=UpperCamelCase__ ,config_class=_CONFIG_FOR_DOC ) def snake_case ( self ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,): SCREAMING_SNAKE_CASE_ : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Dict = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE_ : Optional[Any] = self.backbone.forward_with_filtered_kwargs( UpperCamelCase__ ,output_hidden_states=UpperCamelCase__ ,output_attentions=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.feature_maps SCREAMING_SNAKE_CASE_ : Optional[int] = self.decode_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = nn.functional.interpolate(UpperCamelCase__ ,size=pixel_values.shape[2:] ,mode='bilinear' ,align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE_ : Any = self.auxiliary_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.functional.interpolate( UpperCamelCase__ ,size=pixel_values.shape[2:] ,mode='bilinear' ,align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss SCREAMING_SNAKE_CASE_ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(UpperCamelCase__ ,UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(UpperCamelCase__ ,UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[Any] = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCamelCase__ ,logits=UpperCamelCase__ ,hidden_states=outputs.hidden_states ,attentions=outputs.attentions ,)
712
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCamelCase__ : Tuple = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.' ,_SCREAMING_SNAKE_CASE ,) super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
713
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ : Optional[int] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCamelCase__ : str = F"""https://www.google.com/search?q={query}&num=100""" UpperCamelCase__ : str = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCamelCase__ : Any = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCamelCase__ : str = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ : Optional[int] = logging.getLogger() UpperCamelCase__ : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase_ ( lowercase__ ): def snake_case ( self ,snake_case__ ): os.makedirs(__lowercase ,exist_ok=__lowercase ) SCREAMING_SNAKE_CASE_ : Any = {'source': 'What is love ?', 'target': 'life'} SCREAMING_SNAKE_CASE_ : List[Any] = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: SCREAMING_SNAKE_CASE_ : Dict = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowercase ,F'{split}.{field}' ) ,'w' ) as f: f.write(__lowercase ) def snake_case ( self ,snake_case__ ,snake_case__ = "pytorch" ): SCREAMING_SNAKE_CASE_ : int = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_ : int = os.path.join(__lowercase ,'output' ) SCREAMING_SNAKE_CASE_ : str = os.path.join(__lowercase ,'data' ) self._create_dummy_data(data_dir=__lowercase ) SCREAMING_SNAKE_CASE_ : int = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) SCREAMING_SNAKE_CASE_ : Dict = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowercase ,env=self.get_env() ) SCREAMING_SNAKE_CASE_ : int = os.path.join(__lowercase ,'metrics.json' ) with open(__lowercase ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = json.load(__lowercase ) return result @require_torch_gpu def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_multi_gpu def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_gpu @require_ray def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self._run_finetune(gpus=1 ,distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 ) @require_torch_multi_gpu @require_ray def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self._run_finetune(gpus=1 ,distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] ,0.2 )
715
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCAmelCase_ ( __snake_case ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = False ,**snake_case__ ,): super().__init__(features=A_ ,cache_dir=A_ ,keep_in_memory=A_ ,**A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = Sql( cache_dir=A_ ,features=A_ ,sql=A_ ,con=A_ ,**A_ ,) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Tuple = None self.builder.download_and_prepare( download_config=A_ ,download_mode=A_ ,verification_mode=A_ ,base_path=A_ ,) # Build dataset for splits SCREAMING_SNAKE_CASE_ : Dict = self.builder.as_dataset( split='train' ,verification_mode=A_ ,in_memory=self.keep_in_memory ) return dataset class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,**snake_case__ ,): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) SCREAMING_SNAKE_CASE_ : Dict = dataset SCREAMING_SNAKE_CASE_ : List[Any] = name SCREAMING_SNAKE_CASE_ : Tuple = con SCREAMING_SNAKE_CASE_ : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE_ : Dict = num_proc SCREAMING_SNAKE_CASE_ : str = to_sql_kwargs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.to_sql_kwargs.pop('sql' ,A_ ) SCREAMING_SNAKE_CASE_ : int = self.to_sql_kwargs.pop('con' ,A_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.to_sql_kwargs.pop('index' ,A_ ) SCREAMING_SNAKE_CASE_ : List[Any] = self._write(index=A_ ,**self.to_sql_kwargs ) return written def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = args SCREAMING_SNAKE_CASE_ : List[str] = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE_ : Tuple = query_table( table=self.dataset.data ,key=slice(A_ ,offset + self.batch_size ) ,indices=self.dataset._indices ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch.to_pandas() SCREAMING_SNAKE_CASE_ : str = df.to_sql(self.name ,self.con ,index=A_ ,**A_ ) return num_rows or len(A_ ) def snake_case ( self ,snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset ) ,self.batch_size ) ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE_ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,A_ ,A_ )] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='ba' ,disable=not logging.is_progress_bar_enabled() ,desc='Creating SQL from Arrow format' ,): written += num_rows return written
716
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCamelCase__ : Optional[Any] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase__ , unittest.TestCase ): __a : Tuple = BlenderbotSmallTokenizer __a : List[Any] = False def snake_case ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : List[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] SCREAMING_SNAKE_CASE_ : Dict = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] SCREAMING_SNAKE_CASE_ : Optional[int] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = "adapt act apte" SCREAMING_SNAKE_CASE_ : Tuple = "adapt act apte" return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "adapt act apte" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["adapt", "act", "ap@@", "te"] SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] SCREAMING_SNAKE_CASE_ : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,lowerCamelCase__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] SCREAMING_SNAKE_CASE_ : List[Any] = "I am a small frog." SCREAMING_SNAKE_CASE_ : List[Any] = tok([src_text] ,padding=lowerCamelCase__ ,truncation=lowerCamelCase__ )["input_ids"] SCREAMING_SNAKE_CASE_ : List[Any] = tok.batch_decode(lowerCamelCase__ ,skip_special_tokens=lowerCamelCase__ ,clean_up_tokenization_spaces=lowerCamelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) SCREAMING_SNAKE_CASE_ : Tuple = "I am a small frog ." SCREAMING_SNAKE_CASE_ : int = "." SCREAMING_SNAKE_CASE_ : Optional[int] = tok(lowerCamelCase__ )["input_ids"] SCREAMING_SNAKE_CASE_ : int = tok(lowerCamelCase__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
718
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase__ : int = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCamelCase__ : str = { '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def __UpperCAmelCase ( lowerCamelCase_ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(state_dict.keys() ) for name in state_dict_keys: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(lowercase__ ) # emb -> embedding if name.startswith('emb.' ): SCREAMING_SNAKE_CASE_ : Tuple = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): SCREAMING_SNAKE_CASE_ : Any = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowercase__ ) # ffn -> feed_forward SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowercase__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): SCREAMING_SNAKE_CASE_ : str = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): SCREAMING_SNAKE_CASE_ : int = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": SCREAMING_SNAKE_CASE_ : List[str] = 'rwkv.' + name SCREAMING_SNAKE_CASE_ : str = weight return state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=None ) -> int: """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) SCREAMING_SNAKE_CASE_ : List[str] = 5_02_77 SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: SCREAMING_SNAKE_CASE_ : List[str] = PreTrainedTokenizerFast(tokenizer_file=lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(lowercase__ ) tokenizer.save_pretrained(lowercase__ ) # 2. Build the config SCREAMING_SNAKE_CASE_ : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: SCREAMING_SNAKE_CASE_ : Tuple = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F'`size` should be one of {possible_sizes}, got {size}.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = RwkvConfig( vocab_size=lowercase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowercase__ ) # 3. Download model file then convert state_dict SCREAMING_SNAKE_CASE_ : Dict = hf_hub_download(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : int = torch.load(lowercase__ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : List[Any] = convert_state_dict(lowercase__ ) # 4. Split in shards and save SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = shard_checkpoint(lowercase__ ) for shard_file, shard in shards.items(): torch.save(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) if index is not None: SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowercase__ , lowercase__ ) # Save the index as well with open(lowercase__ , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : str = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '\n' f.write(lowercase__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(lowercase__ , lowercase__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowercase__ , lowercase__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained(lowercase__ ) model.push_to_hub(lowercase__ , max_shard_size='2GB' ) tokenizer.push_to_hub(lowercase__ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCamelCase__ : List[Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
719
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
0
'''simple docstring''' import math class lowerCAmelCase_ : def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = 0.0 SCREAMING_SNAKE_CASE_ : Tuple = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) ,2 ) da += math.pow((sample[i] - weights[1][i]) ,2 ) return 0 if da > da else 1 return 0 def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) SCREAMING_SNAKE_CASE_ : int = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training SCREAMING_SNAKE_CASE_ : Optional[int] = SelfOrganizingMap() SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : Tuple = 0.5 for _ in range(UpperCamelCase__ ): for j in range(len(UpperCamelCase__ ) ): # training sample SCREAMING_SNAKE_CASE_ : Any = training_samples[j] # Compute the winning vector SCREAMING_SNAKE_CASE_ : Optional[int] = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # Update the winning vector SCREAMING_SNAKE_CASE_ : List[Any] = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # classify test sample SCREAMING_SNAKE_CASE_ : Dict = [0, 0, 0, 1] SCREAMING_SNAKE_CASE_ : Dict = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[str] = MvpTokenizer __a : Dict = MvpTokenizerFast __a : str = True __a : List[Any] = filter_roberta_detectors def snake_case ( self ): super().setUp() SCREAMING_SNAKE_CASE_ : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE_ : List[str] = dict(zip(UpperCAmelCase__ ,range(len(UpperCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE_ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE_ : str = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCAmelCase__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase__ ) def snake_case ( self ,snake_case__ ): return "lower newer", "lower newer" @cached_property def snake_case ( self ): return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def snake_case ( self ): return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE_ : Dict = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(UpperCAmelCase__ ,max_length=len(UpperCAmelCase__ ) ,padding=UpperCAmelCase__ ,return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) SCREAMING_SNAKE_CASE_ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase__ ,UpperCAmelCase__ ) # Test that special tokens are reset @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer(UpperCAmelCase__ ,padding=UpperCAmelCase__ ,return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' ,UpperCAmelCase__ ) self.assertIn('attention_mask' ,UpperCAmelCase__ ) self.assertNotIn('labels' ,UpperCAmelCase__ ) self.assertNotIn('decoder_attention_mask' ,UpperCAmelCase__ ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(text_target=UpperCAmelCase__ ,max_length=32 ,padding='max_length' ,return_tensors='pt' ) self.assertEqual(32 ,targets['input_ids'].shape[1] ) @require_torch def snake_case ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] ,padding=UpperCAmelCase__ ,truncation=UpperCAmelCase__ ,return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase__ ,UpperCAmelCase__ ) self.assertEqual(batch.input_ids.shape ,(2, 1024) ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = ['A long paragraph for summarization.'] SCREAMING_SNAKE_CASE_ : Optional[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE_ : Dict = tokenizer(UpperCAmelCase__ ,text_target=UpperCAmelCase__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs['input_ids'] SCREAMING_SNAKE_CASE_ : Optional[int] = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def snake_case ( self ): pass def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ ,**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained(UpperCAmelCase__ ,**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE_ : Any = tokenizer_r.encode_plus(UpperCAmelCase__ ,add_special_tokens=UpperCAmelCase__ ,return_token_type_ids=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer_p.encode_plus(UpperCAmelCase__ ,add_special_tokens=UpperCAmelCase__ ,return_token_type_ids=UpperCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase__ ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCAmelCase__ ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
