code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : str = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Dict = "perceiver" def __init__( self ,snake_case__=256 ,snake_case__=1280 ,snake_case__=768 ,snake_case__=1 ,snake_case__=26 ,snake_case__=8 ,snake_case__=8 ,snake_case__=None ,snake_case__=None ,snake_case__="kv" ,snake_case__=1 ,snake_case__=1 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=True ,snake_case__=262 ,snake_case__=2048 ,snake_case__=56 ,snake_case__=[368, 496] ,snake_case__=16 ,snake_case__=1920 ,snake_case__=16 ,snake_case__=[1, 16, 224, 224] ,**snake_case__ ,): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_latents SCREAMING_SNAKE_CASE_ : Dict = d_latents SCREAMING_SNAKE_CASE_ : Optional[Any] = d_model SCREAMING_SNAKE_CASE_ : List[Any] = num_blocks SCREAMING_SNAKE_CASE_ : List[Any] = num_self_attends_per_block SCREAMING_SNAKE_CASE_ : Dict = num_self_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = num_cross_attention_heads SCREAMING_SNAKE_CASE_ : Dict = qk_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = v_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = cross_attention_shape_for_attention SCREAMING_SNAKE_CASE_ : Tuple = self_attention_widening_factor SCREAMING_SNAKE_CASE_ : List[Any] = cross_attention_widening_factor SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[int] = use_query_residual # masked language modeling attributes SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings # image classification attributes SCREAMING_SNAKE_CASE_ : List[str] = image_size # flow attributes SCREAMING_SNAKE_CASE_ : List[Any] = train_size # multimodal autoencoding attributes SCREAMING_SNAKE_CASE_ : str = num_frames SCREAMING_SNAKE_CASE_ : int = audio_samples_per_frame SCREAMING_SNAKE_CASE_ : Dict = samples_per_patch SCREAMING_SNAKE_CASE_ : Tuple = output_shape class lowerCAmelCase_ ( lowerCamelCase_ ): @property def snake_case ( self ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def snake_case ( self ): return 1E-4 def snake_case ( self ,snake_case__ ,snake_case__ = -1 ,snake_case__ = -1 ,snake_case__ = -1 ,snake_case__ = False ,snake_case__ = None ,snake_case__ = 3 ,snake_case__ = 40 ,snake_case__ = 40 ,): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(snake_case__ ,snake_case__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Any = compute_effective_axis_dimension( snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Optional[int] = preprocessor.num_special_tokens_to_add(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = compute_effective_axis_dimension( snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ : Any = [' '.join(['a'] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ : Dict = dict(preprocessor(snake_case__ ,return_tensors=snake_case__ ) ) SCREAMING_SNAKE_CASE_ : int = inputs.pop('input_ids' ) return inputs elif isinstance(snake_case__ ,snake_case__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ : Optional[int] = compute_effective_axis_dimension(snake_case__ ,fixed_dimension=OnnxConfig.default_fixed_batch ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._generate_dummy_images(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = dict(preprocessor(images=snake_case__ ,return_tensors=snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
685
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase_ : __a : Dict = BlenderbotSmallConfig __a : List[Any] = {} __a : Any = "gelu" def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=False ,snake_case__=99 ,snake_case__=32 ,snake_case__=2 ,snake_case__=4 ,snake_case__=37 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=20 ,snake_case__=2 ,snake_case__=1 ,snake_case__=0 ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = pad_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = bos_token_id def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) SCREAMING_SNAKE_CASE_ : List[str] = prepare_blenderbot_small_inputs_dict(snake_case__ ,snake_case__ ,snake_case__ ) return config, inputs_dict def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() SCREAMING_SNAKE_CASE_ : Optional[Any] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids[:1, :] SCREAMING_SNAKE_CASE_ : int = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE_ : Dict = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE_ : Dict = 1 # first forward pass SCREAMING_SNAKE_CASE_ : Any = model(snake_case__ ,attention_mask=snake_case__ ,head_mask=snake_case__ ,use_cache=snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Tuple = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : List[str] = tf.concat([input_ids, next_tokens] ,axis=-1 ) SCREAMING_SNAKE_CASE_ : str = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ : List[Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ ,snake_case__ ,rtol=1E-3 ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : str=None , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Union[str, Any]=None , ) -> Union[str, Any]: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.cast(tf.math.not_equal(lowerCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[Any] = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __a : str = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __a : Optional[Any] = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __a : List[str] = True __a : Tuple = False __a : List[Any] = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self ,config_class=snake_case__ ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class lowerCAmelCase_ ( unittest.TestCase ): __a : str = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __a : Optional[Any] = "facebook/blenderbot_small-90M" @cached_property def snake_case ( self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(self.src_text ,return_tensors='tf' ) SCREAMING_SNAKE_CASE_ : List[Any] = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ : List[str] = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.full((len(lowerCamelCase_ ), sequence_length, 2) , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.full((len(lowerCamelCase_ ), sequence_length) , lowerCamelCase_ ) for i, tensor in enumerate(lowerCamelCase_ ): if padding_side == "right": if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ : List[Any] = tensor[:sequence_length] else: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ : int = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ord(lowerCamelCase_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True SCREAMING_SNAKE_CASE_ : Union[str, Any] = unicodedata.category(lowerCamelCase_ ) if cat.startswith('P' ): return True return False @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): __a : PreTrainedTokenizerBase __a : Union[bool, str, PaddingStrategy] = True __a : Optional[int] = None __a : Optional[int] = None __a : int = -1_00 __a : str = "pt" def snake_case ( self ,snake_case__ ): import torch SCREAMING_SNAKE_CASE_ : Tuple = 'label' if 'label' in features[0].keys() else 'labels' SCREAMING_SNAKE_CASE_ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer.pad( snake_case__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' if labels is None else None ,) if labels is None: return batch SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(batch['entity_ids'] ).shape[1] SCREAMING_SNAKE_CASE_ : str = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE_ : Optional[Any] = [ list(snake_case__ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case__ )) for label in labels ] else: SCREAMING_SNAKE_CASE_ : str = [ [self.label_pad_token_id] * (sequence_length - len(snake_case__ )) + list(snake_case__ ) for label in labels ] SCREAMING_SNAKE_CASE_ : List[Any] = [feature['ner_tags'] for feature in features] SCREAMING_SNAKE_CASE_ : Any = padding_tensor(snake_case__ ,-1 ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = [feature['original_entity_spans'] for feature in features] SCREAMING_SNAKE_CASE_ : Optional[Any] = padding_tensor(snake_case__ ,(-1, -1) ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = {k: torch.tensor(snake_case__ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') UpperCamelCase__ : Union[str, Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : __a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a : bool = field( default=lowerCamelCase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a : bool = field( default=lowerCamelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowerCAmelCase_ : __a : Optional[str] = field(default=lowerCamelCase_ , metadata={"help": "The input training data file (a text file)."} ) __a : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __a : bool = field( default=lowerCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) __a : Optional[int] = field( default=lowerCamelCase_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) __a : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : bool = field( default=lowerCamelCase_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __a : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case ( self ): if self.train_file is not None: SCREAMING_SNAKE_CASE_ : Any = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase_ : __a : PreTrainedTokenizerBase __a : Union[bool, str, PaddingStrategy] = True __a : Optional[int] = None __a : Optional[int] = None def __call__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'label' if 'label' in features[0].keys() else 'labels' SCREAMING_SNAKE_CASE_ : Any = [feature.pop(snake_case__ ) for feature in features] SCREAMING_SNAKE_CASE_ : str = len(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = len(features[0]['input_ids'] ) SCREAMING_SNAKE_CASE_ : int = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case__ )] for feature in features ] SCREAMING_SNAKE_CASE_ : Optional[int] = list(chain(*snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.pad( snake_case__ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) # Un-flatten SCREAMING_SNAKE_CASE_ : Dict = {k: v.view(snake_case__ ,snake_case__ ,-1 ) for k, v in batch.items()} # Add back labels SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor(snake_case__ ,dtype=torch.intaa ) return batch def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowerCamelCase_ , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ : str = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) datasets.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} if data_args.train_file is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = data_args.validation_file SCREAMING_SNAKE_CASE_ : Dict = data_args.train_file.split('.' )[-1] SCREAMING_SNAKE_CASE_ : Dict = load_dataset( lowerCamelCase_ , data_files=lowerCamelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE_ : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. SCREAMING_SNAKE_CASE_ : Optional[Any] = [F'ending{i}' for i in range(4 )] SCREAMING_SNAKE_CASE_ : List[str] = 'sent1' SCREAMING_SNAKE_CASE_ : Any = 'sent2' if data_args.max_seq_length is None: SCREAMING_SNAKE_CASE_ : int = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) SCREAMING_SNAKE_CASE_ : Tuple = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE_ : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCamelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE_ : Tuple = [[context] * 4 for context in examples[context_name]] SCREAMING_SNAKE_CASE_ : int = examples[question_header_name] SCREAMING_SNAKE_CASE_ : Dict = [ [F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(lowerCamelCase_ ) ] # Flatten out SCREAMING_SNAKE_CASE_ : Dict = list(chain(*lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Tuple = list(chain(*lowerCamelCase_ ) ) # Tokenize SCREAMING_SNAKE_CASE_ : int = tokenizer( lowerCamelCase_ , lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCamelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) SCREAMING_SNAKE_CASE_ : Tuple = raw_datasets['train'] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ : List[Any] = min(len(lowerCamelCase_ ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE_ : int = train_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): SCREAMING_SNAKE_CASE_ : int = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) SCREAMING_SNAKE_CASE_ : Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ : List[str] = min(len(lowerCamelCase_ ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = eval_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = eval_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator SCREAMING_SNAKE_CASE_ : List[str] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCamelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCamelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = eval_predictions SCREAMING_SNAKE_CASE_ : Dict = np.argmax(lowerCamelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer SCREAMING_SNAKE_CASE_ : Union[str, Any] = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ : Tuple = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ : Any = last_checkpoint SCREAMING_SNAKE_CASE_ : str = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE_ : Any = train_result.metrics SCREAMING_SNAKE_CASE_ : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('train' , lowerCamelCase_ ) trainer.save_metrics('train' , lowerCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE_ : Tuple = trainer.evaluate() SCREAMING_SNAKE_CASE_ : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowerCamelCase_ ) else: trainer.create_model_card(**lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase_ : @staticmethod def snake_case ( *snake_case__ ,**snake_case__ ): pass def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> str: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCamelCase__ : List[str] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): __a : Any = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = pipeline( 'document-question-answering' ,model=snake_case__ ,tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = INVOICE_URL SCREAMING_SNAKE_CASE_ : Optional[int] = list(zip(*apply_tesseract(load_image(snake_case__ ) ,snake_case__ ,'' ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = 'What is the placebo?' SCREAMING_SNAKE_CASE_ : List[Any] = [ { 'image': load_image(snake_case__ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = dqa_pipeline(snake_case__ ,top_k=2 ) self.assertEqual( snake_case__ ,[ [ {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, ] ] * 3 ,) @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline('document-question-answering' ,model='hf-internal-testing/tiny-random-layoutlmv2' ) SCREAMING_SNAKE_CASE_ : Dict = INVOICE_URL SCREAMING_SNAKE_CASE_ : List[str] = 'How many cats are there?' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] SCREAMING_SNAKE_CASE_ : Optional[Any] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual(nested_simplify(snake_case__ ,decimals=4 ) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual(nested_simplify(snake_case__ ,decimals=4 ) ,snake_case__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE_ : Optional[int] = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE_ : Optional[int] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual(snake_case__ ,[] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE_ : List[str] = './tests/fixtures/tests_samples/COCO/000000039769.png' SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Tuple = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,words=snake_case__ ,boxes=snake_case__ ,top_k=2 ) self.assertEqual(snake_case__ ,[] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,) SCREAMING_SNAKE_CASE_ : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE_ : Optional[int] = 'What is the invoice number?' SCREAMING_SNAKE_CASE_ : Union[str, Any] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) SCREAMING_SNAKE_CASE_ : Dict = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) SCREAMING_SNAKE_CASE_ : List[Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 ,) @slow @require_torch @require_detectrona @require_pytesseract def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = pipeline( 'document-question-answering' ,model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' ,revision='9977165' ,max_seq_len=50 ,) SCREAMING_SNAKE_CASE_ : Tuple = INVOICE_URL SCREAMING_SNAKE_CASE_ : Any = 'What is the invoice number?' SCREAMING_SNAKE_CASE_ : Any = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) SCREAMING_SNAKE_CASE_ : int = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 ,) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=snake_case__ ,revision='3dc6de3' ,) SCREAMING_SNAKE_CASE_ : Optional[int] = INVOICE_URL SCREAMING_SNAKE_CASE_ : Optional[int] = 'What is the invoice number?' SCREAMING_SNAKE_CASE_ : Optional[int] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) SCREAMING_SNAKE_CASE_ : int = dqa_pipeline({'image': image, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 ,) SCREAMING_SNAKE_CASE_ : Optional[int] = list(zip(*apply_tesseract(load_image(snake_case__ ) ,snake_case__ ,'' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE_ : Dict = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ,) @slow @require_torch @require_pytesseract @require_vision def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' ,revision='3dc6de3' ,add_prefix_space=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = pipeline( 'document-question-answering' ,model='impira/layoutlm-document-qa' ,tokenizer=snake_case__ ,revision='3dc6de3' ,max_seq_len=50 ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = INVOICE_URL SCREAMING_SNAKE_CASE_ : str = 'What is the invoice number?' SCREAMING_SNAKE_CASE_ : Optional[Any] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) SCREAMING_SNAKE_CASE_ : Optional[int] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ [ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 ,) SCREAMING_SNAKE_CASE_ : Optional[int] = list(zip(*apply_tesseract(load_image(snake_case__ ) ,snake_case__ ,'' ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE_ : int = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} ,top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ,decimals=4 ) ,[ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ,) @slow @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = pipeline( 'document-question-answering' ,model='naver-clova-ix/donut-base-finetuned-docvqa' ,tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) ,feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' ,) SCREAMING_SNAKE_CASE_ : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'What is the invoice number?' SCREAMING_SNAKE_CASE_ : Optional[Any] = dqa_pipeline(image=snake_case__ ,question=snake_case__ ,top_k=2 ) self.assertEqual(nested_simplify(snake_case__ ,decimals=4 ) ,[{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def snake_case ( self ): pass