721
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class lowerCAmelCase_ ( __a ): __a : List[str] = "luke" def __init__( self ,snake_case__=50267 ,snake_case__=500000 ,snake_case__=768 ,snake_case__=256 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=True ,snake_case__=None ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,**A__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = entity_vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = entity_emb_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : str = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = use_entity_aware_attention SCREAMING_SNAKE_CASE_ : List[Any] = classifier_dropout
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
import random def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = a[left_index] SCREAMING_SNAKE_CASE_ : List[Any] = left_index + 1 for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ): if a[j] < pivot: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = a[i], a[j] i += 1 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = a[i - 1], a[left_index] return i - 1 def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" if left < right: SCREAMING_SNAKE_CASE_ : List[Any] = random.randint(_SCREAMING_SNAKE_CASE , right - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound SCREAMING_SNAKE_CASE_ : List[str] = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) quick_sort_random( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( _SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = input('Enter numbers separated by a comma:\n' ).strip() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(',' )] quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=64 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Tuple = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : List[Any] = seq_length SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = embedding_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Any = num_choices SCREAMING_SNAKE_CASE_ : List[str] = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : List[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : str = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCamelCase ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MegatronBertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = model(__UpperCamelCase ,token_type_ids=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = MegatronBertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = MegatronBertForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = MegatronBertForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = MegatronBertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,next_sentence_label=__UpperCamelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MegatronBertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,start_positions=__UpperCamelCase ,end_positions=__UpperCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.num_labels SCREAMING_SNAKE_CASE_ : List[Any] = MegatronBertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = MegatronBertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(__UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE_ : Any = MegatronBertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( __UpperCamelCase ,attention_mask=__UpperCamelCase ,token_type_ids=__UpperCamelCase ,labels=__UpperCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): __a : str = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __a : List[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[int] = True # test_resize_embeddings = False __a : Tuple = False def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : str = super()._prepare_for_class(__UpperCamelCase ,__UpperCamelCase ,return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__UpperCamelCase ) return inputs_dict def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ConfigTester(self ,config_class=__UpperCamelCase ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase ) def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> str: """simple docstring""" return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) UpperCamelCase__ : List[Any] = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE_ : str = os.path.join(os.environ['MYDIR'] ,__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = MegatronBertModel.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) model.half() SCREAMING_SNAKE_CASE_ : Any = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(__UpperCamelCase )[0] SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape ,__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = output[0, ii, jj] SCREAMING_SNAKE_CASE_ : List[str] = expected[3 * ii + jj] SCREAMING_SNAKE_CASE_ : List[Any] = 'ii={} jj={} a={} b={}'.format(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) self.assertTrue(math.isclose(__UpperCamelCase ,__UpperCamelCase ,rel_tol=__UpperCamelCase ,abs_tol=__UpperCamelCase ) ,msg=__UpperCamelCase )
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0, 0, 0 SCREAMING_SNAKE_CASE_ : List[Any] = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE_ : Optional[int] = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE_ : List[str] = ugly_nums[ia] * 5 for _ in range(1 , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ugly_nums.append(lowerCAmelCase_ ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE_ : int = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE_ : Any = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(2_00) = }""")
703
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
0
import random def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float , lowerCamelCase_ : bool = False ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ : List[str] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ : List[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ : Tuple = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = len([g for position, g in enumerate(a_ ) if g == main_target[position]] ) return (item, float(a_ )) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE_ : List[str] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : list[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = list(a_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE_ : Any = random.choice(a_ ) return "".join(a_ ) def __UpperCAmelCase ( lowerCamelCase_ : tuple[str, float] , lowerCamelCase_ : list[tuple[str, float]] , lowerCamelCase_ : list[str] , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE_ : List[Any] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE_ : str = 10 if child_n >= 10 else child_n for _ in range(a_ ): SCREAMING_SNAKE_CASE_ : str = population_score[random.randint(0 , a_ )][0] SCREAMING_SNAKE_CASE_ : Dict = crossover(parent_a[0] , a_ ) # Append new string to the population list. pop.append(mutate(a_ , a_ ) ) pop.append(mutate(a_ , a_ ) ) return pop def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : list[str] , lowerCamelCase_ : bool = True ) -> int: """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE_ : List[str] = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(a_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE_ : str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE_ : Optional[Any] = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(a_ ) # Generate random starting population. SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for _ in range(a_ ): population.append(''.join([random.choice(a_ ) for i in range(len(a_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE_ : List[Any] = [evaluate(a_ , a_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE_ : Optional[int] = sorted(a_ , key=lambda lowerCamelCase_ : x[1] , reverse=a_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE_ : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE_ : List[Any] = [ (item, score / len(a_ )) for item, score in population_score ] # This is selection for i in range(a_ ): population.extend(select(population_score[int(a_ )] , a_ , a_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a_ ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ : List[Any] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCamelCase__ : List[str] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
705
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCamelCase__ : Optional[int] = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[Any] = "rag" __a : Any = True def __init__( self ,snake_case__=None ,snake_case__=True ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=" / " ,snake_case__=" // " ,snake_case__=5 ,snake_case__=300 ,snake_case__=768 ,snake_case__=8 ,snake_case__="wiki_dpr" ,snake_case__="train" ,snake_case__="compressed" ,snake_case__=None ,snake_case__=None ,snake_case__=False ,snake_case__=False ,snake_case__=0.0 ,snake_case__=True ,snake_case__=False ,snake_case__=False ,snake_case__=False ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( bos_token_id=snake_case__ ,pad_token_id=snake_case__ ,eos_token_id=snake_case__ ,decoder_start_token_id=snake_case__ ,forced_eos_token_id=snake_case__ ,is_encoder_decoder=snake_case__ ,prefix=snake_case__ ,vocab_size=snake_case__ ,**snake_case__ ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('question_encoder' ) SCREAMING_SNAKE_CASE_ : Tuple = question_encoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('generator' ) SCREAMING_SNAKE_CASE_ : Any = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.for_model(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.for_model(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = reduce_loss SCREAMING_SNAKE_CASE_ : Dict = label_smoothing SCREAMING_SNAKE_CASE_ : Dict = exclude_bos_score SCREAMING_SNAKE_CASE_ : Tuple = do_marginalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = title_sep SCREAMING_SNAKE_CASE_ : Any = doc_sep SCREAMING_SNAKE_CASE_ : Union[str, Any] = n_docs SCREAMING_SNAKE_CASE_ : int = max_combined_length SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : str = dataset_split SCREAMING_SNAKE_CASE_ : Union[str, Any] = index_name SCREAMING_SNAKE_CASE_ : Any = retrieval_vector_size SCREAMING_SNAKE_CASE_ : str = retrieval_batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = passages_path SCREAMING_SNAKE_CASE_ : Dict = index_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_dummy_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = output_retrieved SCREAMING_SNAKE_CASE_ : Tuple = do_deduplication SCREAMING_SNAKE_CASE_ : List[str] = use_cache if self.forced_eos_token_id is None: SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.generator ,'forced_eos_token_id' ,snake_case__ ) @classmethod def snake_case ( cls ,snake_case__ ,snake_case__ ,**snake_case__ ): return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.question_encoder.to_dict() SCREAMING_SNAKE_CASE_ : Tuple = self.generator.to_dict() SCREAMING_SNAKE_CASE_ : int = self.__class__.model_type return output
706
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( _UpperCamelCase , unittest.TestCase ): __a : str = DiTPipeline __a : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __a : Dict = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __a : Any = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __a : str = False def snake_case ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=__a ,activation_fn='gelu-approximate' ,num_embeds_ada_norm=1000 ,norm_type='ada_norm_zero' ,norm_elementwise_affine=__a ,) SCREAMING_SNAKE_CASE_ : Any = AutoencoderKL() SCREAMING_SNAKE_CASE_ : Dict = DDIMScheduler() SCREAMING_SNAKE_CASE_ : str = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def snake_case ( self ,snake_case__ ,snake_case__=0 ): if str(__a ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(__a ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=__a ).manual_seed(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = "cpu" SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : str = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs(__a ) SCREAMING_SNAKE_CASE_ : str = pipe(**__a ).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) SCREAMING_SNAKE_CASE_ : Any = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a ,1E-3 ) def snake_case ( self ): self._test_inference_batch_single_identical(relax_max_difference=__a ,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Dict = ["vase", "umbrella", "white shark", "white wolf"] SCREAMING_SNAKE_CASE_ : Any = pipe.get_label_ids(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(__a ,generator=__a ,num_inference_steps=40 ,output_type='np' ).images for word, image in zip(__a ,__a ): SCREAMING_SNAKE_CASE_ : List[str] = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Tuple = ["vase", "umbrella"] SCREAMING_SNAKE_CASE_ : Optional[int] = pipe.get_label_ids(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = pipe(__a ,generator=__a ,num_inference_steps=25 ,output_type='np' ).images for word, image in zip(__a ,__a ): SCREAMING_SNAKE_CASE_ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
from __future__ import annotations import time UpperCamelCase__ : List[Any] = list[tuple[int, int]] UpperCamelCase__ : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase__ : List[Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = pos_x SCREAMING_SNAKE_CASE_ : Union[str, Any] = pos_y SCREAMING_SNAKE_CASE_ : Tuple = (pos_y, pos_x) SCREAMING_SNAKE_CASE_ : Optional[int] = goal_x SCREAMING_SNAKE_CASE_ : Optional[Any] = goal_y SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,_snake_case ) SCREAMING_SNAKE_CASE_ : Tuple = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,_snake_case ) SCREAMING_SNAKE_CASE_ : Tuple = [self.start] SCREAMING_SNAKE_CASE_ : List[Any] = False def snake_case ( self ): while self.node_queue: SCREAMING_SNAKE_CASE_ : str = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE_ : List[str] = True return self.retrace_path(_snake_case ) SCREAMING_SNAKE_CASE_ : Any = self.get_successors(_snake_case ) for node in successors: self.node_queue.append(_snake_case ) if not self.reached: return [self.start.pos] return None def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for action in delta: SCREAMING_SNAKE_CASE_ : Optional[Any] = parent.pos_x + action[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_snake_case ,_snake_case ,self.target.pos_y ,self.target.pos_x ,_snake_case ) ) return successors def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = node SCREAMING_SNAKE_CASE_ : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE_ : Dict = current_node.parent path.reverse() return path class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = BreadthFirstSearch(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BreadthFirstSearch(_snake_case ,_snake_case ) SCREAMING_SNAKE_CASE_ : Any = False def snake_case ( self ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE_ : List[str] = self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE_ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE_ : List[str] = True return self.retrace_bidirectional_path( _snake_case ,_snake_case ) SCREAMING_SNAKE_CASE_ : Optional[int] = current_bwd_node SCREAMING_SNAKE_CASE_ : Any = current_fwd_node SCREAMING_SNAKE_CASE_ : Tuple = { self.fwd_bfs: self.fwd_bfs.get_successors(_snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(_snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.fwd_bfs.retrace_path(_snake_case ) SCREAMING_SNAKE_CASE_ : int = self.bwd_bfs.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE_ : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() UpperCamelCase__ : Any = (0, 0) UpperCamelCase__ : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : Optional[Any] = BreadthFirstSearch(init, goal) UpperCamelCase__ : Dict = bfs.search() UpperCamelCase__ : int = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : str = BidirectionalBreadthFirstSearch(init, goal) UpperCamelCase__ : Optional[int] = bd_bfs.search() UpperCamelCase__ : List[str] = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