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.load(lowerCamelCase_ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : List[str] = chkpt['model'] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE_ : List[str] = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE_ : List[str] = v else: SCREAMING_SNAKE_CASE_ : Optional[int] = v SCREAMING_SNAKE_CASE_ : int = chkpt['params'] SCREAMING_SNAKE_CASE_ : str = {n: v for n, v in config.items() if not isinstance(lowerCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE_ : Optional[Any] = chkpt['dico_word2id'] SCREAMING_SNAKE_CASE_ : Optional[int] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE_ : Optional[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : Any = pytorch_dump_folder_path + '/' + CONFIG_NAME SCREAMING_SNAKE_CASE_ : Union[str, Any] = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase_ , indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(lowerCamelCase_ , indent=2 ) + '\n' ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "new-model" if is_tf_available(): class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = NewModelConfig @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = 'bert-base-cased' SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = TFAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 'bert-base-cased' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = TFAutoModelForPreTraining.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = TFAutoModelForCausalLM.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = TFAutoModelForCausalLM.from_pretrained(snake_case__ ,output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : List[str] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = TFAutoModelForMaskedLM.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = TFAutoModelForMaskedLM.from_pretrained(snake_case__ ,output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(snake_case__ ,output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = TFAutoModelForSequenceClassification.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow def snake_case ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) @slow @require_tensorflow_probability def snake_case ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: SCREAMING_SNAKE_CASE_ : Any = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = TFAutoModelForTableQuestionAnswering.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( snake_case__ ,output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) self.assertEqual(model.num_parameters() ,14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) ,14410 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = TFAutoModelWithLMHead.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) self.assertEqual(model.num_parameters() ,14410 ) self.assertEqual(model.num_parameters(only_trainable=snake_case__ ) ,14410 ) def snake_case ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel SCREAMING_SNAKE_CASE_ : List[Any] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(model.config ) SCREAMING_SNAKE_CASE_ : Any = ['FunnelBaseModel'] SCREAMING_SNAKE_CASE_ : Optional[Any] = TFAutoModel.from_config(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = TFAutoModel.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) def snake_case ( self ): try: AutoConfig.register('new-model' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(snake_case__ ): auto_class.register(snake_case__ ,snake_case__ ) auto_class.register(snake_case__ ,snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): auto_class.register(snake_case__ ,snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE_ : Optional[Any] = BertModelTester(self ).get_config() SCREAMING_SNAKE_CASE_ : List[Any] = NewModelConfig(**tiny_config.to_dict() ) SCREAMING_SNAKE_CASE_ : List[Any] = auto_class.from_config(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = auto_class.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ ,snake_case__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def snake_case ( self ): with self.assertRaisesRegex( snake_case__ ,'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ : List[Any] = TFAutoModel.from_pretrained('bert-base' ) def snake_case ( self ): with self.assertRaisesRegex( snake_case__ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ : Optional[int] = TFAutoModel.from_pretrained(snake_case__ ,revision='aaaaaa' ) def snake_case ( self ): with self.assertRaisesRegex( snake_case__ ,'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' ,): SCREAMING_SNAKE_CASE_ : List[Any] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def snake_case ( self ): with self.assertRaisesRegex(snake_case__ ,'Use `from_pt=True` to load this model' ): SCREAMING_SNAKE_CASE_ : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def snake_case ( self ): # Make sure we have cached the model. SCREAMING_SNAKE_CASE_ : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE_ : List[str] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 ) # With a sharded checkpoint SCREAMING_SNAKE_CASE_ : Tuple = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE_ : Dict = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase__ : Dict = '''<<<<<<< This should probably be modified because it mentions: ''' UpperCamelCase__ : Union[str, Any] = '''======= >>>>>>> ''' UpperCamelCase__ : Optional[Any] = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] UpperCamelCase__ : Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def __UpperCAmelCase ( lowerCamelCase_ : Namespace ) -> List[str]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase_ ( lowerCamelCase_ ): @staticmethod def snake_case ( snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = parser.add_parser( 'convert' ,help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' ,) train_parser.add_argument( '--tfds_path' ,type=snake_case__ ,required=snake_case__ ,help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' ,) train_parser.add_argument( '--datasets_directory' ,type=snake_case__ ,required=snake_case__ ,help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=snake_case__ ) def __init__( self ,snake_case__ ,snake_case__ ,*snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = get_logger('datasets-cli/converting' ) SCREAMING_SNAKE_CASE_ : List[str] = tfds_path SCREAMING_SNAKE_CASE_ : str = datasets_directory def snake_case ( self ): if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE_ : Any = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): SCREAMING_SNAKE_CASE_ : Dict = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Any = {} if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.listdir(snake_case__ ) else: SCREAMING_SNAKE_CASE_ : Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'Looking at file {f_name}' ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(snake_case__ ,snake_case__ ) if not os.path.isfile(snake_case__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(snake_case__ ,encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[str] = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Any = [] for line in lines: SCREAMING_SNAKE_CASE_ : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE_ : Optional[int] = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE_ : str = '' continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE_ : str = 'from datasets import logging\n' elif "getLogger" in out_line: SCREAMING_SNAKE_CASE_ : int = out_line.replace('getLogger' ,'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = list(filter(lambda snake_case__ : e in out_line ,snake_case__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case__ ) + '\n' ) out_lines.append(snake_case__ ) out_lines.append(snake_case__ ) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE_ : Dict = re.sub(snake_case__ ,snake_case__ ,snake_case__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE_ : List[Any] = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' ,snake_case__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE_ : List[str] = True out_lines.append(snake_case__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = f_name.replace('.py' ,'' ) SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = os.path.join(snake_case__ ,snake_case__ ) os.makedirs(snake_case__ ,exist_ok=snake_case__ ) self._logger.info(F'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case__ ) if needs_manual_update: with_manual_update.append(snake_case__ ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as f: f.writelines(snake_case__ ) self._logger.info(F'Converted in {output_file}' ) for utils_file in utils_files: try: SCREAMING_SNAKE_CASE_ : List[Any] = os.path.basename(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = imports_to_builder_map[f_name.replace('.py' ,'' )] self._logger.info(F'Moving {dest_folder} to {utils_file}' ) shutil.copy(snake_case__ ,snake_case__ ) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
def __UpperCAmelCase ( lowerCamelCase_ : list[int] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = len(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): for j in range(i + 1 , lowerCamelCase_ ): if numbers[j] < numbers[i]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCamelCase__ : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : str = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE_ : str = { 'wmt16-en-de-dist-12-1': [2_8.3, 2_7.5_2], 'wmt16-en-de-dist-6-1': [2_7.4, 2_7.1_1], 'wmt16-en-de-12-1': [2_6.9, 2_5.7_5], } SCREAMING_SNAKE_CASE_ : int = F'{src_lang}-{tgt_lang}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowerCamelCase_ , 'README.md' ) print(F'Generating {path}' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase_ ) # make sure we are under the root of the project UpperCamelCase__ : List[str] = Path(__file__).resolve().parent.parent.parent UpperCamelCase__ : Union[str, Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase__ : Optional[Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
685
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
1
UpperCamelCase__ : str = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase__ : List[Any] = ['''a''', '''b''', '''c''', '''d''', '''e'''] def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = start # add current to visited visited.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: SCREAMING_SNAKE_CASE_ : int = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): for vertice in vertices: if vertice not in visited: SCREAMING_SNAKE_CASE_ : Any = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # return sort return sort if __name__ == "__main__": UpperCamelCase__ : str = topological_sort('''a''', [], []) print(sort)
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = "roberta-prelayernorm" def __init__( self ,snake_case__=50265 ,snake_case__=768 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,snake_case__="absolute" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Any = use_cache SCREAMING_SNAKE_CASE_ : int = classifier_dropout class lowerCAmelCase_ ( lowerCamelCase_ ): @property def snake_case ( self ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
685
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
1
UpperCamelCase__ : Optional[Any] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase__ : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase ( lowerCamelCase_ : dict[int, list[int]] , lowerCamelCase_ : int , lowerCamelCase_ : list[bool] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : int = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) order.append(lowerCamelCase_ ) return order def __UpperCAmelCase ( lowerCamelCase_ : dict[int, list[int]] , lowerCamelCase_ : int , lowerCamelCase_ : list[bool] ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return component def __UpperCAmelCase ( lowerCamelCase_ : dict[int, list[int]] ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(lowerCamelCase_ ) * [False] SCREAMING_SNAKE_CASE_ : dict[int, list[int]] = {vert: [] for vert in range(len(lowerCamelCase_ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i, was_visited in enumerate(lowerCamelCase_ ): if not was_visited: order += topology_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : Dict = len(lowerCamelCase_ ) * [False] for i in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE_ : List[str] = order[len(lowerCamelCase_ ) - i - 1] if not visited[vert]: SCREAMING_SNAKE_CASE_ : Any = find_components(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) components_list.append(lowerCamelCase_ ) return components_list
685
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCamelCase__ : Optional[int] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = "albert" def __init__( self ,snake_case__=30000 ,snake_case__=128 ,snake_case__=4096 ,snake_case__=12 ,snake_case__=1 ,snake_case__=64 ,snake_case__=16384 ,snake_case__=1 ,snake_case__="gelu_new" ,snake_case__=0 ,snake_case__=0 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=0.1 ,snake_case__="absolute" ,snake_case__=0 ,snake_case__=2 ,snake_case__=3 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : str = embedding_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_hidden_groups SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = inner_group_num SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = position_embedding_type class lowerCAmelCase_ ( lowerCamelCase_ ): @property def snake_case ( self ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
685
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCamelCase__ : Dict = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) __a : bool = field(default=lowerCamelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) __a : bool = field( default=lowerCamelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) __a : bool = field(default=lowerCamelCase_ , metadata={"help": "whether to use adafactor"} ) __a : Optional[float] = field( default=lowerCamelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) __a : Optional[float] = field( default=lowerCamelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) __a : Optional[float] = field(default=lowerCamelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) __a : Optional[float] = field( default=lowerCamelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) __a : Optional[str] = field( default="linear" , metadata={"help": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
685
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[Any] = (PNDMScheduler,) __a : Union[str, Any] = (("num_inference_steps", 50),) def snake_case ( self ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**snake_case__ ) return config def snake_case ( self ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('num_inference_steps' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample SCREAMING_SNAKE_CASE_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : str = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Union[str, Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : List[str] = new_scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_plms(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = new_scheduler.step_plms(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case ( self ): pass def snake_case ( self ,snake_case__=0 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('num_inference_steps' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample SCREAMING_SNAKE_CASE_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : List[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : Optional[int] = new_scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : int = scheduler.step_plms(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : Any = new_scheduler.step_plms(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case ( self ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10 SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_plms(snake_case__ ,snake_case__ ,snake_case__ ).prev_sample return sample def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('num_inference_steps' ,snake_case__ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ ,'set_timesteps' ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ ,'set_timesteps' ): SCREAMING_SNAKE_CASE_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : List[str] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(snake_case__ ,0 ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step_prk(snake_case__ ,1 ,snake_case__ ,**snake_case__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_plms(snake_case__ ,0 ,snake_case__ ,**snake_case__ ).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_plms(snake_case__ ,1 ,snake_case__ ,**snake_case__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def snake_case ( self ): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def snake_case ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[Any] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE_ : int = scheduler_class(**snake_case__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) ,) def snake_case ( self ): for beta_start, beta_end in zip([0.0001, 0.001] ,[0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ ,beta_end=snake_case__ ) def snake_case ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def snake_case ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case__ ) def snake_case ( self ): for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case__ ) def snake_case ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 SCREAMING_SNAKE_CASE_ : int = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[int] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : str = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler.step_prk(snake_case__ ,snake_case__ ,snake_case__ ).prev_sample def snake_case ( self ): with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**snake_case__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.full_loop() SCREAMING_SNAKE_CASE_ : List[str] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : Optional[int] = self.full_loop(set_alpha_to_one=snake_case__ ,beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def snake_case ( self ): # We specify different beta, so that the first alpha is 0.99 SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=snake_case__ ,beta_start=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.sum(torch.abs(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
685