708
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Optional[Any] = { """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCamelCase__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
0
from ... import PretrainedConfig UpperCamelCase__ : Any = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowerCAmelCase_ ( UpperCamelCase__ ): __a : int = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __a : Dict = "nezha" def __init__( self ,snake_case__=21128 ,snake_case__=768 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=64 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=0.1 ,snake_case__=0 ,snake_case__=2 ,snake_case__=3 ,snake_case__=True ,**snake_case__ ,): super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = max_relative_position SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = classifier_dropout SCREAMING_SNAKE_CASE_ : Any = use_cache
710
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ : Any = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCamelCase__ : Tuple = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, \"{attribute}\"' in modeling_source or F'getattr(self.config, \"{attribute}\"' in modeling_source ): SCREAMING_SNAKE_CASE_ : int = True # Deal with multi-line cases elif ( re.search( RF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"' , __UpperCamelCase , ) is not None ): SCREAMING_SNAKE_CASE_ : Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE_ : Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE_ : List[Any] = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] SCREAMING_SNAKE_CASE_ : List[str] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed SCREAMING_SNAKE_CASE_ : Optional[Any] = True if not attribute_used: SCREAMING_SNAKE_CASE_ : int = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE_ : Any = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE_ : Dict = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE_ : Optional[int] = True elif attribute.endswith('_token_id' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE_ : Tuple = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) SCREAMING_SNAKE_CASE_ : Dict = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] SCREAMING_SNAKE_CASE_ : int = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE_ : Optional[Any] = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE_ : Optional[int] = inspect.getsourcefile(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ : int = os.path.dirname(__UpperCamelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE_ : Union[str, Any] = [os.path.join(__UpperCamelCase , __UpperCamelCase ) for fn in os.listdir(__UpperCamelCase ) if fn.startswith('modeling_' )] # Get the source code strings SCREAMING_SNAKE_CASE_ : int = [] for path in modeling_paths: if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE_ : Any = [] for config_param, default_value in zip(__UpperCamelCase , __UpperCamelCase ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE_ : int = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): unused_attributes.append(attributes[0] ) return sorted(__UpperCamelCase ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE_ : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCamelCase_ : inspect.isclass(__UpperCamelCase ) and issubclass(__UpperCamelCase , __UpperCamelCase ) and inspect.getmodule(__UpperCamelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE_ : List[str] = check_config_attributes_being_used(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = unused_attributes if len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(__UpperCamelCase ) if __name__ == "__main__": check_config_attributes()
711
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE_ : Optional[int] = TensorFlowBenchmark(args=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: SCREAMING_SNAKE_CASE_ : Optional[int] = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' SCREAMING_SNAKE_CASE_ : List[str] = ' '.join(str(lowerCamelCase_ ).split(' ' )[:-1] ) SCREAMING_SNAKE_CASE_ : List[str] = '' SCREAMING_SNAKE_CASE_ : Optional[Any] = eval(str(lowerCamelCase_ ).split(' ' )[-1] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : Dict = full_error_msg + begin_error_msg + str(lowerCamelCase_ ) raise ValueError(lowerCamelCase_ ) benchmark.run() if __name__ == "__main__": main()
712
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__ = True ,snake_case__ = None ,snake_case__ = 32 ,snake_case__ = True ,snake_case__ = 1 / 255 ,snake_case__ = True ,snake_case__ = True ,snake_case__ = [0.48145466, 0.4578275, 0.40821073] ,snake_case__ = [0.26862954, 0.26130258, 0.27577711] ,snake_case__ = True ,snake_case__=7 ,snake_case__=30 ,snake_case__=400 ,snake_case__=3 ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : str = do_resize SCREAMING_SNAKE_CASE_ : str = size if size is not None else {"shortest_edge": 288} SCREAMING_SNAKE_CASE_ : Tuple = size_divisor SCREAMING_SNAKE_CASE_ : Optional[int] = do_rescale SCREAMING_SNAKE_CASE_ : Tuple = rescale_factor SCREAMING_SNAKE_CASE_ : List[Any] = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = do_center_crop SCREAMING_SNAKE_CASE_ : List[Any] = image_mean SCREAMING_SNAKE_CASE_ : Optional[int] = image_std SCREAMING_SNAKE_CASE_ : Any = do_pad SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : List[str] = min_resolution SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_resolution def snake_case ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case ( self ,snake_case__ ,snake_case__=False ): if not batched: SCREAMING_SNAKE_CASE_ : int = self.size["shortest_edge"] SCREAMING_SNAKE_CASE_ : List[str] = image_inputs[0] if isinstance(snake_case__ ,Image.Image ): SCREAMING_SNAKE_CASE_ : Optional[Any] = image.size else: SCREAMING_SNAKE_CASE_ : Dict = image.shape[1], image.shape[2] SCREAMING_SNAKE_CASE_ : Any = size / min(snake_case__ ,snake_case__ ) if h < w: SCREAMING_SNAKE_CASE_ : Union[str, Any] = size, scale * w else: SCREAMING_SNAKE_CASE_ : Dict = scale * h, size SCREAMING_SNAKE_CASE_ : Union[str, Any] = int((1333 / 800) * size ) if max(snake_case__ ,snake_case__ ) > max_size: SCREAMING_SNAKE_CASE_ : int = max_size / max(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = newh * scale SCREAMING_SNAKE_CASE_ : List[Any] = neww * scale SCREAMING_SNAKE_CASE_ : Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) SCREAMING_SNAKE_CASE_ : Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ : Tuple = max(snake_case__ ,key=lambda snake_case__ : item[0] )[0] SCREAMING_SNAKE_CASE_ : List[Any] = max(snake_case__ ,key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( _A , unittest.TestCase ): __a : Optional[Any] = BridgeTowerImageProcessor if is_vision_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = BridgeTowerImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'image_mean' ) ) self.assertTrue(hasattr(snake_case__ ,'image_std' ) ) self.assertTrue(hasattr(snake_case__ ,'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'size_divisor' ) ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image processor SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image processor SCREAMING_SNAKE_CASE_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : str = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : int = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : List[Any] = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def snake_case ( self ): # Initialize image processor SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched SCREAMING_SNAKE_CASE_ : str = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ ,batched=snake_case__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
713
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase__ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ : Optional[Any] = k.replace(a__ , a__ ) return k def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = DEFAULTS.copy() cfg_kwargs.update(a__ ) SCREAMING_SNAKE_CASE_ : List[str] = PegasusConfig(**a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = PegasusForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE_ : int = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ : Tuple = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ : Optional[int] = rename_state_dict_key(a__ ) if new_k not in sd: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ : Dict = v.T SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor(a__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ : int = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ : List[str] = mapping['shared.weight'] SCREAMING_SNAKE_CASE_ : int = {k: torch.zeros_like(a__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**a__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = torch_model.model.load_state_dict(a__ , strict=a__ ) SCREAMING_SNAKE_CASE_ : Any = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def __UpperCAmelCase ( lowerCamelCase_ : int="./ckpt/aeslc/model.ckpt-32000" ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['Adafactor', 'global_step'] for name, shape in tqdm(a__ , desc='converting tf checkpoint to dict' ): SCREAMING_SNAKE_CASE_ : List[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ : Optional[int] = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = array return tf_weights def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(a__ ).parent.name SCREAMING_SNAKE_CASE_ : Any = task_specific_params[F'summarization_{dataset}']['max_position_embeddings'] SCREAMING_SNAKE_CASE_ : List[str] = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=a__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(a__ ) # convert model SCREAMING_SNAKE_CASE_ : List[str] = get_tf_weights_as_numpy(a__ ) SCREAMING_SNAKE_CASE_ : str = task_specific_params[F'summarization_{dataset}'] if dataset == "large": SCREAMING_SNAKE_CASE_ : Any = task_specific_params SCREAMING_SNAKE_CASE_ : Union[str, Any] = convert_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) SCREAMING_SNAKE_CASE_ : List[Any] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(a__ , Path(a__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ : List[str] = parser.parse_args() if args.save_dir is None: UpperCamelCase__ : Union[str, Any] = Path(args.tf_ckpt_path).parent.name UpperCamelCase__ : List[str] = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
0
from collections import namedtuple import requests from lxml import html # type: ignore UpperCamelCase__ : List[str] = namedtuple('''covid_data''', '''cases deaths recovered''') def __UpperCAmelCase ( lowerCamelCase_ : str = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = '//div[@class = \"maincounter-number\"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) UpperCamelCase__ : Any = '''Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
715
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__="resnet50" ,snake_case__=3 ,snake_case__=32 ,snake_case__=3 ,snake_case__=True ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Optional[int] = parent SCREAMING_SNAKE_CASE_ : Tuple = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE_ : Optional[Any] = stage_names SCREAMING_SNAKE_CASE_ : Any = out_features SCREAMING_SNAKE_CASE_ : Dict = backbone SCREAMING_SNAKE_CASE_ : Tuple = batch_size SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : int = use_pretrained_backbone SCREAMING_SNAKE_CASE_ : List[str] = is_training def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : List[Any] = self.get_config() return config, pixel_values def snake_case ( self ): return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = TimmBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __a : Optional[int] = (TimmBackbone,) if is_torch_available() else () __a : Optional[int] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __a : Optional[int] = False __a : List[str] = False __a : str = False __a : str = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,has_text_modality=__SCREAMING_SNAKE_CASE ) def snake_case ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = 'resnet18' SCREAMING_SNAKE_CASE_ : Dict = 'microsoft/resnet-18' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,use_timm_backbone=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE_ : Tuple = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,use_timm_backbone=__SCREAMING_SNAKE_CASE ,out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE_ : int = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def snake_case ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def snake_case ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def snake_case ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def snake_case ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def snake_case ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def snake_case ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def snake_case ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def snake_case ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case ( self ): pass def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__SCREAMING_SNAKE_CASE ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : str = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE_ : Tuple = self.all_model_classes[0] SCREAMING_SNAKE_CASE_ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = model(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE_ : Tuple = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE_ : str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[str] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE_ : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(**__SCREAMING_SNAKE_CASE )