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" if hor == 1_28: SCREAMING_SNAKE_CASE_ : List[Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE_ : int = (32, 1_28, 2_56) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: SCREAMING_SNAKE_CASE_ : Tuple = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE_ : Tuple = (32, 64, 1_28, 2_56) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.state_dict() SCREAMING_SNAKE_CASE_ : Dict = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDModel(**lowerCamelCase_ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) SCREAMING_SNAKE_CASE_ : List[str] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) SCREAMING_SNAKE_CASE_ : int = model SCREAMING_SNAKE_CASE_ : Optional[Any] = UNetaDModel(**lowerCamelCase_ ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) SCREAMING_SNAKE_CASE_ : int = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): SCREAMING_SNAKE_CASE_ : List[str] = state_dict.pop(lowerCamelCase_ ) hf_value_function.load_state_dict(lowerCamelCase_ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
685
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
1
from typing import Any import numpy as np def __UpperCAmelCase ( lowerCamelCase_ : np.ndarray ) -> bool: """simple docstring""" return np.array_equal(lowerCamelCase_ , matrix.conjugate().T ) def __UpperCAmelCase ( lowerCamelCase_ : np.ndarray , lowerCamelCase_ : np.ndarray ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = v.conjugate().T SCREAMING_SNAKE_CASE_ : Any = v_star.dot(lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , np.ndarray ) return (v_star_dot.dot(lowerCamelCase_ )) / (v_star.dot(lowerCamelCase_ )) def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCamelCase_ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : str = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCamelCase_ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowerCamelCase_ , lowerCamelCase_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
1
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) SCREAMING_SNAKE_CASE_ : List[Any] = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ : List[Any] = str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ : Optional[int] = max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
685
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : str = logging.get_logger() @dataclass class lowerCAmelCase_ : __a : nn.Module __a : List[nn.Module] = field(default_factory=lowerCamelCase_ ) __a : list = field(default_factory=lowerCamelCase_ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ ,nn.Convad ) or isinstance(snake_case__ ,nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self ,snake_case__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def snake_case ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class lowerCAmelCase_ : __a : nn.Module __a : nn.Module __a : int = 0 __a : List = field(default_factory=lowerCamelCase_ ) __a : List = field(default_factory=lowerCamelCase_ ) def __call__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized SCREAMING_SNAKE_CASE_ : int = Tracker(self.src )(snake_case__ ).parametrized SCREAMING_SNAKE_CASE_ : Tuple = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip ,snake_case__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip ,snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( F'Numbers of operations are different. Source module has {len(snake_case__ )} operations while' F' destination module has {len(snake_case__ )}.' ) for dest_m, src_m in zip(snake_case__ ,snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : ResNetConfig , lowerCamelCase_ : Path , lowerCamelCase_ : bool = True ) -> List[Any]: """simple docstring""" print(F'Converting {name}...' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : str = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Tuple = ResNetForImageClassification(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Optional[int] = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(lowerCamelCase_ ) assert torch.allclose(from_model(lowerCamelCase_ ) , our_model(lowerCamelCase_ ).logits ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ : Tuple = F'resnet{"-".join(name.split("resnet" ) )}' print(lowerCamelCase_ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) # we can use the convnext one SCREAMING_SNAKE_CASE_ : Dict = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(F'Pushed {checkpoint_name}' ) def __UpperCAmelCase ( lowerCamelCase_ : Path , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = True ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : Tuple = 10_00 SCREAMING_SNAKE_CASE_ : List[str] = (1, num_labels) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ : List[str] = num_labels SCREAMING_SNAKE_CASE_ : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Optional[int] = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(lowerCamelCase_ , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, expected_shape if __name__ == "__main__": UpperCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) UpperCamelCase__ : str = parser.parse_args() UpperCamelCase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=4 ,): SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : int = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_attention_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = num_choices def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=snake_case__ ,) return config, input_ids, attention_mask def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = FlaxDistilBertModelTester(self ) @slow def snake_case ( self ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : int = model_class_name.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) SCREAMING_SNAKE_CASE_ : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE_ : Dict = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,snake_case__ ,atol=1E-4 ) )
685
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCamelCase_ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCamelCase_ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCamelCase_ ) return parser.parse_args() def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE_ : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE_ : Dict = script_fpath.stem SCREAMING_SNAKE_CASE_ : int = importlib.import_module(lowerCamelCase_ ) # Patch sys.argv SCREAMING_SNAKE_CASE_ : Union[str, Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Union[str, Any] = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCamelCase__ : List[str] = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = "rag" __a : Any = True def __init__( self ,snake_case__=None ,snake_case__=True ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=" / " ,snake_case__=" // " ,snake_case__=5 ,snake_case__=300 ,snake_case__=768 ,snake_case__=8 ,snake_case__="wiki_dpr" ,snake_case__="train" ,snake_case__="compressed" ,snake_case__=None ,snake_case__=None ,snake_case__=False ,snake_case__=False ,snake_case__=0.0 ,snake_case__=True ,snake_case__=False ,snake_case__=False ,snake_case__=False ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( bos_token_id=snake_case__ ,pad_token_id=snake_case__ ,eos_token_id=snake_case__ ,decoder_start_token_id=snake_case__ ,forced_eos_token_id=snake_case__ ,is_encoder_decoder=snake_case__ ,prefix=snake_case__ ,vocab_size=snake_case__ ,**snake_case__ ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('question_encoder' ) SCREAMING_SNAKE_CASE_ : List[str] = question_encoder_config.pop('model_type' ) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('generator' ) SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE_ : str = AutoConfig.for_model(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = AutoConfig.for_model(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = reduce_loss SCREAMING_SNAKE_CASE_ : List[str] = label_smoothing SCREAMING_SNAKE_CASE_ : str = exclude_bos_score SCREAMING_SNAKE_CASE_ : str = do_marginalize SCREAMING_SNAKE_CASE_ : Dict = title_sep SCREAMING_SNAKE_CASE_ : str = doc_sep SCREAMING_SNAKE_CASE_ : Any = n_docs SCREAMING_SNAKE_CASE_ : str = max_combined_length SCREAMING_SNAKE_CASE_ : Tuple = dataset SCREAMING_SNAKE_CASE_ : Union[str, Any] = dataset_split SCREAMING_SNAKE_CASE_ : List[Any] = index_name SCREAMING_SNAKE_CASE_ : Optional[Any] = retrieval_vector_size SCREAMING_SNAKE_CASE_ : Tuple = retrieval_batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = passages_path SCREAMING_SNAKE_CASE_ : Dict = index_path SCREAMING_SNAKE_CASE_ : Any = use_dummy_dataset SCREAMING_SNAKE_CASE_ : List[Any] = output_retrieved SCREAMING_SNAKE_CASE_ : Any = do_deduplication SCREAMING_SNAKE_CASE_ : Dict = use_cache if self.forced_eos_token_id is None: SCREAMING_SNAKE_CASE_ : int = getattr(self.generator ,'forced_eos_token_id' ,snake_case__ ) @classmethod def snake_case ( cls ,snake_case__ ,snake_case__ ,**snake_case__ ): return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.question_encoder.to_dict() SCREAMING_SNAKE_CASE_ : Tuple = self.generator.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__class__.model_type return output
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
from string import ascii_lowercase, ascii_uppercase def __UpperCAmelCase ( lowerCamelCase_ : str ) -> str: """simple docstring""" if not sentence: return "" SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) # TODO Update this UpperCamelCase__ : Optional[Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = "esm" def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=None ,snake_case__=768 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=1026 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__="absolute" ,snake_case__=True ,snake_case__=None ,snake_case__=False ,snake_case__=False ,snake_case__=None ,snake_case__=None ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,mask_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Tuple = emb_layer_norm_before SCREAMING_SNAKE_CASE_ : Optional[int] = token_dropout SCREAMING_SNAKE_CASE_ : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = EsmFoldConfig() elif isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = EsmFoldConfig(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) SCREAMING_SNAKE_CASE_ : str = get_default_vocab_list() else: SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_list else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : int = None if self.esmfold_config is not None and getattr(self.esmfold_config ,'use_esm_attn_map' ,snake_case__ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = super().to_dict() if isinstance(self.esmfold_config ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self.esmfold_config.to_dict() return output @dataclass class lowerCAmelCase_ : __a : str = None __a : bool = True __a : bool = False __a : bool = False __a : bool = False __a : float = 0 __a : bool = True __a : bool = False __a : int = 1_28 __a : "TrunkConfig" = None def snake_case ( self ): if self.trunk is None: SCREAMING_SNAKE_CASE_ : Any = TrunkConfig() elif isinstance(self.trunk ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = TrunkConfig(**self.trunk ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = asdict(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.trunk.to_dict() return output @dataclass class lowerCAmelCase_ : __a : int = 48 __a : int = 10_24 __a : int = 1_28 __a : int = 32 __a : int = 32 __a : int = 32 __a : float = 0 __a : float = 0 __a : bool = False __a : int = 4 __a : Optional[int] = 1_28 __a : "StructureModuleConfig" = None def snake_case ( self ): if self.structure_module is None: SCREAMING_SNAKE_CASE_ : List[str] = StructureModuleConfig() elif isinstance(self.structure_module ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = asdict(self ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.structure_module.to_dict() return output @dataclass class lowerCAmelCase_ : __a : int = 3_84 __a : int = 1_28 __a : int = 16 __a : int = 1_28 __a : int = 12 __a : int = 4 __a : int = 8 __a : float = 0.1 __a : int = 8 __a : int = 1 __a : int = 2 __a : int = 7 __a : int = 10 __a : float = 1E-8 __a : float = 1E5 def snake_case ( self ): return asdict(self ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) SCREAMING_SNAKE_CASE_ : Dict = hex_num[0] == '-' if is_negative: SCREAMING_SNAKE_CASE_ : str = hex_num[1:] try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(lowerCamelCase_ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = '' while int_num > 0: SCREAMING_SNAKE_CASE_ : int = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ = True ,snake_case__ = False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler SCREAMING_SNAKE_CASE_ : Optional[Any] = optimizers if isinstance(snake_case__ ,(list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE_ : Optional[Any] = split_batches SCREAMING_SNAKE_CASE_ : Any = step_with_optimizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = GradientState() def snake_case ( self ,*snake_case__ ,**snake_case__ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*snake_case__ ,**snake_case__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*snake_case__ ,**snake_case__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE_ : Dict = AcceleratorState().num_processes for _ in range(snake_case__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler ,'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*snake_case__ ,**snake_case__ ) else: self.scheduler.step(*snake_case__ ,**snake_case__ ) def snake_case ( self ): return self.scheduler.get_last_lr() def snake_case ( self ): return self.scheduler.state_dict() def snake_case ( self ,snake_case__ ): self.scheduler.load_state_dict(snake_case__ ) def snake_case ( self ): return self.scheduler.get_lr() def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.scheduler.print_lr(*snake_case__ ,**snake_case__ )
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCamelCase__ : Any = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = True ,): SCREAMING_SNAKE_CASE_ : List[str] = [file for file in os.listdir(snake_case__ ) if os.path.isfile(os.path.join(snake_case__ ,snake_case__ ) )] if identifier is not None: SCREAMING_SNAKE_CASE_ : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case__ ,snake_case__ ): for n_ in n_identifier: SCREAMING_SNAKE_CASE_ : Dict = [file for file in files if n_ not in file] else: SCREAMING_SNAKE_CASE_ : str = [file for file in files if n_identifier not in file] SCREAMING_SNAKE_CASE_ : List[str] = ignore_files or [] ignore_files.append('__init__.py' ) SCREAMING_SNAKE_CASE_ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,snake_case__ ) if only_modules: SCREAMING_SNAKE_CASE_ : Optional[Any] = file.split('.' )[0] try: SCREAMING_SNAKE_CASE_ : Dict = getattr(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = doctest.DocTestSuite(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = unittest.TextTestRunner().run(snake_case__ ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = doctest.testfile(str('..' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = Path('src/transformers' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'modeling' SCREAMING_SNAKE_CASE_ : Optional[int] = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(snake_case__ ,identifier=snake_case__ ,ignore_files=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = Path('src/transformers' ) SCREAMING_SNAKE_CASE_ : Tuple = 'tokenization' self.analyze_directory(snake_case__ ,identifier=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = Path('src/transformers' ) SCREAMING_SNAKE_CASE_ : Tuple = 'configuration' self.analyze_directory(snake_case__ ,identifier=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = Path('src/transformers' ) SCREAMING_SNAKE_CASE_ : Tuple = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(snake_case__ ,n_identifier=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path('docs/source' ) SCREAMING_SNAKE_CASE_ : Optional[int] = ['favicon.ico'] self.analyze_directory(snake_case__ ,ignore_files=snake_case__ ,only_modules=snake_case__ )
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def snake_case ( self ,snake_case__=0 ): SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((1, 3, 128, 128) ,rng=random.Random(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = np.random.RandomState(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : List[str] = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : str = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : List[Any] = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE_ : Tuple = pipe(**self.get_dummy_inputs() ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : List[str] = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : Any = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : str = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : Any = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) SCREAMING_SNAKE_CASE_ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : str = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE_ : Any = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): @property def snake_case ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : List[str] = False return options def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=snake_case__ ,feature_extractor=snake_case__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=snake_case__ ,image=snake_case__ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=snake_case__ ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : str = output.images SCREAMING_SNAKE_CASE_ : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) SCREAMING_SNAKE_CASE_ : Optional[int] = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE_ : str = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) SCREAMING_SNAKE_CASE_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=snake_case__ ,safety_checker=snake_case__ ,feature_extractor=snake_case__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A fantasy landscape, trending on artstation' SCREAMING_SNAKE_CASE_ : str = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=snake_case__ ,image=snake_case__ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=snake_case__ ,output_type='np' ,) SCREAMING_SNAKE_CASE_ : Tuple = output.images SCREAMING_SNAKE_CASE_ : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE_ : str = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ : List[str] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ : List[Any] = { '''facebook/blenderbot_small-90M''': 5_12, } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Tuple = BlenderbotSmallTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,snake_case__=True ,**snake_case__ ,): super().__init__( ByteLevelBPETokenizer( vocab=snake_case__ ,merges=snake_case__ ,add_prefix_space=snake_case__ ,trim_offsets=snake_case__ ,) ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : str = logging.get_logger(__name__) # General docstring UpperCamelCase__ : str = '''RegNetConfig''' # Base docstring UpperCamelCase__ : List[str] = '''facebook/regnet-y-040''' UpperCamelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCamelCase__ : Dict = '''facebook/regnet-y-040''' UpperCamelCase__ : List[str] = '''tabby, tabby cat''' UpperCamelCase__ : Any = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ = 3 ,snake_case__ = 1 ,snake_case__ = 1 ,snake_case__ = "relu" ,**snake_case__ ,): super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb SCREAMING_SNAKE_CASE_ : Dict = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE_ : Any = tf.keras.layers.ConvaD( filters=snake_case__ ,kernel_size=snake_case__ ,strides=snake_case__ ,padding='VALID' ,groups=snake_case__ ,use_bias=snake_case__ ,name='convolution' ,) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization' ) SCREAMING_SNAKE_CASE_ : int = ACTaFN[activation] if activation is not None else tf.identity def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.convolution(self.padding(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : int = self.normalization(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = config.num_channels SCREAMING_SNAKE_CASE_ : int = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) SCREAMING_SNAKE_CASE_ : str = tf.transpose(snake_case__ ,perm=(0, 2, 3, 1) ) SCREAMING_SNAKE_CASE_ : Dict = self.embedder(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ = 2 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tf.keras.layers.ConvaD( filters=snake_case__ ,kernel_size=1 ,strides=snake_case__ ,use_bias=snake_case__ ,name='convolution' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 ,momentum=0.9 ,name='normalization' ) def snake_case ( self ,snake_case__ ,snake_case__ = False ): return self.normalization(self.convolution(snake_case__ ) ,training=snake_case__ ) class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ ,name='pooler' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=snake_case__ ,kernel_size=1 ,activation='relu' ,name='attention.0' ), tf.keras.layers.ConvaD(filters=snake_case__ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2' ), ] def snake_case ( self ,snake_case__ ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] SCREAMING_SNAKE_CASE_ : Optional[int] = self.pooler(snake_case__ ) for layer_module in self.attention: SCREAMING_SNAKE_CASE_ : List[Any] = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_state * pooled return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Tuple = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : Any = ( TFRegNetShortCut(snake_case__ ,stride=snake_case__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. SCREAMING_SNAKE_CASE_ : Any = [ TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( snake_case__ ,stride=snake_case__ ,groups=snake_case__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=snake_case__ ,name='layer.2' ), ] SCREAMING_SNAKE_CASE_ : Dict = ACTaFN[config.hidden_act] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Any = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Any = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE_ : Tuple = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE_ : List[str] = ( TFRegNetShortCut(snake_case__ ,stride=snake_case__ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) SCREAMING_SNAKE_CASE_ : List[str] = [ TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( snake_case__ ,stride=snake_case__ ,groups=snake_case__ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetSELayer(snake_case__ ,reduced_channels=int(round(in_channels / 4 ) ) ,name='layer.2' ), TFRegNetConvLayer(snake_case__ ,kernel_size=1 ,activation=snake_case__ ,name='layer.3' ), ] SCREAMING_SNAKE_CASE_ : int = ACTaFN[config.hidden_act] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_state for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Dict = layer_module(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.shortcut(snake_case__ ) hidden_state += residual SCREAMING_SNAKE_CASE_ : Tuple = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 2 ,snake_case__ = 2 ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer SCREAMING_SNAKE_CASE_ : str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ ,snake_case__ ,snake_case__ ,stride=snake_case__ ,name='layers.0' ), *[layer(snake_case__ ,snake_case__ ,snake_case__ ,name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def snake_case ( self ,snake_case__ ): for layer_module in self.layers: SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_module(snake_case__ ) return hidden_state class lowerCAmelCase_ ( tf.keras.layers.Layer ): def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,) ) SCREAMING_SNAKE_CASE_ : Any = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ ,snake_case__ ,snake_case__ ,depth=snake_case__ ,name=F'stages.{i+1}' ) ) def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = True ): SCREAMING_SNAKE_CASE_ : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE_ : int = stage_module(snake_case__ ) if output_hidden_states: SCREAMING_SNAKE_CASE_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ ,hidden_states=snake_case__ ) @keras_serializable class lowerCAmelCase_ ( tf.keras.layers.Layer ): __a : Tuple = RegNetConfig def __init__( self ,snake_case__ ,**snake_case__ ): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = config SCREAMING_SNAKE_CASE_ : Any = TFRegNetEmbeddings(snake_case__ ,name='embedder' ) SCREAMING_SNAKE_CASE_ : Dict = TFRegNetEncoder(snake_case__ ,name='encoder' ) SCREAMING_SNAKE_CASE_ : Dict = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ ,name='pooler' ) @unpack_inputs def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : Tuple = self.embedder(snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.encoder( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE_ : int = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules SCREAMING_SNAKE_CASE_ : Optional[int] = tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) SCREAMING_SNAKE_CASE_ : Dict = tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: SCREAMING_SNAKE_CASE_ : Optional[int] = tuple([tf.transpose(snake_case__ ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ ,pooler_output=snake_case__ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = RegNetConfig __a : Dict = "regnet" __a : Any = "pixel_values" @property def snake_case ( self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} UpperCamelCase__ : Any = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase__ : List[str] = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): super().__init__(snake_case__ ,*snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = TFRegNetMainLayer(snake_case__ ,name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : List[Any] = self.regnet( pixel_values=snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCamelCase_ , ) class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): def __init__( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): super().__init__(snake_case__ ,*snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : str = config.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = TFRegNetMainLayer(snake_case__ ,name='regnet' ) # classification head SCREAMING_SNAKE_CASE_ : List[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=snake_case__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case ( self ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__ = None ,snake_case__=False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE_ : int = self.regnet( snake_case__ ,output_hidden_states=snake_case__ ,return_dict=snake_case__ ,training=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE_ : List[str] = self.classifier[0](snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.classifier[1](snake_case__ ) SCREAMING_SNAKE_CASE_ : int = None if labels is None else self.hf_compute_loss(labels=snake_case__ ,logits=snake_case__ ) if not return_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ ,logits=snake_case__ ,hidden_states=outputs.hidden_states )
685
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
1
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : str = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
1
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Any = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[str] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = bs[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase_ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : Dict = [chr(lowerCamelCase_ ) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = set() SCREAMING_SNAKE_CASE_ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[str] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="replace" ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="</s>" ,snake_case__="<s>" ,snake_case__="<unk>" ,snake_case__="<pad>" ,snake_case__="<mask>" ,snake_case__=False ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else bos_token SCREAMING_SNAKE_CASE_ : Any = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else eos_token SCREAMING_SNAKE_CASE_ : Any = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else cls_token SCREAMING_SNAKE_CASE_ : Dict = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else unk_token SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Any = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( errors=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,cls_token=snake_case__ ,pad_token=snake_case__ ,mask_token=snake_case__ ,add_prefix_space=snake_case__ ,**snake_case__ ,) with open(snake_case__ ,encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Any = json.load(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Union[str, Any] = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : int = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : Any = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ ,encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE_ : str = merges_handle.read().split('\n' )[1:-1] SCREAMING_SNAKE_CASE_ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : List[str] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : int = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def snake_case ( self ): return len(self.encoder ) def snake_case ( self ): return dict(self.encoder ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = get_pairs(snake_case__ ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : List[str] = min(snake_case__ ,key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = bigram SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Any = 0 while i < len(snake_case__ ): try: SCREAMING_SNAKE_CASE_ : Optional[int] = word.index(snake_case__ ,snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = tuple(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = new_word if len(snake_case__ ) == 1: break else: SCREAMING_SNAKE_CASE_ : int = get_pairs(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ' '.join(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = word return word def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = [] for token in re.findall(self.pat ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(' ' ) ) return bpe_tokens def snake_case ( self ,snake_case__ ): return self.encoder.get(snake_case__ ,self.encoder.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.decoder.get(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ''.join(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=snake_case__ ,ensure_ascii=snake_case__ ) + '\n' ) SCREAMING_SNAKE_CASE_ : Dict = 0 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) SCREAMING_SNAKE_CASE_ : str = token_index writer.write(' '.join(snake_case__ ) + '\n' ) index += 1 return vocab_file, merge_file def snake_case ( self ,snake_case__ ,snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ ,token_ids_a=snake_case__ ,already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self ,snake_case__ ,snake_case__=False ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : List[Any] = ' ' + text return (text, kwargs)
685
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Dict = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
1
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = {'''vocab_file''': '''vocab.txt'''} UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } UpperCamelCase__ : List[Any] = { '''YituTech/conv-bert-base''': 5_12, '''YituTech/conv-bert-medium-small''': 5_12, '''YituTech/conv-bert-small''': 5_12, } UpperCamelCase__ : Any = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = VOCAB_FILES_NAMES __a : List[Any] = PRETRAINED_VOCAB_FILES_MAP __a : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Dict = ConvBertTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__="[UNK]" ,snake_case__="[SEP]" ,snake_case__="[PAD]" ,snake_case__="[CLS]" ,snake_case__="[MASK]" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,do_lower_case=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,pad_token=snake_case__ ,cls_token=snake_case__ ,mask_token=snake_case__ ,tokenize_chinese_chars=snake_case__ ,strip_accents=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' ,snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,snake_case__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(snake_case__ ,normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE_ : Optional[int] = strip_accents SCREAMING_SNAKE_CASE_ : List[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ : List[Any] = normalizer_class(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = do_lower_case def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = self._tokenizer.model.save(snake_case__ ,name=snake_case__ ) return tuple(snake_case__ )
685
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Dict = TypeVar('''DatasetType''', Dataset, IterableDataset) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[List[float]] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) else: return _interleave_iterable_datasets( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , stopping_strategy=lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[DatasetType] , lowerCamelCase_ : Optional[DatasetInfo] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(lowerCamelCase_ ): if not isinstance(lowerCamelCase_ , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' 'is an empty dataset dictionary.' ) raise ValueError( F'Dataset at position {i} has at least one split: {list(lowerCamelCase_ )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(lowerCamelCase_ ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase_ ).__name__}.' ) if i == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = ( (Dataset, IterableDataset) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ ) else: return _concatenate_iterable_datasets(lowerCamelCase_ , info=lowerCamelCase_ , split=lowerCamelCase_ , axis=lowerCamelCase_ )
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase__ : List[Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.load(lowerCamelCase_ , map_location='cpu' ) return sd def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=rename_keys_prefix ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = OrderedDict() SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE_ : List[str] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE_ : Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE_ : List[Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE_ : Optional[int] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ) -> List[Any]: """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE_ : Any = 'pretraining' if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ : Dict = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ : Optional[Any] = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ : Optional[Any] = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE_ : List[Any] = {'visual_embedding_dim': 5_12} SCREAMING_SNAKE_CASE_ : Tuple = 'multichoice' elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE_ : List[Any] = {'visual_embedding_dim': 20_48} SCREAMING_SNAKE_CASE_ : Any = 'vqa_advanced' elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE_ : int = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} SCREAMING_SNAKE_CASE_ : Tuple = 'vqa' elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE_ : List[Any] = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } SCREAMING_SNAKE_CASE_ : Tuple = 'nlvr' SCREAMING_SNAKE_CASE_ : Optional[int] = VisualBertConfig(**lowerCamelCase_ ) # Load State Dict SCREAMING_SNAKE_CASE_ : Tuple = load_state_dict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = get_new_dict(lowerCamelCase_ , lowerCamelCase_ ) if model_type == "pretraining": SCREAMING_SNAKE_CASE_ : Optional[int] = VisualBertForPreTraining(lowerCamelCase_ ) elif model_type == "vqa": SCREAMING_SNAKE_CASE_ : str = VisualBertForQuestionAnswering(lowerCamelCase_ ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE_ : Union[str, Any] = VisualBertForVisualReasoning(lowerCamelCase_ ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE_ : Optional[int] = VisualBertForMultipleChoice(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # Save Checkpoints Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ : str = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
685
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
1
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __UpperCAmelCase ( lowerCamelCase_ : str ) -> dict[str, str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE_ : Any = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCamelCase_ ) # First fill cipher with key characters SCREAMING_SNAKE_CASE_ : List[Any] = {alphabet[i]: char for i, char in enumerate(lowerCamelCase_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase_ ) , 26 ): SCREAMING_SNAKE_CASE_ : List[str] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE_ : List[str] = alphabet[i - offset] SCREAMING_SNAKE_CASE_ : int = char return cipher_alphabet def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : dict[str, str] ) -> str: """simple docstring""" return "".join(cipher_map.get(lowerCamelCase_ , lowerCamelCase_ ) for ch in message.upper() ) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : dict[str, str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase_ , lowerCamelCase_ ) for ch in message.upper() ) def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter message to encode or decode: ' ).strip() SCREAMING_SNAKE_CASE_ : List[str] = input('Enter keyword: ' ).strip() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: SCREAMING_SNAKE_CASE_ : List[str] = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) SCREAMING_SNAKE_CASE_ : Dict = create_cipher_map(lowerCamelCase_ ) print(func(lowerCamelCase_ , lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
1