716
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase_ ( UpperCamelCase_ ): __a : Tuple = ["pixel_values"] def __init__( self ,snake_case__ = True ,snake_case__ = None ,snake_case__ = PILImageResampling.BICUBIC ,snake_case__ = True ,snake_case__ = None ,snake_case__ = True ,snake_case__ = 1 / 255 ,snake_case__ = True ,snake_case__ = None ,snake_case__ = None ,snake_case__ = True ,**snake_case__ ,): super().__init__(**__a ) SCREAMING_SNAKE_CASE_ : Dict = size if size is not None else {'shortest_edge': 224} SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(__a ,default_to_square=__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(__a ,default_to_square=__a ,param_name='crop_size' ) SCREAMING_SNAKE_CASE_ : List[str] = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : int = resample SCREAMING_SNAKE_CASE_ : List[Any] = do_center_crop SCREAMING_SNAKE_CASE_ : Optional[int] = crop_size SCREAMING_SNAKE_CASE_ : Any = do_rescale SCREAMING_SNAKE_CASE_ : List[Any] = rescale_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE_ : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ : Optional[int] = do_convert_rgb def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = PILImageResampling.BICUBIC ,snake_case__ = None ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Tuple = get_size_dict(__a ,default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) SCREAMING_SNAKE_CASE_ : int = get_resize_output_image_size(__a ,size=size['shortest_edge'] ,default_to_square=__a ) return resize(__a ,size=__a ,resample=__a ,data_format=__a ,**__a ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__a ,size=(size['height'], size['width']) ,data_format=__a ,**__a ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): return rescale(__a ,scale=__a ,data_format=__a ,**__a ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,**snake_case__ ,): return normalize(__a ,mean=__a ,std=__a ,data_format=__a ,**__a ) def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = ChannelDimension.FIRST ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : int = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(__a ,param_name='size' ,default_to_square=__a ) SCREAMING_SNAKE_CASE_ : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ : str = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ : int = get_size_dict(__a ,param_name='crop_size' ,default_to_square=__a ) SCREAMING_SNAKE_CASE_ : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : List[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ : List[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ : Dict = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] = [to_numpy_array(__a ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Any = [self.resize(image=__a ,size=__a ,resample=__a ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.center_crop(image=__a ,size=__a ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Any = [self.rescale(image=__a ,scale=__a ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : Optional[int] = [self.normalize(image=__a ,mean=__a ,std=__a ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] = [to_channel_dimension_format(__a ,__a ) for image in images] SCREAMING_SNAKE_CASE_ : Tuple = {'pixel_values': images} return BatchFeature(data=__a ,tensor_type=__a )
717
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
0
import argparse import os import re import packaging.version UpperCamelCase__ : Tuple = '''examples/''' UpperCamelCase__ : Union[str, Any] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } UpperCamelCase__ : Union[str, Any] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } UpperCamelCase__ : Tuple = '''README.md''' def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Any ) -> Tuple: """simple docstring""" with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Tuple = replace.replace('VERSION' , _lowercase ) SCREAMING_SNAKE_CASE_ : Dict = re_pattern.sub(_lowercase , _lowercase ) with open(_lowercase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_lowercase ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> List[Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowercase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_lowercase , _lowercase ) , _lowercase , pattern='examples' ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any]=False ) -> Tuple: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowercase , _lowercase , _lowercase ) if not patch: update_version_in_examples(_lowercase ) def __UpperCAmelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = '🤗 Transformers currently provides the following architectures' SCREAMING_SNAKE_CASE_ : List[Any] = '1. Want to contribute a new model?' with open(_lowercase , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Any = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): SCREAMING_SNAKE_CASE_ : Dict = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_lowercase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_lowercase ) def __UpperCAmelCase ( ) -> str: """simple docstring""" with open(REPLACE_FILES['init'] , 'r' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.read() SCREAMING_SNAKE_CASE_ : Any = REPLACE_PATTERNS['init'][0].search(_lowercase ).groups()[0] return packaging.version.parse(_lowercase ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int]=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : List[str] = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : List[Any] = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : Tuple = input(F'Which version are you releasing? [{default_version}]' ) if len(_lowercase ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = default_version print(F'Updating version to {version}.' ) global_version_update(_lowercase , patch=_lowercase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = get_version() SCREAMING_SNAKE_CASE_ : Optional[int] = F'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Tuple = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : List[Any] = input(F'Which version are we developing now? [{dev_version}]' ) if len(_lowercase ) == 0: SCREAMING_SNAKE_CASE_ : List[Any] = dev_version print(F'Updating version to {version}.' ) global_version_update(_lowercase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') UpperCamelCase__ : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
718
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
0
from __future__ import annotations from random import random class lowerCAmelCase_ : def __init__( self ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : List[Any] = value SCREAMING_SNAKE_CASE_ : str = random() SCREAMING_SNAKE_CASE_ : Node | None = None SCREAMING_SNAKE_CASE_ : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1 ) def __str__( self ): SCREAMING_SNAKE_CASE_ : str = str(self.value ) + """ """ SCREAMING_SNAKE_CASE_ : List[Any] = str(self.left or '' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = str(self.right or '' ) return value + left + right def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: SCREAMING_SNAKE_CASE_ : Union[str, Any] = split(root.left , _lowerCamelCase ) return left, root else: SCREAMING_SNAKE_CASE_ : Any = split(root.right , _lowerCamelCase ) return root, right def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: SCREAMING_SNAKE_CASE_ : str = merge(left.right , _lowerCamelCase ) return left else: SCREAMING_SNAKE_CASE_ : List[Any] = merge(_lowerCamelCase , right.left ) return right def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Node(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = split(_lowerCamelCase , value - 1 ) SCREAMING_SNAKE_CASE_ : List[Any] = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def __UpperCAmelCase ( lowerCamelCase_ ) -> Union[str, Any]: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" for arg in args.split(): if arg[0] == "+": SCREAMING_SNAKE_CASE_ : Optional[int] = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": SCREAMING_SNAKE_CASE_ : Any = erase(_lowerCamelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) SCREAMING_SNAKE_CASE_ : Tuple = input() while args != "q": SCREAMING_SNAKE_CASE_ : Tuple = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Dict = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> list: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = len(lowercase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(len(lowercase_ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE_ : int = True for j in range(lowercase_ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE_ : List[str] = False break if match_found: position.append(lowercase_ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0
from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( __SCREAMING_SNAKE_CASE ): __a : Tuple = 'SpeechT5FeatureExtractor' __a : int = 'SpeechT5Tokenizer' def __init__( self ,snake_case__ ,snake_case__ ): super().__init__(_a ,_a ) def __call__( self ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('audio' ,_a ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('text' ,_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('text_target' ,_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('audio_target' ,_a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('sampling_rate' ,_a ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(_a ,*_a ,sampling_rate=_a ,**_a ) elif text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(_a ,**_a ) else: SCREAMING_SNAKE_CASE_ : List[str] = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : int = self.feature_extractor(audio_target=_a ,*_a ,sampling_rate=_a ,**_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = targets['input_values'] elif text_target is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer(_a ,**_a ) SCREAMING_SNAKE_CASE_ : int = targets['input_ids'] else: SCREAMING_SNAKE_CASE_ : Dict = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = labels SCREAMING_SNAKE_CASE_ : int = targets.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : List[str] = decoder_attention_mask return inputs def snake_case ( self ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('input_values' ,_a ) SCREAMING_SNAKE_CASE_ : int = kwargs.pop('input_ids' ,_a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('labels' ,_a ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(_a ,*_a ,**_a ) elif input_ids is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.pad(_a ,**_a ) else: SCREAMING_SNAKE_CASE_ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(_a ,_a ) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.pad(_a ,**_a ) SCREAMING_SNAKE_CASE_ : str = targets['input_ids'] else: SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extractor.pad(_a ,*_a ,**_a ) SCREAMING_SNAKE_CASE_ : Optional[int] = feature_size_hack SCREAMING_SNAKE_CASE_ : int = targets['input_values'] else: SCREAMING_SNAKE_CASE_ : List[str] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = labels SCREAMING_SNAKE_CASE_ : Any = targets.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : int = decoder_attention_mask return inputs def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.batch_decode(*_a ,**_a ) def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.decode(*_a ,**_a )
721
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( lowerCamelCase_ ): @staticmethod @abstractmethod def snake_case ( snake_case__ ): raise NotImplementedError() @abstractmethod def snake_case ( self ): raise NotImplementedError()
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowerCamelCase_ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(lowerCamelCase_ ) == 1: return True SCREAMING_SNAKE_CASE_ : Optional[Any] = series[1] - series[0] for index in range(len(lowerCamelCase_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Any: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(lowerCamelCase_ ) == 0: raise ValueError('Input list must be a non empty list' ) SCREAMING_SNAKE_CASE_ : List[str] = 0 for val in series: answer += val return answer / len(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
def __UpperCAmelCase ( lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 7 , lowerCamelCase_ : int = 1_00_00_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 1 for current_denominator in range(1 , limit + 1 ): SCREAMING_SNAKE_CASE_ : Any = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: SCREAMING_SNAKE_CASE_ : Optional[Any] = current_numerator SCREAMING_SNAKE_CASE_ : Optional[Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Dict ) -> int: """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) ) def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE_ : str = math.log(len(SCREAMING_SNAKE_CASE_ ) , 2 ) print(F'Optimal value : {minimax(0 , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
703
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCAmelCase_ ( datasets.BuilderConfig ): __a : Optional[int] = None class lowerCAmelCase_ ( datasets.ArrowBasedBuilder ): __a : str = PandasConfig def snake_case ( self ): return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self ,snake_case__ ): if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) SCREAMING_SNAKE_CASE_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case__ ,(str, list, tuple) ): SCREAMING_SNAKE_CASE_ : Tuple = data_files if isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Dict = [dl_manager.iter_files(snake_case__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={'files': files} )] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE_ : Optional[Any] = [dl_manager.iter_files(snake_case__ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case__ ,gen_kwargs={'files': files} ) ) return splits def snake_case ( self ,snake_case__ ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ : str = table_cast(snake_case__ ,self.config.features.arrow_schema ) return pa_table def snake_case ( self ,snake_case__ ): for i, file in enumerate(itertools.chain.from_iterable(snake_case__ ) ): with open(snake_case__ ,'rb' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = pa.Table.from_pandas(pd.read_pickle(snake_case__ ) ) yield i, self._cast_table(snake_case__ )
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase__ : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase__ : List[Any] = TaTokenizerFast UpperCamelCase__ : int = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase__ : str = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
705