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } UpperCamelCase__ : List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} with open(lowerCamelCase_ , 'r' ) as file: for line_number, line in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = line.strip() if line: SCREAMING_SNAKE_CASE_ : List[Any] = line.split() SCREAMING_SNAKE_CASE_ : Union[str, Any] = line_number SCREAMING_SNAKE_CASE_ : Optional[int] = words[0] SCREAMING_SNAKE_CASE_ : List[str] = value return result def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" for attribute in key.split('.' ): SCREAMING_SNAKE_CASE_ : Dict = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = PARAM_MAPPING[full_name.split('.' )[-1]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'param' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ : Any = hf_pointer for attribute in hf_param_name.split('.' ): SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE_ : Tuple = value[0] else: SCREAMING_SNAKE_CASE_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ : int = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ : Dict = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ : str = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ : Tuple = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = value else: SCREAMING_SNAKE_CASE_ : List[str] = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int , lowerCamelCase_ : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = PARAM_MAPPING[full_name.split('.' )[-1]] SCREAMING_SNAKE_CASE_ : Tuple = 'param' if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ : int = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ : str = '.'.join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE_ : List[str] = key SCREAMING_SNAKE_CASE_ : Optional[Any] = value if 'lm_head' in full_key else value[0] UpperCamelCase__ : Optional[Any] = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=None ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_ : Optional[Any] = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ : List[Any] = name.split(lowerCamelCase_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE_ : str = mapped_key.replace('*' , lowerCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ : str = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_ : Optional[Any] = 'weight' else: SCREAMING_SNAKE_CASE_ : Dict = None if hf_dict is not None: rename_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return is_used return is_used def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : List[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ : Any = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ : List[str] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True else: SCREAMING_SNAKE_CASE_ : Tuple = load_wavaveca_layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE_ : List[Any] = name.split('.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = int(items[0] ) SCREAMING_SNAKE_CASE_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : int = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : int = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE_ : List[Any] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=False ) -> Tuple: """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE_ : str = WavaVecaConfig.from_pretrained(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE_ : Tuple = read_txt_into_dict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = idalabel SCREAMING_SNAKE_CASE_ : Optional[int] = WavaVecaForSequenceClassification(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) feature_extractor.save_pretrained(lowerCamelCase_ ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE_ : Optional[Any] = Dictionary.load(lowerCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE_ : Optional[Any] = target_dict.pad_index SCREAMING_SNAKE_CASE_ : List[str] = target_dict.bos_index SCREAMING_SNAKE_CASE_ : Optional[int] = target_dict.eos_index SCREAMING_SNAKE_CASE_ : List[str] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(lowerCamelCase_ , 'vocab.json' ) if not os.path.isdir(lowerCamelCase_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_ ) ) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : int = 1 with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = True if config.feat_extract_norm == 'layer' else False SCREAMING_SNAKE_CASE_ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = WavaVecaForCTC(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Dict = WavaVecaForPreTraining(lowerCamelCase_ ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.Namespace(task='audio_pretraining' ) SCREAMING_SNAKE_CASE_ : Any = fairseq.tasks.setup_task(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) UpperCamelCase__ : Dict = parser.parse_args() UpperCamelCase__ : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
from collections.abc import Callable class lowerCAmelCase_ : def __init__( self ,snake_case__ = None ): # Stores actual heap items. SCREAMING_SNAKE_CASE_ : list = [] # Stores indexes of each item for supporting updates and deletion. SCREAMING_SNAKE_CASE_ : dict = {} # Stores current size of heap. SCREAMING_SNAKE_CASE_ : Optional[int] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. SCREAMING_SNAKE_CASE_ : int = key or (lambda snake_case__ : x) def snake_case ( self ,snake_case__ ): return int((i - 1) / 2 ) if i > 0 else None def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.arr[j], self.arr[i] def snake_case ( self ,snake_case__ ,snake_case__ ): return self.arr[i][1] < self.arr[j][1] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self._left(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self._right(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = i if left is not None and not self._cmp(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = left if right is not None and not self._cmp(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = right return valid_parent def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self._parent(snake_case__ ) while parent is not None and not self._cmp(snake_case__ ,snake_case__ ): self._swap(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = parent, self._parent(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_valid_parent(snake_case__ ) while valid_parent != index: self._swap(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = valid_parent, self._get_valid_parent(snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pos_map[item] SCREAMING_SNAKE_CASE_ : Dict = [item, self.key(snake_case__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(snake_case__ ) self._heapify_down(snake_case__ ) def snake_case ( self ,snake_case__ ): if item not in self.pos_map: return SCREAMING_SNAKE_CASE_ : Optional[int] = self.pos_map[item] del self.pos_map[item] SCREAMING_SNAKE_CASE_ : Tuple = self.arr[self.size - 1] SCREAMING_SNAKE_CASE_ : Optional[int] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(snake_case__ ) self._heapify_down(snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(snake_case__ )] ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = [item, self.key(snake_case__ )] SCREAMING_SNAKE_CASE_ : Optional[int] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case ( self ): return self.arr[0] if self.size else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Optional[Any] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] UpperCamelCase__ : Dict = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(re.match(R'.*layer_(\d*).*' , lowerCamelCase_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE_ : Optional[int] = re.search(R'[^\d](\d+)$' , str(lowerCamelCase_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) SCREAMING_SNAKE_CASE_ : Tuple = int(bit_search.groups()[0] ) return bit_size // 8 def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : int ) -> int: """simple docstring""" if bloom_config_file == "": SCREAMING_SNAKE_CASE_ : List[Any] = BloomConfig() else: SCREAMING_SNAKE_CASE_ : Optional[Any] = BloomConfig.from_json_file(lowerCamelCase_ ) if shard_model: SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.listdir(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(filter(lambda lowerCamelCase_ : s.startswith('layer' ) and "model_00" in s , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = {'weight_map': {}, 'metadata': {}} SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = BloomConfig() for j, file in enumerate(lowerCamelCase_ ): print('Processing file: {}'.format(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None for i in range(lowerCamelCase_ ): # load all TP files SCREAMING_SNAKE_CASE_ : Dict = file.replace('model_00' , F'model_0{i}' ) SCREAMING_SNAKE_CASE_ : str = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE_ : int = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : Union[str, Any] = temp.pop(lowerCamelCase_ ) if tensors is None: SCREAMING_SNAKE_CASE_ : Tuple = temp else: for key in tensors.keys(): if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE_ : List[str] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=lowerCamelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE_ : Dict = tensors[key] / pretraining_tp torch.save( lowerCamelCase_ , os.path.join( lowerCamelCase_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(lowerCamelCase_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): SCREAMING_SNAKE_CASE_ : Tuple = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE_ : str = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(lowerCamelCase_ ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE_ : List[str] = BloomConfig() SCREAMING_SNAKE_CASE_ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME SCREAMING_SNAKE_CASE_ : Optional[Any] = total_size with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(lowerCamelCase_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '\n' f.write(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = BloomModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.listdir(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = sorted(filter(lambda lowerCamelCase_ : s.startswith('layer' ) and "model_00" in s , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None for i, file in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = None for i in range(lowerCamelCase_ ): # load all TP files SCREAMING_SNAKE_CASE_ : Optional[int] = file.replace('model_00' , F'model_0{i}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE_ : int = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : Optional[Any] = temp.pop(lowerCamelCase_ ) if tensors is None: SCREAMING_SNAKE_CASE_ : Dict = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE_ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([tensors[key], temp[key]] , dim=lowerCamelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowerCamelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE_ : Dict = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: SCREAMING_SNAKE_CASE_ : Tuple = set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME SCREAMING_SNAKE_CASE_ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE_ : Tuple = model.to(config.torch_dtype ) torch.save(model.state_dict() , lowerCamelCase_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) UpperCamelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
UpperCamelCase__ : Optional[int] = range(2, 20 + 1) UpperCamelCase__ : Dict = [10**k for k in range(ks[-1] + 1)] UpperCamelCase__ : dict[int, dict[int, list[list[int]]]] = {} def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = sum(a_i[j] for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ) ) SCREAMING_SNAKE_CASE_ : Dict = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase_ ) , lowerCamelCase_ ) ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = 0, 0 SCREAMING_SNAKE_CASE_ : Tuple = n - i SCREAMING_SNAKE_CASE_ : str = memo.get(lowerCamelCase_ ) if sub_memo is not None: SCREAMING_SNAKE_CASE_ : Dict = sub_memo.get(lowerCamelCase_ ) if jumps is not None and len(lowerCamelCase_ ) > 0: # find and make the largest jump without going over SCREAMING_SNAKE_CASE_ : List[Any] = -1 for _k in range(len(lowerCamelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: SCREAMING_SNAKE_CASE_ : List[Any] = _k break if max_jump >= 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = jumps[max_jump] # since the difference between jumps is cached, add c SCREAMING_SNAKE_CASE_ : str = diff + c for j in range(min(lowerCamelCase_ , len(lowerCamelCase_ ) ) ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = divmod(lowerCamelCase_ , 10 ) if new_c > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [] else: SCREAMING_SNAKE_CASE_ : Optional[int] = {c: []} SCREAMING_SNAKE_CASE_ : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = next_term(lowerCamelCase_ , k - 1 , i + dn , lowerCamelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = compute(lowerCamelCase_ , lowerCamelCase_ , i + dn , lowerCamelCase_ ) diff += _diff dn += terms_jumped SCREAMING_SNAKE_CASE_ : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped SCREAMING_SNAKE_CASE_ : Any = 0 while j < len(lowerCamelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase_ , (diff, dn, k) ) return (diff, dn) def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ) -> Optional[Any]: """simple docstring""" if i >= n: return 0, i if k > len(lowerCamelCase_ ): a_i.extend([0 for _ in range(k - len(lowerCamelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) SCREAMING_SNAKE_CASE_ : Union[str, Any] = i SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = 0, 0, 0 for j in range(len(lowerCamelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = ds_c + ds_b diff += addend SCREAMING_SNAKE_CASE_ : Tuple = 0 for j in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = a_i[j] + addend SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = divmod(lowerCamelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return diff, i - start_i def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ) -> List[Any]: """simple docstring""" for j in range(lowerCamelCase_ , len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE_ : List[Any] = digits[j] + addend if s >= 10: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = divmod(lowerCamelCase_ , 10 ) SCREAMING_SNAKE_CASE_ : Dict = addend // 10 + quotient else: SCREAMING_SNAKE_CASE_ : Tuple = s SCREAMING_SNAKE_CASE_ : int = addend // 10 if addend == 0: break while addend > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = divmod(lowerCamelCase_ , 10 ) digits.append(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : int = 10**15 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [1] SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : List[Any] = 0 while True: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_term(lowerCamelCase_ , 20 , i + dn , lowerCamelCase_ ) dn += terms_jumped if dn == n - i: break SCREAMING_SNAKE_CASE_ : List[str] = 0 for j in range(len(lowerCamelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Tuple = "rwkv" __a : int = {"max_position_embeddings": "context_length"} def __init__( self ,snake_case__=50277 ,snake_case__=1024 ,snake_case__=4096 ,snake_case__=32 ,snake_case__=None ,snake_case__=None ,snake_case__=1E-5 ,snake_case__=0 ,snake_case__=0 ,snake_case__=6 ,snake_case__=False ,snake_case__=True ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : Any = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Tuple = rescale_every SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_ : Any = bos_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ )
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = CTRLTokenizer __a : List[str] = False __a : List[str] = False def snake_case ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ : Optional[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] SCREAMING_SNAKE_CASE_ : Dict = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] SCREAMING_SNAKE_CASE_ : Tuple = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = 'adapt react readapt apt' SCREAMING_SNAKE_CASE_ : Tuple = 'adapt react readapt apt' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'adapt react readapt apt' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ )
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=128 ,snake_case__=32 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Dict = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : str = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[int] = use_labels SCREAMING_SNAKE_CASE_ : str = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : int = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : int = type_vocab_size SCREAMING_SNAKE_CASE_ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = num_labels SCREAMING_SNAKE_CASE_ : Tuple = num_choices SCREAMING_SNAKE_CASE_ : List[Any] = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ): ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = NezhaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : List[Any] = NezhaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = NezhaForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = NezhaForNextSentencePrediction(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = NezhaForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ,next_sentence_label=snake_case__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = NezhaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,start_positions=snake_case__ ,end_positions=snake_case__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = NezhaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : List[str] = NezhaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = self.num_choices SCREAMING_SNAKE_CASE_ : List[str] = NezhaForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __a : str = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = True def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : List[Any] = super()._prepare_for_class(snake_case__ ,snake_case__ ,return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): SCREAMING_SNAKE_CASE_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=snake_case__ ) return inputs_dict def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = NezhaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case__ ) def snake_case ( self ): # This regression test was failing with PyTorch < 1.3 ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE_ : Any = None self.model_tester.create_and_check_model_as_decoder( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def snake_case ( self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Tuple = NezhaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @slow @require_torch_gpu def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = model_class(config=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = torch.jit.trace( snake_case__ ,(inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case__ ,os.path.join(snake_case__ ,'bert.pt' ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.jit.load(os.path.join(snake_case__ ,'bert.pt' ) ,map_location=snake_case__ ) loaded(inputs_dict['input_ids'].to(snake_case__ ) ,inputs_dict['attention_mask'].to(snake_case__ ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = NezhaModel.from_pretrained('sijunhe/nezha-cn-base' ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ,attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE_ : str = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case__ ,atol=1E-4 ) ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = NezhaForMaskedLM.from_pretrained('sijunhe/nezha-cn-base' ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE_ : List[str] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,snake_case__ ,atol=1E-4 ) )