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig UpperCamelCase__ : Any = logging.get_logger(__name__) # General docstring UpperCamelCase__ : Union[str, Any] = '''PoolFormerConfig''' # Base docstring UpperCamelCase__ : List[Any] = '''sail/poolformer_s12''' UpperCamelCase__ : Union[str, Any] = [1, 5_12, 7, 7] # Image classification docstring UpperCamelCase__ : Any = '''sail/poolformer_s12''' UpperCamelCase__ : Union[str, Any] = '''tabby, tabby cat''' UpperCamelCase__ : Tuple = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : str = 0.0 , lowerCamelCase_ : Optional[Any] = False ) -> Union[str, Any]: """simple docstring""" if drop_prob == 0.0 or not training: return input SCREAMING_SNAKE_CASE_ : Tuple = 1 - drop_prob SCREAMING_SNAKE_CASE_ : int = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets SCREAMING_SNAKE_CASE_ : int = keep_prob + torch.rand(lowerCAmelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize SCREAMING_SNAKE_CASE_ : Dict = input.div(lowerCAmelCase__ ) * random_tensor return output class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ = None ): super().__init__() SCREAMING_SNAKE_CASE_ : List[str] = drop_prob def snake_case ( self ,snake_case__ ): return drop_path(snake_case__ ,self.drop_prob ,self.training ) def snake_case ( self ): return "p={}".format(self.drop_prob ) class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ): super().__init__() SCREAMING_SNAKE_CASE_ : int = patch_size if isinstance(snake_case__ ,collections.abc.Iterable ) else (patch_size, patch_size) SCREAMING_SNAKE_CASE_ : List[str] = stride if isinstance(snake_case__ ,collections.abc.Iterable ) else (stride, stride) SCREAMING_SNAKE_CASE_ : Any = padding if isinstance(snake_case__ ,collections.abc.Iterable ) else (padding, padding) SCREAMING_SNAKE_CASE_ : int = nn.Convad(snake_case__ ,snake_case__ ,kernel_size=snake_case__ ,stride=snake_case__ ,padding=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = norm_layer(snake_case__ ) if norm_layer else nn.Identity() def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.projection(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.norm(snake_case__ ) return embeddings class lowerCAmelCase_ ( nn.GroupNorm ): def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(1 ,snake_case__ ,**snake_case__ ) class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.AvgPoolad(snake_case__ ,stride=1 ,padding=pool_size // 2 ,count_include_pad=snake_case__ ) def snake_case ( self ,snake_case__ ): return self.pool(snake_case__ ) - hidden_states class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Convad(snake_case__ ,snake_case__ ,1 ) SCREAMING_SNAKE_CASE_ : Any = nn.Convad(snake_case__ ,snake_case__ ,1 ) SCREAMING_SNAKE_CASE_ : List[str] = PoolFormerDropPath(snake_case__ ) if isinstance(config.hidden_act ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE_ : Tuple = config.hidden_act def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.conva(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.act_fn(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.drop(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.conva(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.drop(snake_case__ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Dict = PoolFormerPooling(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = PoolFormerOutput(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = PoolFormerGroupNorm(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = PoolFormerGroupNorm(snake_case__ ) # Useful for training neural nets SCREAMING_SNAKE_CASE_ : int = PoolFormerDropPath(snake_case__ ) if drop_path > 0.0 else nn.Identity() SCREAMING_SNAKE_CASE_ : Dict = config.use_layer_scale if config.use_layer_scale: SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) ,requires_grad=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) ,requires_grad=snake_case__ ) def snake_case ( self ,snake_case__ ): if self.use_layer_scale: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pooling(self.before_norm(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_states + self.drop_path(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = () SCREAMING_SNAKE_CASE_ : Tuple = self.output(self.after_norm(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection SCREAMING_SNAKE_CASE_ : Any = hidden_states + self.drop_path(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = (output,) + outputs return outputs else: SCREAMING_SNAKE_CASE_ : List[Any] = self.drop_path(self.pooling(self.before_norm(snake_case__ ) ) ) # First residual connection SCREAMING_SNAKE_CASE_ : int = pooling_output + hidden_states SCREAMING_SNAKE_CASE_ : Union[str, Any] = () # Second residual connection inside the PoolFormerOutput block SCREAMING_SNAKE_CASE_ : Dict = self.drop_path(self.output(self.after_norm(snake_case__ ) ) ) SCREAMING_SNAKE_CASE_ : List[Any] = hidden_states + layer_output SCREAMING_SNAKE_CASE_ : Tuple = (output,) + outputs return outputs class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = config # stochastic depth decay rule SCREAMING_SNAKE_CASE_ : Optional[int] = [x.item() for x in torch.linspace(0 ,config.drop_path_rate ,sum(config.depths ) )] # patch embeddings SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] ,stride=config.strides[i] ,padding=config.padding[i] ,num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] ,hidden_size=config.hidden_sizes[i] ,) ) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.ModuleList(snake_case__ ) # Transformer blocks SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers SCREAMING_SNAKE_CASE_ : str = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case__ ,num_channels=config.hidden_sizes[i] ,pool_size=config.pool_size ,hidden_size=config.hidden_sizes[i] ,intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) ,drop_path=dpr[cur + j] ,) ) blocks.append(nn.ModuleList(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Any = nn.ModuleList(snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__=False ,snake_case__=True ): SCREAMING_SNAKE_CASE_ : Tuple = () if output_hidden_states else None SCREAMING_SNAKE_CASE_ : Optional[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings ,self.block ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = layers # Get patch embeddings from hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = embedding_layer(snake_case__ ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = blk(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = layer_outputs[0] if output_hidden_states: SCREAMING_SNAKE_CASE_ : Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case__ ,hidden_states=snake_case__ ) class lowerCAmelCase_ ( __a ): __a : Any = PoolFormerConfig __a : int = '''poolformer''' __a : Union[str, Any] = '''pixel_values''' __a : str = True def snake_case ( self ,snake_case__ ): if isinstance(snake_case__ ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ ,nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case ( self ,snake_case__ ,snake_case__=False ): if isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = value UpperCamelCase__ : Optional[Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase__ : str = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , __a , ) class lowerCAmelCase_ ( __a ): def __init__( self ,snake_case__ ): super().__init__(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = config SCREAMING_SNAKE_CASE_ : Union[str, Any] = PoolFormerEncoder(snake_case__ ) # Initialize weights and apply final processing self.post_init() def snake_case ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case ( self ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,): SCREAMING_SNAKE_CASE_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) SCREAMING_SNAKE_CASE_ : Tuple = self.encoder( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case__ ,hidden_states=encoder_outputs.hidden_states ,) class lowerCAmelCase_ ( nn.Module ): def __init__( self ,snake_case__ ): super().__init__() SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Linear(config.hidden_size ,config.hidden_size ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.dense(snake_case__ ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , __a , ) class lowerCAmelCase_ ( __a ): def __init__( self ,snake_case__ ): super().__init__(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = config.num_labels SCREAMING_SNAKE_CASE_ : str = PoolFormerModel(snake_case__ ) # Final norm SCREAMING_SNAKE_CASE_ : Optional[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head SCREAMING_SNAKE_CASE_ : Any = ( nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case ( self ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,): SCREAMING_SNAKE_CASE_ : str = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Tuple = self.poolformer( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = outputs[0] SCREAMING_SNAKE_CASE_ : Any = self.classifier(self.norm(snake_case__ ).mean([-2, -1] ) ) SCREAMING_SNAKE_CASE_ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE_ : List[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE_ : Any = 'single_label_classification' else: SCREAMING_SNAKE_CASE_ : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE_ : Union[str, Any] = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE_ : str = loss_fct(logits.squeeze() ,labels.squeeze() ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(snake_case__ ,snake_case__ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE_ : int = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE_ : Optional[int] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE_ : int = loss_fct(snake_case__ ,snake_case__ ) if not return_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case__ ,logits=snake_case__ ,hidden_states=outputs.hidden_states )
706
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCamelCase__ : Optional[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCamelCase__ : int = 0 UpperCamelCase__ : Tuple = 1 UpperCamelCase__ : Tuple = 2 UpperCamelCase__ : List[Any] = 3 UpperCamelCase__ : Tuple = 4 class lowerCAmelCase_ ( __lowerCamelCase ): __a : Tuple = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = '''left''' def __init__( self ,snake_case__ ,snake_case__=False ,snake_case__=True ,snake_case__=False ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="<unk>" ,snake_case__="<sep>" ,snake_case__="<pad>" ,snake_case__="<cls>" ,snake_case__="<mask>" ,snake_case__=["<eop>", "<eod>"] ,snake_case__ = None ,**snake_case__ ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(a_ ,lstrip=a_ ,rstrip=a_ ) if isinstance(a_ ,a_ ) else mask_token SCREAMING_SNAKE_CASE_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a_ ,remove_space=a_ ,keep_accents=a_ ,bos_token=a_ ,eos_token=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,additional_special_tokens=a_ ,sp_model_kwargs=self.sp_model_kwargs ,**a_ ,) SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : Dict = do_lower_case SCREAMING_SNAKE_CASE_ : str = remove_space SCREAMING_SNAKE_CASE_ : Tuple = keep_accents SCREAMING_SNAKE_CASE_ : Dict = vocab_file SCREAMING_SNAKE_CASE_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a_ ) @property def snake_case ( self ): return len(self.sp_model ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = None return state def __setstate__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self ,snake_case__ ): if self.remove_space: SCREAMING_SNAKE_CASE_ : Optional[int] = " ".join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ : str = inputs SCREAMING_SNAKE_CASE_ : Any = outputs.replace('``' ,'\"' ).replace('\'\'' ,'\"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ : Dict = unicodedata.normalize('NFKD' ,a_ ) SCREAMING_SNAKE_CASE_ : int = "".join([c for c in outputs if not unicodedata.combining(a_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ : Any = outputs.lower() return outputs def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.preprocess_text(a_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.encode(a_ ,out_type=a_ ) SCREAMING_SNAKE_CASE_ : List[str] = [] for piece in pieces: if len(a_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(a_ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ : int = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a_ ) else: new_pieces.append(a_ ) return new_pieces def snake_case ( self ,snake_case__ ): return self.sp_model.PieceToId(a_ ) def snake_case ( self ,snake_case__ ): return self.sp_model.IdToPiece(a_ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = "".join(a_ ).replace(a_ ,' ' ).strip() return out_string def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = None ,snake_case__ = True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = kwargs.pop('use_source_tokenizer' ,a_ ) SCREAMING_SNAKE_CASE_ : List[str] = self.convert_ids_to_tokens(a_ ,skip_special_tokens=a_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] sub_texts.append(a_ ) else: current_sub_text.append(a_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE_ : Union[str, Any] = "".join(a_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_ : List[Any] = self.clean_up_tokenization(a_ ) return clean_text else: return text def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ ,token_ids_a=a_ ,already_has_special_tokens=a_ ) if token_ids_a is not None: return ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1, 1] return ([0] * len(a_ )) + [1, 1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not os.path.isdir(a_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Any = os.path.join( a_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ ,'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Dict = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
707
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) SCREAMING_SNAKE_CASE_ : List[str] = { 'input_ids': tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] ,dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa ), } SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ )['last_hidden_state'] SCREAMING_SNAKE_CASE_ : List[Any] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape ,snake_case__ ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ : str = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
708
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
0
import operator as op UpperCamelCase__ : List[str] = 'scaler.pt' UpperCamelCase__ : int = 'pytorch_model' UpperCamelCase__ : Optional[int] = 'random_states' UpperCamelCase__ : int = 'optimizer' UpperCamelCase__ : Union[str, Any] = 'scheduler' UpperCamelCase__ : List[Any] = 'pytorch_model.bin' UpperCamelCase__ : Tuple = 'pytorch_model.bin.index.json' UpperCamelCase__ : Any = 'model.safetensors' UpperCamelCase__ : Any = 'model.safetensors.index.json' UpperCamelCase__ : List[Any] = '1.10.2' UpperCamelCase__ : List[Any] = 'py38' UpperCamelCase__ : str = '4.17.0' UpperCamelCase__ : Optional[Any] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] UpperCamelCase__ : List[Any] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] UpperCamelCase__ : Dict = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] UpperCamelCase__ : Optional[int] = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] UpperCamelCase__ : Union[str, Any] = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] UpperCamelCase__ : int = '2.0.1' UpperCamelCase__ : int = ['pdsh', 'standard', 'openmpi', 'mvapich'] UpperCamelCase__ : List[Any] = ['default', 'reduce-overhead', 'max-autotune'] UpperCamelCase__ : str = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase__ : Optional[Any] = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] UpperCamelCase__ : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] UpperCamelCase__ : List[str] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