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
UpperCamelCase__ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [False] * len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [s] SCREAMING_SNAKE_CASE_ : Dict = True while queue: SCREAMING_SNAKE_CASE_ : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : List[Any] = u return visited[t] def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [-1] * (len(lowerCamelCase_ )) SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = float('Inf' ) SCREAMING_SNAKE_CASE_ : List[str] = sink while s != source: # Find the minimum value in select path SCREAMING_SNAKE_CASE_ : int = min(lowerCamelCase_ , graph[parent[s]][s] ) SCREAMING_SNAKE_CASE_ : Tuple = parent[s] max_flow += path_flow SCREAMING_SNAKE_CASE_ : List[Any] = sink while v != source: SCREAMING_SNAKE_CASE_ : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow SCREAMING_SNAKE_CASE_ : int = parent[v] for i in range(len(lowerCamelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import copy import random from transformers import CLIPTokenizer class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): super().__init__(*snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = {} def snake_case ( self ,snake_case__ ,*snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = super().add_tokens(snake_case__ ,*snake_case__ ,**snake_case__ ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self ,snake_case__ ,*snake_case__ ,snake_case__=1 ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ ,*snake_case__ ,**snake_case__ ) output.append(snake_case__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = placeholder_token + F'_{i}' self.try_adding_tokens(snake_case__ ,*snake_case__ ,**snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) SCREAMING_SNAKE_CASE_ : str = output def snake_case ( self ,snake_case__ ,snake_case__=False ,snake_case__=1.0 ): if isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : int = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] ,vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE_ : List[str] = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE_ : Tuple = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE_ : Tuple = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace(snake_case__ ,' '.join(snake_case__ ) ) return text def __call__( self ,snake_case__ ,*snake_case__ ,snake_case__=False ,snake_case__=1.0 ,**snake_case__ ): return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ ,vector_shuffle=snake_case__ ,prop_tokens_to_load=snake_case__ ) ,*snake_case__ ,**snake_case__ ,) def snake_case ( self ,snake_case__ ,*snake_case__ ,snake_case__=False ,snake_case__=1.0 ,**snake_case__ ): return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ ,vector_shuffle=snake_case__ ,prop_tokens_to_load=snake_case__ ) ,*snake_case__ ,**snake_case__ ,)
685
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> str: """simple docstring""" if ( (cp >= 0x4e_00 and cp <= 0x9f_ff) or (cp >= 0x34_00 and cp <= 0x4d_bf) # or (cp >= 0x2_00_00 and cp <= 0x2_a6_df) # or (cp >= 0x2_a7_00 and cp <= 0x2_b7_3f) # or (cp >= 0x2_b7_40 and cp <= 0x2_b8_1f) # or (cp >= 0x2_b8_20 and cp <= 0x2_ce_af) # or (cp >= 0xf9_00 and cp <= 0xfa_ff) or (cp >= 0x2_f8_00 and cp <= 0x2_fa_1f) # ): # return True return False def __UpperCAmelCase ( lowerCamelCase_ : str ) -> List[Any]: """simple docstring""" for char in word: SCREAMING_SNAKE_CASE_ : int = ord(lowerCamelCase_ ) if not _is_chinese_char(lowerCamelCase_ ): return 0 return 1 def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = set() for token in tokens: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(lowerCamelCase_ ) > 1 and is_chinese(lowerCamelCase_ ) if chinese_word: word_set.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = list(lowerCamelCase_ ) return word_list def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : set() ) -> Optional[int]: """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE_ : str = max([len(lowerCamelCase_ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE_ : Tuple = bert_tokens SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = 0, len(lowerCamelCase_ ) while start < end: SCREAMING_SNAKE_CASE_ : List[str] = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE_ : Any = min(end - start , lowerCamelCase_ ) for i in range(lowerCamelCase_ , 1 , -1 ): SCREAMING_SNAKE_CASE_ : Optional[int] = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE_ : Tuple = '##' + bert_word[j] SCREAMING_SNAKE_CASE_ : Tuple = start + i SCREAMING_SNAKE_CASE_ : Optional[int] = False break if single_word: start += 1 return bert_word def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : LTP , lowerCamelCase_ : BertTokenizer ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for i in range(0 , len(lowerCamelCase_ ) , 1_00 ): SCREAMING_SNAKE_CASE_ : Any = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] SCREAMING_SNAKE_CASE_ : Dict = [get_chinese_word(lowerCamelCase_ ) for r in res] ltp_res.extend(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(0 , len(lowerCamelCase_ ) , 1_00 ): SCREAMING_SNAKE_CASE_ : str = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [] for input_ids, chinese_word in zip(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = [] for id in input_ids: SCREAMING_SNAKE_CASE_ : str = bert_tokenizer._convert_id_to_token(lowerCamelCase_ ) input_tokens.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = add_sub_symbol(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCamelCase_ ): if token[:2] == "##": SCREAMING_SNAKE_CASE_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(lowerCamelCase_ ) == 1 and _is_chinese_char(ord(lowerCamelCase_ ) ): ref_id.append(lowerCamelCase_ ) ref_ids.append(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) return ref_ids def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> int: """simple docstring""" with open(args.file_name , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() SCREAMING_SNAKE_CASE_ : str = [line.strip() for line in data if len(lowerCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE_ : List[Any] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE_ : str = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE_ : Dict = prepare_ref(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Dict = [json.dumps(lowerCamelCase_ ) + '\n' for ref in ref_ids] f.writelines(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') UpperCamelCase__ : Optional[int] = parser.parse_args() main(args)
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = -1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ : List[str] = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ : Optional[int] = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ : List[str] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
685
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
1
import colorsys from PIL import Image # type: ignore def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : int ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = x SCREAMING_SNAKE_CASE_ : Union[str, Any] = y for step in range(lowerCamelCase_ ): # noqa: B007 SCREAMING_SNAKE_CASE_ : int = a * a - b * b + x SCREAMING_SNAKE_CASE_ : List[Any] = 2 * a * b + y SCREAMING_SNAKE_CASE_ : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCAmelCase ( lowerCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def __UpperCAmelCase ( lowerCamelCase_ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(lowerCamelCase_ , 1 , 1 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int = 8_00 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = -0.6 , lowerCamelCase_ : float = 0 , lowerCamelCase_ : float = 3.2 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : bool = True , ) -> Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = Image.new('RGB' , (image_width, image_height) ) SCREAMING_SNAKE_CASE_ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(lowerCamelCase_ ): for image_y in range(lowerCamelCase_ ): # determine the figure-coordinates based on the image-coordinates SCREAMING_SNAKE_CASE_ : Optional[int] = figure_width / image_width * image_height SCREAMING_SNAKE_CASE_ : int = figure_center_x + (image_x / image_width - 0.5) * figure_width SCREAMING_SNAKE_CASE_ : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height SCREAMING_SNAKE_CASE_ : Optional[int] = get_distance(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_color_coded_rgb(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = get_black_and_white_rgb(lowerCamelCase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCamelCase__ : Dict = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
685
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase__ : Optional[int] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') UpperCamelCase__ : Optional[Any] = F"""https://www.google.com/search?q={query}&num=100""" UpperCamelCase__ : Any = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: UpperCamelCase__ : str = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: UpperCamelCase__ : Any = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
685
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[Any]=0.9_9_9 , lowerCamelCase_ : Any="cosine" , ) -> Optional[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase_ : Union[str, Any] ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase_ : Any ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) SCREAMING_SNAKE_CASE_ : Any = [] for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE_ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase_ ) / alpha_bar_fn(lowerCamelCase_ ) , lowerCamelCase_ ) ) return torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): __a : Any = [e.name for e in KarrasDiffusionSchedulers] __a : Union[str, Any] = 2 @register_to_config def __init__( self ,snake_case__ = 1000 ,snake_case__ = 0.00085 ,snake_case__ = 0.012 ,snake_case__ = "linear" ,snake_case__ = None ,snake_case__ = "epsilon" ,snake_case__ = "linspace" ,snake_case__ = 0 ,): if trained_betas is not None: SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(snake_case__ ,dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE_ : Tuple = torch.linspace(snake_case__ ,snake_case__ ,snake_case__ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE_ : Dict = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,snake_case__ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE_ : int = betas_for_alpha_bar(snake_case__ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) SCREAMING_SNAKE_CASE_ : Tuple = 1.0 - self.betas SCREAMING_SNAKE_CASE_ : List[str] = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(snake_case__ ,snake_case__ ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__=None ): if schedule_timesteps is None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.timesteps SCREAMING_SNAKE_CASE_ : List[str] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE_ : str = 1 if len(snake_case__ ) > 1 else 0 else: SCREAMING_SNAKE_CASE_ : Dict = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep SCREAMING_SNAKE_CASE_ : List[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case ( self ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Any = self.index_for_timestep(snake_case__ ) if self.state_in_first_order: SCREAMING_SNAKE_CASE_ : List[Any] = self.sigmas[step_index] else: SCREAMING_SNAKE_CASE_ : Any = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE_ : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = None ,): SCREAMING_SNAKE_CASE_ : int = num_inference_steps SCREAMING_SNAKE_CASE_ : List[str] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.linspace(0 ,num_train_timesteps - 1 ,snake_case__ ,dtype=snake_case__ )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE_ : str = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ : Any = (np.arange(0 ,snake_case__ ) * step_ratio).round()[::-1].copy().astype(snake_case__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE_ : int = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ : List[str] = (np.arange(snake_case__ ,0 ,-step_ratio )).round().copy().astype(snake_case__ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.from_numpy(np.log(snake_case__ ) ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = np.interp(snake_case__ ,np.arange(0 ,len(snake_case__ ) ) ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ : str = torch.from_numpy(snake_case__ ).to(device=snake_case__ ) # interpolate sigmas SCREAMING_SNAKE_CASE_ : Any = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() SCREAMING_SNAKE_CASE_ : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE_ : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(snake_case__ ).startswith('mps' ): # mps does not support float64 SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.from_numpy(snake_case__ ).to(snake_case__ ,dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ : Any = torch.from_numpy(snake_case__ ).to(snake_case__ ) # interpolate timesteps SCREAMING_SNAKE_CASE_ : str = self.sigma_to_t(snake_case__ ).to(snake_case__ ,dtype=timesteps.dtype ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() SCREAMING_SNAKE_CASE_ : str = torch.cat([timesteps[:1], interleaved_timesteps] ) SCREAMING_SNAKE_CASE_ : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE_ : List[Any] = defaultdict(snake_case__ ) def snake_case ( self ,snake_case__ ): # get log sigma SCREAMING_SNAKE_CASE_ : Any = sigma.log() # get distribution SCREAMING_SNAKE_CASE_ : Tuple = log_sigma - self.log_sigmas[:, None] # get sigmas range SCREAMING_SNAKE_CASE_ : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE_ : Dict = low_idx + 1 SCREAMING_SNAKE_CASE_ : List[str] = self.log_sigmas[low_idx] SCREAMING_SNAKE_CASE_ : int = self.log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE_ : Any = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE_ : Any = w.clamp(0 ,1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE_ : Any = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE_ : Union[str, Any] = t.view(sigma.shape ) return t @property def snake_case ( self ): return self.sample is None def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = True ,): SCREAMING_SNAKE_CASE_ : Optional[int] = self.index_for_timestep(snake_case__ ) # advance index counter by 1 SCREAMING_SNAKE_CASE_ : str = timestep.cpu().item() if torch.is_tensor(snake_case__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE_ : List[str] = self.sigmas[step_index] SCREAMING_SNAKE_CASE_ : List[str] = self.sigmas_interpol[step_index + 1] SCREAMING_SNAKE_CASE_ : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method SCREAMING_SNAKE_CASE_ : Any = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE_ : List[str] = self.sigmas_interpol[step_index] SCREAMING_SNAKE_CASE_ : str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE_ : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE_ : int = sigma_hat if self.state_in_first_order else sigma_interpol SCREAMING_SNAKE_CASE_ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE_ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE_ : Dict = sigma_interpol - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE_ : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order SCREAMING_SNAKE_CASE_ : Tuple = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep SCREAMING_SNAKE_CASE_ : Any = sigma_next - sigma_hat SCREAMING_SNAKE_CASE_ : Dict = self.sample SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Dict = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples SCREAMING_SNAKE_CASE_ : Dict = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(snake_case__ ): # mps does not support float64 SCREAMING_SNAKE_CASE_ : Dict = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ : Dict = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ : Optional[int] = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ : List[str] = [self.index_for_timestep(snake_case__ ,snake_case__ ) for t in timesteps] SCREAMING_SNAKE_CASE_ : Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE_ : List[Any] = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ : Any = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
685
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase__ : Union[str, Any] = re.compile(r'''\s+''') def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Optional[int]: """simple docstring""" return {"hash": hashlib.mda(re.sub(lowerCamelCase_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [len(lowerCamelCase_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowerCamelCase_ ), "line_max": max(lowerCamelCase_ )} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=5 ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ['auto-generated', 'autogenerated', 'automatically generated'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = example['content'].splitlines() for _, line in zip(range(lowerCamelCase_ ) , lowerCamelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Any=5 , lowerCamelCase_ : List[str]=0.0_5 ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ['unit tests', 'test file', 'configuration file'] SCREAMING_SNAKE_CASE_ : List[Any] = example['content'].splitlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : int = 0 # first test for _, line in zip(range(lowerCamelCase_ ) , lowerCamelCase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test SCREAMING_SNAKE_CASE_ : int = example['content'].count('\n' ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ['def ', 'class ', 'for ', 'while '] SCREAMING_SNAKE_CASE_ : Any = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Any=4 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = example['content'].splitlines() SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase ( lowerCamelCase_ : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(example['content'] , truncation=lowerCamelCase_ )['input_ids'] SCREAMING_SNAKE_CASE_ : Optional[int] = len(example['content'] ) / len(lowerCamelCase_ ) return {"ratio": ratio} def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {} results.update(get_hash(lowerCamelCase_ ) ) results.update(line_stats(lowerCamelCase_ ) ) results.update(alpha_stats(lowerCamelCase_ ) ) results.update(char_token_ratio(lowerCamelCase_ ) ) results.update(is_autogenerated(lowerCamelCase_ ) ) results.update(is_config_or_test(lowerCamelCase_ ) ) results.update(has_no_keywords(lowerCamelCase_ ) ) results.update(has_few_assignments(lowerCamelCase_ ) ) return results def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ) -> Any: """simple docstring""" if not check_uniques(lowerCamelCase_ , lowerCamelCase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'rb' ) as f_in: with gzip.open(str(lowerCamelCase_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCamelCase_ , lowerCamelCase_ ) os.unlink(lowerCamelCase_ ) # Settings UpperCamelCase__ : Any = HfArgumentParser(PreprocessingArguments) UpperCamelCase__ : int = parser.parse_args() if args.num_workers is None: UpperCamelCase__ : int = multiprocessing.cpu_count() UpperCamelCase__ : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : str = load_dataset(args.dataset_name, split='''train''') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : Dict = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCamelCase__ : str = set(ds.unique('''hash''')) UpperCamelCase__ : Union[str, Any] = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCamelCase__ : int = time.time() UpperCamelCase__ : List[str] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase__ : Optional[Any] = time.time() UpperCamelCase__ , UpperCamelCase__ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCamelCase__ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) UpperCamelCase__ : Optional[Any] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) UpperCamelCase__ : int = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase__ : str = str(data_dir / F"""file-{file_number+1:012}.json""") UpperCamelCase__ : Union[str, Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