709
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCAmelCase_ : __a : Any = 42 __a : Optional[Any] = None # Automatically constructed __a : Optional[Any] = "dict" __a : Dict = None __a : Dict = field(default="Translation" , init=_A , repr=_A ) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def snake_case ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class lowerCAmelCase_ : __a : Dict = None __a : int = None __a : List[str] = None # Automatically constructed __a : List[str] = "dict" __a : str = None __a : str = field(default="TranslationVariableLanguages" , init=_A , repr=_A ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = set(self.languages ) if self.languages and set(UpperCamelCase__ ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(UpperCamelCase__ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase__ )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. SCREAMING_SNAKE_CASE_ : Any = [] for lang, text in translation_dict.items(): if isinstance(UpperCamelCase__ ,UpperCamelCase__ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = zip(*sorted(UpperCamelCase__ ) ) return {"language": languages, "translation": translations} def snake_case ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
710
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Any = { '''vocab_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt''' ), '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt''' ), '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''', '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''', '''bert-base-multilingual-uncased''': ( '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json''' ), '''bert-base-multilingual-cased''': ( '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json''' ), '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json''' ), '''bert-base-cased-finetuned-mrpc''': ( '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-cased''': ( '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json''' ), '''bert-base-german-dbmdz-uncased''': ( '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json''' ), '''wietsedv/bert-base-dutch-cased''': ( '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Optional[int] = { '''bert-base-uncased''': 5_12, '''bert-large-uncased''': 5_12, '''bert-base-cased''': 5_12, '''bert-large-cased''': 5_12, '''bert-base-multilingual-uncased''': 5_12, '''bert-base-multilingual-cased''': 5_12, '''bert-base-chinese''': 5_12, '''bert-base-german-cased''': 5_12, '''bert-large-uncased-whole-word-masking''': 5_12, '''bert-large-cased-whole-word-masking''': 5_12, '''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_12, '''bert-large-cased-whole-word-masking-finetuned-squad''': 5_12, '''bert-base-cased-finetuned-mrpc''': 5_12, '''bert-base-german-dbmdz-cased''': 5_12, '''bert-base-german-dbmdz-uncased''': 5_12, '''TurkuNLP/bert-base-finnish-cased-v1''': 5_12, '''TurkuNLP/bert-base-finnish-uncased-v1''': 5_12, '''wietsedv/bert-base-dutch-cased''': 5_12, } UpperCamelCase__ : List[Any] = { '''bert-base-uncased''': {'''do_lower_case''': True}, '''bert-large-uncased''': {'''do_lower_case''': True}, '''bert-base-cased''': {'''do_lower_case''': False}, '''bert-large-cased''': {'''do_lower_case''': False}, '''bert-base-multilingual-uncased''': {'''do_lower_case''': True}, '''bert-base-multilingual-cased''': {'''do_lower_case''': False}, '''bert-base-chinese''': {'''do_lower_case''': False}, '''bert-base-german-cased''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False}, '''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True}, '''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False}, '''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False}, '''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True}, '''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False}, '''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True}, '''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False}, } class lowerCAmelCase_ ( snake_case__ ): __a : List[str] = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_INIT_CONFIGURATION __a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[str] = BertTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__="[UNK]" ,snake_case__="[SEP]" ,snake_case__="[PAD]" ,snake_case__="[CLS]" ,snake_case__="[MASK]" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( _A ,tokenizer_file=_A ,do_lower_case=_A ,unk_token=_A ,sep_token=_A ,pad_token=_A ,cls_token=_A ,mask_token=_A ,tokenize_chinese_chars=_A ,strip_accents=_A ,**_A ,) SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,_A ) != do_lower_case or normalizer_state.get('strip_accents' ,_A ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,_A ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ : Any = getattr(_A ,normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_lower_case SCREAMING_SNAKE_CASE_ : Optional[int] = strip_accents SCREAMING_SNAKE_CASE_ : List[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ : int = normalizer_class(**_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_lower_case def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : int = self._tokenizer.model.save(_A ,name=_A ) return tuple(_A )
711
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCamelCase__ : Any = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): SCREAMING_SNAKE_CASE_ : Dict = getattr(__snake_case , __snake_case ) if weight_type is not None: SCREAMING_SNAKE_CASE_ : List[Any] = getattr(__snake_case , __snake_case ).shape else: SCREAMING_SNAKE_CASE_ : Any = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ : str = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ : Tuple = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ : List[str] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ : Optional[int] = value else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Optional[int] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ : Any = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight SCREAMING_SNAKE_CASE_ : List[Any] = None for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ : List[Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE_ : Any = True elif name.split('.' )[0] == "proj": SCREAMING_SNAKE_CASE_ : Union[str, Any] = fairseq_model.proj SCREAMING_SNAKE_CASE_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE_ : Optional[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ : List[str] = name.split(__snake_case )[0].split('.' )[-2] SCREAMING_SNAKE_CASE_ : Any = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ : str = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ : Any = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = 'bias' elif "weight" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'weight' else: SCREAMING_SNAKE_CASE_ : str = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE_ : Any = name.split('.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(items[0] ) SCREAMING_SNAKE_CASE_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : List[str] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE_ : Tuple = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = emb.weight.shape SCREAMING_SNAKE_CASE_ : List[Any] = nn.Linear(__snake_case , __snake_case , bias=__snake_case ) SCREAMING_SNAKE_CASE_ : Any = emb.weight.data return lin_layer def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> str: """simple docstring""" with open(__snake_case , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.readlines() SCREAMING_SNAKE_CASE_ : str = [line.split(' ' )[0] for line in lines] SCREAMING_SNAKE_CASE_ : Any = len(__snake_case ) SCREAMING_SNAKE_CASE_ : int = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__snake_case , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = WavaVecaConfig.from_pretrained(__snake_case ) SCREAMING_SNAKE_CASE_ : List[str] = SpeechaTextaConfig.from_pretrained( __snake_case , vocab_size=__snake_case , decoder_layers=__snake_case , do_stable_layer_norm=__snake_case ) SCREAMING_SNAKE_CASE_ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__snake_case , return_attention_mask=__snake_case , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) SCREAMING_SNAKE_CASE_ : Any = model[0].eval() # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE_ : List[Any] = WavaVecaModel(__snake_case ) SCREAMING_SNAKE_CASE_ : List[str] = recursively_load_weights_wavaveca(model.encoder , __snake_case ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = SpeechaTextaForCausalLM(__snake_case ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__snake_case ) # set output linear layer unexpected_keys.remove('embed_out' ) SCREAMING_SNAKE_CASE_ : List[str] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) SCREAMING_SNAKE_CASE_ : List[str] = SpeechEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case ) SCREAMING_SNAKE_CASE_ : List[Any] = False # add projection layer SCREAMING_SNAKE_CASE_ : int = nn.Parameter(projection_layer.weight ) SCREAMING_SNAKE_CASE_ : str = nn.Parameter(projection_layer.bias ) SCREAMING_SNAKE_CASE_ : Dict = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case , 'vocab.json' ) , 'w' ) as fp: json.dump(__snake_case , __snake_case ) SCREAMING_SNAKE_CASE_ : List[str] = SpeechaTextaTokenizer(os.path.join(__snake_case , 'vocab.json' ) ) tokenizer.save_pretrained(__snake_case ) SCREAMING_SNAKE_CASE_ : Dict = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE_ : str = tokenizer.eos_token_id SCREAMING_SNAKE_CASE_ : Any = 'speech_to_text_2' SCREAMING_SNAKE_CASE_ : int = 'wav2vec2' SCREAMING_SNAKE_CASE_ : Tuple = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_02_24, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') UpperCamelCase__ : Any = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
712
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained('xlm-roberta-base' ) SCREAMING_SNAKE_CASE_ : Tuple = """The dog is cute and lives in the garden house""" SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array([tokenizer.encode(lowerCamelCase_ )] ) SCREAMING_SNAKE_CASE_ : List[str] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ : Tuple = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) SCREAMING_SNAKE_CASE_ : Any = model(lowerCamelCase_ )["""last_hidden_state"""] self.assertEqual(output.shape ,lowerCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,lowerCamelCase_ ,atol=1E-3 ) )
713
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
0
import os import sys import unittest UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCamelCase__ : Any = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') UpperCamelCase__ : Any = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = get_test_to_tester_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = get_test_to_tester_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = {'BertModelTest': 'BertModelTester'} SCREAMING_SNAKE_CASE_ : int = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = get_model_to_test_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_model_to_test_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } SCREAMING_SNAKE_CASE_ : Dict = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = get_model_to_tester_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = get_model_to_tester_mapping(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } SCREAMING_SNAKE_CASE_ : Dict = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ ) self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) ,UpperCamelCase_ )
714
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( _UpperCamelCase ): __a : int = (DDIMParallelScheduler,) __a : List[Any] = (("eta", 0.0), ("num_inference_steps", 50)) def snake_case ( self ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**snake_case__ ) return config def snake_case ( self ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = 10, 0.0 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ).prev_sample return sample def snake_case ( self ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def snake_case ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ ,beta_end=snake_case__ ) def snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def snake_case ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def snake_case ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=snake_case__ ) def snake_case ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=snake_case__ ) def snake_case ( self ): self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ ,prediction_type=snake_case__ ,sample_max_value=snake_case__ ,) def snake_case ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=snake_case__ ) def snake_case ( self ): for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=snake_case__ ,num_inference_steps=snake_case__ ) def snake_case ( self ): for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=snake_case__ ,eta=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : int = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1E-5 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 10, 0.0 scheduler.set_timesteps(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample_deter SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter + 0.1 SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter - 0.1 SCREAMING_SNAKE_CASE_ : Optional[Any] = samplea.shape[0] SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([samplea, samplea, samplea] ,dim=0 ) SCREAMING_SNAKE_CASE_ : Any = torch.arange(snake_case__ )[0:3, None].repeat(1 ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.batch_step_no_noise(snake_case__ ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : Dict = self.full_loop(set_alpha_to_one=snake_case__ ,beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : str = self.full_loop(set_alpha_to_one=snake_case__ ,beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
715
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
0