685
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase_ ( unittest.TestCase , lowerCamelCase_ ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = load_tool('text-classification' ) self.tool.setup() SCREAMING_SNAKE_CASE_ : Optional[Any] = load_tool('text-classification' ,remote=snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.tool('That\'s quite cool' ,['positive', 'negative'] ) self.assertEqual(snake_case__ ,'positive' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.remote_tool('That\'s quite cool' ,['positive', 'negative'] ) self.assertEqual(snake_case__ ,'positive' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.tool(text='That\'s quite cool' ,labels=['positive', 'negative'] ) self.assertEqual(snake_case__ ,'positive' ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.remote_tool(text='That\'s quite cool' ,labels=['positive', 'negative'] ) self.assertEqual(snake_case__ ,'positive' )
685
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" with open(lowerCamelCase_ ) as metadata_file: SCREAMING_SNAKE_CASE_ : str = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = LukeConfig(use_entity_aware_attention=lowerCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE_ : int = load_original_entity_vocab(lowerCamelCase_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE_ : str = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken('<ent>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = AddedToken('<ent2>' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE_ : Any = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = 'MLukeTokenizer' with open(os.path.join(lowerCamelCase_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE_ : Any = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE_ : str = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE_ : str = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Any = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE_ : str = state_dict[bias_name] SCREAMING_SNAKE_CASE_ : Any = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : int = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE_ : Optional[int] = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE_ : Any = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE_ : Any = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE_ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE_ : Optional[Any] = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE_ : str = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE_ : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE_ : Dict = LukeForMaskedLM(config=lowerCamelCase_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE_ : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE_ : List[Any] = state_dict[key] else: SCREAMING_SNAKE_CASE_ : str = state_dict[key] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) if set(lowerCamelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCamelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE_ : Tuple = MLukeTokenizer.from_pretrained(lowerCamelCase_ , task='entity_classification' ) SCREAMING_SNAKE_CASE_ : Optional[int] = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE_ : Optional[Any] = (0, 9) SCREAMING_SNAKE_CASE_ : Any = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**lowerCamelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE_ : int = MLukeTokenizer.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE_ : Dict = (24, 30) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer(lowerCamelCase_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Dict = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE_ : Any = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE_ : int = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE_ : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(lowerCamelCase_ ) ) model.save_pretrained(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE_ : Optional[int] = [json.loads(lowerCamelCase_ ) for line in open(lowerCamelCase_ )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} for entry in data: SCREAMING_SNAKE_CASE_ : int = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE_ : List[Any] = entity_id break SCREAMING_SNAKE_CASE_ : Optional[int] = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE_ : str = entity_id return new_mapping if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
1
import os import jsonlines import numpy as np from tqdm import tqdm UpperCamelCase__ : List[Any] = 20_48 UpperCamelCase__ : Optional[Any] = 40_96 UpperCamelCase__ : Dict = 42 UpperCamelCase__ : Any = os.environ.pop('''PROCESS_TRAIN''', '''false''') UpperCamelCase__ : str = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" def choose_first(lowerCamelCase_ : Any , lowerCamelCase_ : Any=False ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: SCREAMING_SNAKE_CASE_ : int = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: SCREAMING_SNAKE_CASE_ : int = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'id': example['id']} SCREAMING_SNAKE_CASE_ : int = example['annotations'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: SCREAMING_SNAKE_CASE_ : int = ['yes'] if 1 in yes_no_answer else ['no'] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : str = ['<cls>'] else: SCREAMING_SNAKE_CASE_ : str = ['short'] SCREAMING_SNAKE_CASE_ : List[str] = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available SCREAMING_SNAKE_CASE_ : str = ['long'] SCREAMING_SNAKE_CASE_ : List[str] = choose_first(annotation['long_answer'] , is_long_answer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = [] answer.update(lowerCamelCase_ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = True else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Tuple = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , lowerCamelCase_ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = _get_single_answer(lowerCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE_ : Optional[Any] = example['document']['tokens'] SCREAMING_SNAKE_CASE_ : int = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples SCREAMING_SNAKE_CASE_ : Optional[Any] = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = example['document']['tokens'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = answer['start_token'] SCREAMING_SNAKE_CASE_ : str = answer['end_token'] SCREAMING_SNAKE_CASE_ : Any = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 SCREAMING_SNAKE_CASE_ : Tuple = ' '.join(context[start_token:end_token] ) # checking above code if assertion: SCREAMING_SNAKE_CASE_ : Tuple = doc['is_html'][answer['start_token'] : answer['end_token']] SCREAMING_SNAKE_CASE_ : str = doc['token'][answer['start_token'] : answer['end_token']] SCREAMING_SNAKE_CASE_ : Optional[int] = ' '.join([old[i] for i in range(len(lowerCamelCase_ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , lowerCamelCase_ , end='\n' ) print('Old:' , lowerCamelCase_ , end='\n\n' ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any]=20_48 , lowerCamelCase_ : Dict=40_96 , lowerCamelCase_ : int=True ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_context_and_ans(lowerCamelCase_ , assertion=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(example['question']['text'] , out['context'] ).input_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : str = input_ids[:q_len] SCREAMING_SNAKE_CASE_ : Optional[int] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: SCREAMING_SNAKE_CASE_ : Optional[Any] = i + max_length - q_len SCREAMING_SNAKE_CASE_ : Tuple = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(lowerCamelCase_ ), "end_token": [-1_00] * len(lowerCamelCase_ ), "category": category, }, } SCREAMING_SNAKE_CASE_ : Union[str, Any] = out['context'].split() SCREAMING_SNAKE_CASE_ : List[Any] = splitted_context[answer['end_token']] SCREAMING_SNAKE_CASE_ : List[Any] = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=lowerCamelCase_ , ).input_ids ) SCREAMING_SNAKE_CASE_ : Any = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=lowerCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token SCREAMING_SNAKE_CASE_ : int = len(tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 SCREAMING_SNAKE_CASE_ : Any = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive SCREAMING_SNAKE_CASE_ : int = answer['start_token'] SCREAMING_SNAKE_CASE_ : Optional[int] = answer['end_token'] if assertion: SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.decode(lowerCamelCase_ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , lowerCamelCase_ , end='\n\n' ) if len(lowerCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } SCREAMING_SNAKE_CASE_ : Tuple = input_ids[:q_len] SCREAMING_SNAKE_CASE_ : List[Any] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] # null, yes, no, long, short for i in doc_start_indices: SCREAMING_SNAKE_CASE_ : int = i + max_length - q_len SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: SCREAMING_SNAKE_CASE_ : Optional[int] = start_token - i + q_len SCREAMING_SNAKE_CASE_ : List[Any] = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: SCREAMING_SNAKE_CASE_ : Optional[Any] = -1_00 SCREAMING_SNAKE_CASE_ : Union[str, Any] = -1_00 answers_category.append('null' ) SCREAMING_SNAKE_CASE_ : Any = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_ ) answers_end_token.append(lowerCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(lowerCamelCase_ ) ) print('Old:' , tokenizer.decode(lowerCamelCase_ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any]=20_48 , lowerCamelCase_ : Optional[Any]=40_96 , lowerCamelCase_ : Optional[Any]=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = get_strided_contexts_and_ans( lowerCamelCase_ , lowerCamelCase_ , doc_stride=lowerCamelCase_ , max_length=lowerCamelCase_ , assertion=lowerCamelCase_ , ) return example def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] ) -> Any: """simple docstring""" with jsonlines.open(lowerCamelCase_ , 'a' ) as writer: for example in tqdm(lowerCamelCase_ , total=len(lowerCamelCase_ ) , desc='Saving samples ... ' ): SCREAMING_SNAKE_CASE_ : Any = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCamelCase__ : Optional[int] = load_dataset('''natural_questions''') UpperCamelCase__ : List[Any] = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCamelCase__ : int = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] UpperCamelCase__ : Any = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } UpperCamelCase__ : Any = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCamelCase__ : List[str] = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) UpperCamelCase__ : int = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[Any] = DiTPipeline __a : Dict = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __a : Dict = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __a : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __a : int = False def snake_case ( self ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = TransformeraDModel( sample_size=16 ,num_layers=2 ,patch_size=4 ,attention_head_dim=8 ,num_attention_heads=2 ,in_channels=4 ,out_channels=8 ,attention_bias=snake_case__ ,activation_fn='gelu-approximate' ,num_embeds_ada_norm=1000 ,norm_type='ada_norm_zero' ,norm_elementwise_affine=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL() SCREAMING_SNAKE_CASE_ : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE_ : str = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def snake_case ( self ,snake_case__ ,snake_case__=0 ): if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE_ : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = 'cpu' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Tuple = self.pipeline_class(**snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = pipe(**snake_case__ ).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 16, 16, 3) ) SCREAMING_SNAKE_CASE_ : Any = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) SCREAMING_SNAKE_CASE_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case__ ,1E-3 ) def snake_case ( self ): self._test_inference_batch_single_identical(relax_max_difference=snake_case__ ,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[str] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ['vase', 'umbrella', 'white shark', 'white wolf'] SCREAMING_SNAKE_CASE_ : Optional[int] = pipe.get_label_ids(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = pipe(snake_case__ ,generator=snake_case__ ,num_inference_steps=40 ,output_type='np' ).images for word, image in zip(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Any = ['vase', 'umbrella'] SCREAMING_SNAKE_CASE_ : Optional[int] = pipe.get_label_ids(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe(snake_case__ ,generator=snake_case__ ,num_inference_steps=25 ,output_type='np' ).images for word, image in zip(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
from scipy.stats import pearsonr import datasets UpperCamelCase__ : Any = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' UpperCamelCase__ : int = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' UpperCamelCase__ : List[str] = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) ,reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=False ): if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(snake_case__ ,snake_case__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case__ ,snake_case__ )[0] )}
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : Dict = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], 'do_convert_rgb': True, } SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,snake_case__ ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(snake_case__ ,snake_case__ ) def snake_case ( self ,**snake_case__ ): return BertTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(snake_case__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=snake_case__ ) SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,snake_case__ ) self.assertIsInstance(processor_fast.tokenizer ,snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,snake_case__ ) self.assertIsInstance(processor_fast.image_processor ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer(cls_token='(CLS)' ,sep_token='(SEP)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname ,cls_token='(CLS)' ,sep_token='(SEP)' ,do_normalize=snake_case__ ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(snake_case__ ,return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Tuple = processor(images=snake_case__ ,return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 'Alexandra,T-shirt的价格是15便士。' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = 'Alexandra,T-shirt的价格是15便士。' SCREAMING_SNAKE_CASE_ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : str = processor(text=snake_case__ ,images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) ,['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[str] = processor.batch_decode(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=snake_case__ ,image_processor=snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Alexandra,T-shirt的价格是15便士。' SCREAMING_SNAKE_CASE_ : Any = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = processor(text=snake_case__ ,images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase__ : List[str] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCamelCase__ : int = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() UpperCamelCase__ : Union[str, Any] = '''|'''.join(sys.argv[1:]) UpperCamelCase__ : str = re.compile(rF"""^({joined_dirs}).*?\.py$""") UpperCamelCase__ : Dict = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Any = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : str = "levit" def __init__( self ,snake_case__=224 ,snake_case__=3 ,snake_case__=3 ,snake_case__=2 ,snake_case__=1 ,snake_case__=16 ,snake_case__=[128, 256, 384] ,snake_case__=[4, 8, 12] ,snake_case__=[4, 4, 4] ,snake_case__=[16, 16, 16] ,snake_case__=0 ,snake_case__=[2, 2, 2] ,snake_case__=[2, 2, 2] ,snake_case__=0.02 ,**snake_case__ ,): super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = kernel_size SCREAMING_SNAKE_CASE_ : Optional[int] = stride SCREAMING_SNAKE_CASE_ : Dict = padding SCREAMING_SNAKE_CASE_ : List[str] = hidden_sizes SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = depths SCREAMING_SNAKE_CASE_ : Union[str, Any] = key_dim SCREAMING_SNAKE_CASE_ : int = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Dict = attention_ratio SCREAMING_SNAKE_CASE_ : int = mlp_ratio SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : int = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Any = version.parse("1.11" ) @property def snake_case ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case ( self ): return 1E-4
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