import datasets from .evaluate import evaluate UpperCamelCase__ : Optional[int] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' UpperCamelCase__ : Union[str, Any] = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' UpperCamelCase__ : str = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) ,codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] ,reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] ,) def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = {prediction['id']: prediction['prediction_text'] for prediction in predictions} SCREAMING_SNAKE_CASE_ : Dict = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE_ : List[str] = evaluate(dataset=lowercase_ ,predictions=lowercase_ ) return score
716
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = '''Hello, World!''' UpperCamelCase__ : int = '''en_XX''' def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Path('data_bin' ) SCREAMING_SNAKE_CASE_ : int = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case__ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case__ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_ : Union[str, Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE_ : Dict = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , snake_case__ ) SCREAMING_SNAKE_CASE_ : int = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_ : int = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_ : Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_ : Any = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_ : List[str] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_ : int = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_ : Optional[int] = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_ : str = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_ : List[str] = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_ : Optional[Any] = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_ : str = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_ : int = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_ : str = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) SCREAMING_SNAKE_CASE_ : int = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_ : List[Any] = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_ : List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_ : Optional[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_ : str = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) SCREAMING_SNAKE_CASE_ : Dict = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_ : str = xmod_layer.fca.bias SCREAMING_SNAKE_CASE_ : int = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_ : Any = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_ : List[str] = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_ : str = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_ : Tuple = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : Union[str, Any] = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_ : Union[str, Any] = from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : Union[str, Any] = from_adapter.fca.bias SCREAMING_SNAKE_CASE_ : Union[str, Any] = from_adapter.fca.weight SCREAMING_SNAKE_CASE_ : Tuple = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_ : List[str] = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_ : Dict = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_ : Any = xmod.model.classification_heads['mnli'].dense.weight SCREAMING_SNAKE_CASE_ : Optional[int] = xmod.model.classification_heads['mnli'].dense.bias SCREAMING_SNAKE_CASE_ : Dict = xmod.model.classification_heads['mnli'].out_proj.weight SCREAMING_SNAKE_CASE_ : List[Any] = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_ : List[str] = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_ : List[Any] = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_ : str = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_ : int = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_ : Optional[int] = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_ : int = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_ : Dict = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ )[0] if classification_head: SCREAMING_SNAKE_CASE_ : Any = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case__ ) ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase__ : List[Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
717
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
0
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=99 ,snake_case__=13 ,snake_case__=7 ,snake_case__=9 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__=8 ,snake_case__=0.1 ,snake_case__=0.002 ,snake_case__=1 ,snake_case__=0 ,snake_case__=0 ,snake_case__=None ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE_ : Any = encoder_seq_length SCREAMING_SNAKE_CASE_ : str = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE_ : Optional[int] = self.decoder_seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : List[Any] = use_attention_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = d_ff SCREAMING_SNAKE_CASE_ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ : Optional[Any] = dropout_rate SCREAMING_SNAKE_CASE_ : int = initializer_factor SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Dict = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_start_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : List[str] = decoder_layers def snake_case ( self ): return TaConfig.from_pretrained('google/umt5-base' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,): if attention_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE_ : List[Any] = torch.ones(config.num_hidden_layers ,config.num_attention_heads ,device=UpperCAmelCase__ ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : Tuple = torch.ones(config.num_decoder_layers ,config.num_attention_heads ,device=UpperCAmelCase__ ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.ones( config.num_decoder_layers ,config.num_attention_heads ,device=UpperCAmelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE_ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE_ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE_ : str = self.get_config() SCREAMING_SNAKE_CASE_ : Tuple = config.num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_inputs_dict(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) return config, input_dict def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self ): return TaConfig( vocab_size=166 ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def snake_case ( self ): return TaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : str = UMTaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model( input_ids=UpperCAmelCase__ ,decoder_input_ids=UpperCAmelCase__ ,attention_mask=UpperCAmelCase__ ,decoder_attention_mask=UpperCAmelCase__ ,) SCREAMING_SNAKE_CASE_ : int = model(input_ids=UpperCAmelCase__ ,decoder_input_ids=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = result.last_hidden_state SCREAMING_SNAKE_CASE_ : Dict = result.past_key_values SCREAMING_SNAKE_CASE_ : Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() ,(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() ,(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase__ ) ,config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) ,4 ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = UMTaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model(UpperCAmelCase__ ,use_cache=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = model(UpperCAmelCase__ ,use_cache=UpperCAmelCase__ ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) + 1 ) SCREAMING_SNAKE_CASE_ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Any = model(UpperCAmelCase__ )['''last_hidden_state'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = model(UpperCAmelCase__ ,past_key_values=UpperCAmelCase__ )['''last_hidden_state'''] # select random slice SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ ,UpperCAmelCase__ ,atol=1E-3 ) ) def snake_case ( self ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = UMTaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).half().eval() SCREAMING_SNAKE_CASE_ : str = model(**UpperCAmelCase__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCAmelCase__ ).any().item() ) @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : str = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) __a : str = (UMTaForConditionalGeneration,) if is_torch_available() else () __a : Any = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) __a : Dict = True __a : List[str] = False __a : Optional[int] = False __a : Optional[int] = True __a : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests __a : int = [0.8, 0.9] def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase__ ,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,F'{tmpdirname}/t5_test.onnx' ,export_params=UpperCAmelCase__ ,opset_version=9 ,input_names=['input_ids', 'decoder_input_ids'] ,) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : int = config_and_inputs[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = UMTaForConditionalGeneration(UpperCAmelCase__ ).eval() model.to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = { '''head_mask''': torch.zeros(config.num_layers ,config.num_heads ,device=UpperCAmelCase__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=UpperCAmelCase__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=UpperCAmelCase__ ), } for attn_name, (name, mask) in zip(UpperCAmelCase__ ,head_masking.items() ): SCREAMING_SNAKE_CASE_ : int = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE_ : List[str] = torch.ones( config.num_decoder_layers ,config.num_heads ,device=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate( config_and_inputs[1]['input_ids'] ,num_beams=1 ,max_length=3 ,output_attentions=UpperCAmelCase__ ,return_dict_in_generate=UpperCAmelCase__ ,**UpperCAmelCase__ ,) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE_ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def snake_case ( self ): pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' ,return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained('google/umt5-small' ,use_fast=UpperCAmelCase__ ,legacy=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] SCREAMING_SNAKE_CASE_ : Dict = tokenizer(UpperCAmelCase__ ,return_tensors='pt' ,padding=UpperCAmelCase__ ).input_ids # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase__ ,UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model.generate(input_ids.to(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : int = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ ,UpperCAmelCase__ )
718
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase__ : Any = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase__ : Any = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase__ : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> tuple[str, float]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len([g for position, g in enumerate(lowerCamelCase_ ) if g == main_target[position]] ) return (item, float(lowerCamelCase_ )) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> tuple[str, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = random.randint(0 , len(lowerCamelCase_ ) - 1 ) SCREAMING_SNAKE_CASE_ : Tuple = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE_ : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(lowerCamelCase_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE_ : List[Any] = random.choice(lowerCamelCase_ ) return "".join(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> list[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE_ : Optional[Any] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = population_score[random.randint(0 , lowerCamelCase_ )][0] SCREAMING_SNAKE_CASE_ : Tuple = crossover(parent_a[0] , lowerCamelCase_ ) # Append new string to the population list. pop.append(mutate(lowerCamelCase_ , lowerCamelCase_ ) ) pop.append(mutate(lowerCamelCase_ , lowerCamelCase_ ) ) return pop def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True ) -> tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE_ : Dict = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(lowerCamelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE_ : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE_ : int = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(lowerCamelCase_ ) # Generate random starting population. SCREAMING_SNAKE_CASE_ : Dict = [] for _ in range(lowerCamelCase_ ): population.append(''.join([random.choice(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE_ : List[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowerCamelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE_ : str = [evaluate(lowerCamelCase_ , lowerCamelCase_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE_ : Union[str, Any] = sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : x[1] , reverse=lowerCamelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE_ : Dict = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowerCamelCase_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE_ : str = [ (item, score / len(lowerCamelCase_ )) for item, score in population_score ] # This is selection for i in range(lowerCamelCase_ ): population.extend(select(population_score[int(lowerCamelCase_ )] , lowerCamelCase_ , lowerCamelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowerCamelCase_ ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase__ : str = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCamelCase__ : Any = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase__ : int = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
719
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase_ ( __lowerCamelCase ): __a : Tuple = 42 __a : Union[str, Any] = 42 class lowerCAmelCase_ ( nn.Module ): __a : Any = 42 __a : Dict = (16, 32, 96, 2_56) __a : Dict = jnp.floataa def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) SCREAMING_SNAKE_CASE_ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE_ : Dict = self.block_out_channels[i] SCREAMING_SNAKE_CASE_ : Optional[int] = self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE_ : List[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = blocks SCREAMING_SNAKE_CASE_ : int = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.conv_in(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Any = nn.silu(SCREAMING_SNAKE_CASE_ ) for block in self.blocks: SCREAMING_SNAKE_CASE_ : Any = block(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = nn.silu(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = self.conv_out(SCREAMING_SNAKE_CASE_ ) return embedding @flax_register_to_config class lowerCAmelCase_ ( nn.Module , __lowerCamelCase , __lowerCamelCase ): __a : List[str] = 32 __a : int = 4 __a : Union[str, Any] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a : int = False __a : Optional[int] = (3_20, 6_40, 12_80, 12_80) __a : List[str] = 2 __a : Tuple = 8 __a : Optional[Any] = None __a : int = 12_80 __a : Union[str, Any] = 0.0 __a : Tuple = False __a : Optional[Any] = jnp.floataa __a : str = True __a : Tuple = 0 __a : int = "rgb" __a : Union[str, Any] = (16, 32, 96, 2_56) def snake_case ( self ,snake_case__ ): # init input tensors SCREAMING_SNAKE_CASE_ : Dict = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE_ : int = jnp.zeros(SCREAMING_SNAKE_CASE_ ,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.ones((1,) ,dtype=jnp.intaa ) SCREAMING_SNAKE_CASE_ : int = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE_ : Dict = jnp.zeros(SCREAMING_SNAKE_CASE_ ,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = jax.random.split(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {'params': params_rng, 'dropout': dropout_rng} return self.init(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )["params"] def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.block_out_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE_ : List[Any] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE_ : Any = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time SCREAMING_SNAKE_CASE_ : int = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE_ ,dtype=self.dtype ) SCREAMING_SNAKE_CASE_ : str = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) SCREAMING_SNAKE_CASE_ : Optional[int] = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ : int = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Dict = block_out_channels[0] SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE_ : Dict = output_channel SCREAMING_SNAKE_CASE_ : Any = block_out_channels[i] SCREAMING_SNAKE_CASE_ : Optional[Any] = i == len(SCREAMING_SNAKE_CASE_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE_ : Any = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE_ ,out_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: SCREAMING_SNAKE_CASE_ : int = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE_ ,out_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(SCREAMING_SNAKE_CASE_ ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE_ : int = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) if not is_final_block: SCREAMING_SNAKE_CASE_ : List[Any] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = down_blocks SCREAMING_SNAKE_CASE_ : str = controlnet_down_blocks # mid SCREAMING_SNAKE_CASE_ : int = block_out_channels[-1] SCREAMING_SNAKE_CASE_ : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=SCREAMING_SNAKE_CASE_ ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Conv( SCREAMING_SNAKE_CASE_ ,kernel_size=(1, 1) ,padding='VALID' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1.0 ,snake_case__ = True ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Any = self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE_ : Dict = jnp.flip(SCREAMING_SNAKE_CASE_ ,axis=1 ) # 1. time if not isinstance(SCREAMING_SNAKE_CASE_ ,jnp.ndarray ): SCREAMING_SNAKE_CASE_ : Tuple = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE_ ,jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ : Dict = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.expand_dims(SCREAMING_SNAKE_CASE_ ,0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.time_proj(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.time_embedding(SCREAMING_SNAKE_CASE_ ) # 2. pre-process SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.transpose(SCREAMING_SNAKE_CASE_ ,(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ : int = self.conv_in(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Dict = jnp.transpose(SCREAMING_SNAKE_CASE_ ,(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.controlnet_cond_embedding(SCREAMING_SNAKE_CASE_ ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE_ : int = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = down_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = down_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE_ : str = self.mid_block(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE_ : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(SCREAMING_SNAKE_CASE_ ,self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE_ : Tuple = controlnet_block(SCREAMING_SNAKE_CASE_ ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = controlnet_down_block_res_samples SCREAMING_SNAKE_CASE_ : List[str] = self.controlnet_mid_block(SCREAMING_SNAKE_CASE_ ) # 6. scaling SCREAMING_SNAKE_CASE_ : Union[str, Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=SCREAMING_SNAKE_CASE_ ,mid_block_res_sample=SCREAMING_SNAKE_CASE_ )
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase_ ( _snake_case , unittest.TestCase ): __a : Any = TextToVideoSDPipeline __a : str = TEXT_TO_IMAGE_PARAMS __a : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __a : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def snake_case ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') ,up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') ,cross_attention_dim=32 ,attention_head_dim=4 ,) SCREAMING_SNAKE_CASE_ : List[Any] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=snake_case_ ,set_alpha_to_one=snake_case_ ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act='gelu' ,projection_dim=512 ,) SCREAMING_SNAKE_CASE_ : Tuple = CLIPTextModel(snake_case_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def snake_case ( self ,snake_case__ ,snake_case__=0 ): if str(snake_case_ ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(snake_case_ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) SCREAMING_SNAKE_CASE_ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = TextToVideoSDPipeline(**snake_case_ ) SCREAMING_SNAKE_CASE_ : List[str] = sd_pipe.to(snake_case_ ) sd_pipe.set_progress_bar_config(disable=snake_case_ ) SCREAMING_SNAKE_CASE_ : int = self.get_dummy_inputs(snake_case_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "np" SCREAMING_SNAKE_CASE_ : Dict = sd_pipe(**snake_case_ ).frames SCREAMING_SNAKE_CASE_ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case_ ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case_ ,expected_max_diff=1E-2 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case ( self ): pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def snake_case ( self ): pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def snake_case ( self ): pass def snake_case ( self ): return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy' ) SCREAMING_SNAKE_CASE_ : int = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) SCREAMING_SNAKE_CASE_ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : Tuple = pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : List[Any] = "Spiderman is surfing" SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : int = pipe(snake_case_ ,generator=snake_case_ ,num_inference_steps=25 ,output_type='pt' ).frames SCREAMING_SNAKE_CASE_ : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy' ) SCREAMING_SNAKE_CASE_ : str = TextToVideoSDPipeline.from_pretrained('damo-vilab/text-to-video-ms-1.7b' ) SCREAMING_SNAKE_CASE_ : int = pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Any = "Spiderman is surfing" SCREAMING_SNAKE_CASE_ : str = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Any = pipe(snake_case_ ,generator=snake_case_ ,num_inference_steps=2 ,output_type='pt' ).frames SCREAMING_SNAKE_CASE_ : Optional[int] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
721
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ : Tuple = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCamelCase__ : Any = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Union[str, Any] = 2 UpperCamelCase__ : Optional[int] = 3 UpperCamelCase__ : Dict = 4 class lowerCAmelCase_ ( lowercase__ ): __a : str = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : str = "left" def __init__( self ,snake_case__ ,snake_case__=False ,snake_case__=True ,snake_case__=False ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="<unk>" ,snake_case__="<sep>" ,snake_case__="<pad>" ,snake_case__="<cls>" ,snake_case__="<mask>" ,snake_case__=["<eop>", "<eod>"] ,snake_case__ = None ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = AddedToken(UpperCAmelCase__ ,lstrip=UpperCAmelCase__ ,rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ ,UpperCAmelCase__ ) else mask_token SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ ,remove_space=UpperCAmelCase__ ,keep_accents=UpperCAmelCase__ ,bos_token=UpperCAmelCase__ ,eos_token=UpperCAmelCase__ ,unk_token=UpperCAmelCase__ ,sep_token=UpperCAmelCase__ ,pad_token=UpperCAmelCase__ ,cls_token=UpperCAmelCase__ ,mask_token=UpperCAmelCase__ ,additional_special_tokens=UpperCAmelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,**UpperCAmelCase__ ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = 3 SCREAMING_SNAKE_CASE_ : int = do_lower_case SCREAMING_SNAKE_CASE_ : Tuple = remove_space SCREAMING_SNAKE_CASE_ : List[Any] = keep_accents SCREAMING_SNAKE_CASE_ : Tuple = vocab_file SCREAMING_SNAKE_CASE_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def snake_case ( self ): return len(self.sp_model ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : int = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self ,snake_case__ ): if self.remove_space: SCREAMING_SNAKE_CASE_ : str = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ : int = inputs SCREAMING_SNAKE_CASE_ : List[Any] = outputs.replace('``' ,'"' ).replace('\'\'' ,'"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ : Any = unicodedata.normalize('NFKD' ,UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : int = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ : int = outputs.lower() return outputs def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self.preprocess_text(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = self.sp_model.encode(UpperCAmelCase__ ,out_type=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ ,'' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ : List[Any] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def snake_case ( self ,snake_case__ ): return self.sp_model.PieceToId(UpperCAmelCase__ ) def snake_case ( self ,snake_case__ ): return self.sp_model.IdToPiece(UpperCAmelCase__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''''''.join(UpperCAmelCase__ ).replace(UpperCAmelCase__ ,' ' ).strip() return out_string def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = None ,snake_case__ = True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('use_source_tokenizer' ,UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = self.convert_ids_to_tokens(UpperCAmelCase__ ,skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE_ : Any = ''''''.join(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE_ : str = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ ,token_ids_a=UpperCAmelCase__ ,already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( UpperCAmelCase__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ ,'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
700
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Any = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCAmelCase_ ( __UpperCAmelCase ): __a : int = "realm" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=128 ,snake_case__=12 ,snake_case__=12 ,snake_case__=8 ,snake_case__=3072 ,snake_case__="gelu_new" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=256 ,snake_case__=10 ,snake_case__=1E-3 ,snake_case__=5 ,snake_case__=320 ,snake_case__=13353718 ,snake_case__=5000 ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=_lowerCamelCase ,bos_token_id=_lowerCamelCase ,eos_token_id=_lowerCamelCase ,**_lowerCamelCase ) # Common config SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = retriever_proj_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = num_candidates SCREAMING_SNAKE_CASE_ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : str = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ : int = span_hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = max_span_width SCREAMING_SNAKE_CASE_ : Optional[int] = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = reader_beam_size SCREAMING_SNAKE_CASE_ : int = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ : List[str] = num_block_records SCREAMING_SNAKE_CASE_ : List[Any] = searcher_beam_size
701
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase__ ): __a : List[str] = "encoder-decoder" __a : Any = True def __init__( self ,**snake_case__ ): super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('encoder' ) SCREAMING_SNAKE_CASE_ : Any = encoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('decoder' ) SCREAMING_SNAKE_CASE_ : Tuple = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : Any = AutoConfig.for_model(__lowerCamelCase ,**__lowerCamelCase ) SCREAMING_SNAKE_CASE_ : str = True @classmethod def snake_case ( cls ,snake_case__ ,snake_case__ ,**snake_case__ ): logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : List[str] = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**__lowerCamelCase ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.encoder.to_dict() SCREAMING_SNAKE_CASE_ : str = self.decoder.to_dict() SCREAMING_SNAKE_CASE_ : Optional[int] = self.__class__.model_type return output
702
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ,return_dict=_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained('google/mt5-small' ) SCREAMING_SNAKE_CASE_ : str = tokenizer('Hello there' ,return_tensors='pt' ).input_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer('Hi I am' ,return_tensors='pt' ).input_ids SCREAMING_SNAKE_CASE_ : Any = model(input_ids.to(_lowercase ) ,labels=labels.to(_lowercase ) ).loss SCREAMING_SNAKE_CASE_ : List[str] = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE_ : str = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
703
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
0
from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any = None ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = word_bank or [] # create a table SCREAMING_SNAKE_CASE_ : int = len(__SCREAMING_SNAKE_CASE ) + 1 SCREAMING_SNAKE_CASE_ : list[list[list[str]]] = [] for _ in range(__SCREAMING_SNAKE_CASE ): table.append([] ) # seed value SCREAMING_SNAKE_CASE_ : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(__SCREAMING_SNAKE_CASE ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__SCREAMING_SNAKE_CASE )] == word: SCREAMING_SNAKE_CASE_ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__SCREAMING_SNAKE_CASE )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__SCREAMING_SNAKE_CASE )]: combination.reverse() return table[len(__SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
704
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
0