UpperCamelCase__ : Any = 8.31_44_62 # Unit - J mol-1 K-1 def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : str = batch_size SCREAMING_SNAKE_CASE_ : Any = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Optional[Any] = use_input_mask SCREAMING_SNAKE_CASE_ : Dict = use_token_type_ids SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : Any = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[int] = num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = num_choices SCREAMING_SNAKE_CASE_ : List[str] = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = model(snake_case__ ,token_type_ids=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,start_positions=snake_case__ ,end_positions=snake_case__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[int] = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : str = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : str = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.num_choices SCREAMING_SNAKE_CASE_ : str = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Any = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() SCREAMING_SNAKE_CASE_ : Any = model( snake_case__ ,attention_mask=snake_case__ ,token_type_ids=snake_case__ ,labels=snake_case__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __a : int = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __a : str = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = NystromformerModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : List[Any] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def snake_case ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : int = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : int = model(snake_case__ )[0] SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 6, 768) ) self.assertEqual(output.shape ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case__ ,atol=1E-4 ) ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = 'the [MASK] of Belgium is Brussels' SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE_ : Dict = NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) SCREAMING_SNAKE_CASE_ : int = tokenizer(snake_case__ ,return_tensors='pt' ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(encoding.input_ids ).logits SCREAMING_SNAKE_CASE_ : int = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) ,'capital' )
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : def __init__( self ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = 13 SCREAMING_SNAKE_CASE_ : Any = 7 SCREAMING_SNAKE_CASE_ : Tuple = 30 SCREAMING_SNAKE_CASE_ : Optional[int] = self.seq_length + self.mem_len SCREAMING_SNAKE_CASE_ : Any = 15 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : Optional[int] = 99 SCREAMING_SNAKE_CASE_ : int = [10, 50, 80] SCREAMING_SNAKE_CASE_ : List[Any] = 32 SCREAMING_SNAKE_CASE_ : Optional[Any] = 32 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : List[str] = 8 SCREAMING_SNAKE_CASE_ : Tuple = 128 SCREAMING_SNAKE_CASE_ : str = 2 SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = self.vocab_size - 1 SCREAMING_SNAKE_CASE_ : List[Any] = 0.01 def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def snake_case ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = TFTransfoXLModel(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ).to_tuple() SCREAMING_SNAKE_CASE_ : str = {'input_ids': input_ids_a, 'mems': mems_a} SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = model(snake_case__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = TFTransfoXLLMHeadModel(snake_case__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ).to_tuple() SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids_a, 'labels': lm_labels} SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = model(snake_case__ ).to_tuple() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = model([input_ids_a, mems_a] ).to_tuple() SCREAMING_SNAKE_CASE_ : Any = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = TFTransfoXLForSequenceClassification(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = model(snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) : Any = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : int = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __a : List[str] = () if is_tf_available() else () __a : Optional[Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __a : int = False __a : Optional[Any] = False __a : List[str] = False __a : str = False def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = TFTransfoXLModelTester(self ) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self ,config_class=snake_case__ ,d_embed=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): self.model_tester.set_seed() SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case__ ) def snake_case ( self ): self.model_tester.set_seed() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = model_class(snake_case__ ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: SCREAMING_SNAKE_CASE_ : Any = model.get_output_embeddings() assert isinstance(snake_case__ ,tf.keras.layers.Layer ) SCREAMING_SNAKE_CASE_ : Tuple = model.get_bias() assert name is None else: SCREAMING_SNAKE_CASE_ : str = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE_ : List[str] = model.get_bias() assert name is None def snake_case ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def snake_case ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = TFTransfoXLModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def snake_case ( self ): pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off SCREAMING_SNAKE_CASE_ : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> SCREAMING_SNAKE_CASE_ : str = model.generate(snake_case__ ,max_length=200 ,do_sample=snake_case__ ) self.assertListEqual(output_ids[0].numpy().tolist() ,snake_case__ )
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ : List[str] = '''src/diffusers''' UpperCamelCase__ : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ : Optional[Any] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ : Tuple = spec.loader.load_module() def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" return line.startswith(lowerCamelCase_ ) or len(lowerCamelCase_ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowerCamelCase_ ) is not None def __UpperCAmelCase ( lowerCamelCase_ : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = object_name.split('.' ) SCREAMING_SNAKE_CASE_ : Any = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE_ : Optional[Any] = parts[i] while i < len(lowerCamelCase_ ) and not os.path.isfile(os.path.join(lowerCamelCase_ , F'{module}.py' ) ): i += 1 if i < len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = os.path.join(lowerCamelCase_ , parts[i] ) if i >= len(lowerCamelCase_ ): raise ValueError(F'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowerCamelCase_ , F'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE_ : int = '' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCamelCase_ ) and re.search(RF'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCamelCase_ ): raise ValueError(F' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE_ : str = line_index while line_index < len(lowerCamelCase_ ) and _should_continue(lines[line_index] , lowerCamelCase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = lines[start_index:line_index] return "".join(lowerCamelCase_ ) UpperCamelCase__ : Any = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCamelCase__ : Optional[int] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCamelCase__ : Any = re.compile(r'''<FILL\s+[^>]*>''') def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = code.split('\n' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 while idx < len(lowerCamelCase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCamelCase_ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = len(get_indent(lowerCamelCase_ ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE_ : Tuple = F'class Bla:\n{code}' SCREAMING_SNAKE_CASE_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = black.format_str(lowerCamelCase_ , mode=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = style_docstrings_in_code(lowerCamelCase_ ) return result[len('class Bla:\n' ) :] if has_indent else result def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]=False ) -> Dict: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: SCREAMING_SNAKE_CASE_ : int = f.readlines() SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = search.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = find_code_in_diffusers(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = get_indent(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE_ : Optional[int] = theoretical_indent SCREAMING_SNAKE_CASE_ : List[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE_ : List[str] = True while line_index < len(lowerCamelCase_ ) and should_continue: line_index += 1 if line_index >= len(lowerCamelCase_ ): break SCREAMING_SNAKE_CASE_ : List[str] = lines[line_index] SCREAMING_SNAKE_CASE_ : List[Any] = _should_continue(lowerCamelCase_ , lowerCamelCase_ ) and re.search(F'^{indent}# End copy' , lowerCamelCase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE_ : str = lines[start_index:line_index] SCREAMING_SNAKE_CASE_ : Optional[Any] = ''.join(lowerCamelCase_ ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE_ : Tuple = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowerCamelCase_ ) is None] SCREAMING_SNAKE_CASE_ : str = '\n'.join(lowerCamelCase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = replace_pattern.replace('with' , '' ).split(',' ) SCREAMING_SNAKE_CASE_ : str = [_re_replace_pattern.search(lowerCamelCase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = pattern.groups() SCREAMING_SNAKE_CASE_ : Tuple = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE_ : List[str] = re.sub(obja.lower() , obja.lower() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(obja.upper() , obja.upper() , lowerCamelCase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE_ : Any = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE_ : Any = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE_ : Dict = start_index + 1 if overwrite and len(lowerCamelCase_ ) > 0: # Warn the user a file has been modified. print(F'Detected changes, rewriting {filename}.' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase_ ) return diffs def __UpperCAmelCase ( lowerCamelCase_ : bool = False ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = glob.glob(os.path.join(lowerCamelCase_ , '**/*.py' ) , recursive=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Dict = [] for filename in all_files: SCREAMING_SNAKE_CASE_ : str = is_copy_consistent(lowerCamelCase_ , lowerCamelCase_ ) diffs += [F'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = '\n'.join(lowerCamelCase_ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase__ : List[str] = parser.parse_args() check_copies(args.fix_and_overwrite)
685
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCamelCase__ : Any = '''true''' def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=82 , lowerCamelCase_ : List[Any]=16 ) -> Optional[Any]: """simple docstring""" set_seed(42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = RegressionModel() SCREAMING_SNAKE_CASE_ : str = deepcopy(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = RegressionDataset(length=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) return model, ddp_model, dataloader def __UpperCAmelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : Any=False ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE_ : Tuple = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(lowerCamelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : Dict = dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ : int ): if use_longest: return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=1_28 , return_tensors='pt' ) return DataLoader(lowerCamelCase_ , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=16 ) def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = Accelerator(dispatch_batches=lowerCamelCase_ , split_batches=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = get_dataloader(lowerCamelCase_ , not dispatch_batches ) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for batch in dataloader: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(lowerCamelCase_ ) targs.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = torch.cat(lowerCamelCase_ ), torch.cat(lowerCamelCase_ ) return logits, targs def __UpperCAmelCase ( lowerCamelCase_ : Accelerator , lowerCamelCase_ : List[str]=82 , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : int=16 ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = get_basic_setup(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = generate_predictions(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) assert ( len(lowerCamelCase_ ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCamelCase_ )}' def __UpperCAmelCase ( lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = evaluate.load('glue' , 'mrpc' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = get_mrpc_setup(lowerCamelCase_ , lowerCamelCase_ ) # First do baseline SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = setup['no'] model.to(lowerCamelCase_ ) model.eval() for batch in dataloader: batch.to(lowerCamelCase_ ) with torch.inference_mode(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCamelCase_ , references=batch['labels'] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ : str = batch['labels'] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCamelCase_ , references=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator(split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(lowerCamelCase_ , lowerCamelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator(split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(lowerCamelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() test_torch_metrics(lowerCamelCase_ , 5_12 ) accelerator.state._reset_state() def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' SCREAMING_SNAKE_CASE_ : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert('RGB' ) return image def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = val def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE_ : List[Any] = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) SCREAMING_SNAKE_CASE_ : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat((q_bias, torch.zeros_like(lowerCamelCase_ , requires_grad=lowerCamelCase_ ), v_bias) ) SCREAMING_SNAKE_CASE_ : Optional[int] = qkv_bias def __UpperCAmelCase ( lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 3_64 if 'coco' in model_name else 2_24 SCREAMING_SNAKE_CASE_ : Tuple = BlipaVisionConfig(image_size=lowerCamelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE_ : Any = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowerCamelCase_ ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowerCamelCase_ ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE_ : Tuple = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE_ : Tuple = BlipaConfig(vision_config=lowerCamelCase_ , text_config=lowerCamelCase_ ) return config, image_size @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any=None , lowerCamelCase_ : int=False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) SCREAMING_SNAKE_CASE_ : int = tokenizer('\n' , add_special_tokens=lowerCamelCase_ ).input_ids[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = get_blipa_config(lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BlipaForConditionalGeneration(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = model_name_to_original[model_name] # load original model print('Loading original model...' ) SCREAMING_SNAKE_CASE_ : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_model_and_preprocess( name=lowerCamelCase_ , model_type=lowerCamelCase_ , is_eval=lowerCamelCase_ , device=lowerCamelCase_ ) original_model.eval() print('Done!' ) # update state dict keys SCREAMING_SNAKE_CASE_ : Tuple = original_model.state_dict() SCREAMING_SNAKE_CASE_ : List[str] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE_ : Optional[Any] = state_dict.pop(lowerCamelCase_ ) if key.startswith('Qformer.bert' ): SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('self' , 'attention' ) if "opt_proj" in key: SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): SCREAMING_SNAKE_CASE_ : Optional[int] = key.replace('opt' , 'language' ) if key.startswith('t5' ): SCREAMING_SNAKE_CASE_ : List[str] = key.replace('t5' , 'language' ) SCREAMING_SNAKE_CASE_ : int = val # read in qv biases read_in_q_v_bias(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = hf_model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE_ : int = load_demo_image() SCREAMING_SNAKE_CASE_ : List[Any] = vis_processors['eval'](lowerCamelCase_ ).unsqueeze(0 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowerCamelCase_ ) # create processor SCREAMING_SNAKE_CASE_ : str = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BlipaProcessor(image_processor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(images=lowerCamelCase_ , return_tensors='pt' ).pixel_values.to(lowerCamelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) hf_model.to(lowerCamelCase_ ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE_ : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits SCREAMING_SNAKE_CASE_ : Tuple = hf_model(lowerCamelCase_ , lowerCamelCase_ ).logits else: SCREAMING_SNAKE_CASE_ : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) SCREAMING_SNAKE_CASE_ : str = hf_model(lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowerCamelCase_ ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE_ : Any = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowerCamelCase_ ) else: # cast to same type SCREAMING_SNAKE_CASE_ : Any = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase_ ) , lowerCamelCase_ , atol=1E-2 ) print('Looks ok!' ) print('Generating a caption...' ) SCREAMING_SNAKE_CASE_ : List[str] = '' SCREAMING_SNAKE_CASE_ : Any = tokenizer(lowerCamelCase_ , return_tensors='pt' ).input_ids.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = original_model.generate({'image': original_pixel_values} ) SCREAMING_SNAKE_CASE_ : str = hf_model.generate( lowerCamelCase_ , lowerCamelCase_ , do_sample=lowerCamelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = input_ids.shape[1] SCREAMING_SNAKE_CASE_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = [text.strip() for text in output_text] print('HF generation:' , lowerCamelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() UpperCamelCase__ : Optional[int] = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) UpperCamelCase__ : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
685
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
1
def __UpperCAmelCase ( lowerCamelCase_ : int = 1_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = n * (n + 1) * (2 * n + 1) / 6 SCREAMING_SNAKE_CASE_ : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
685
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCamelCase__ : str = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
685
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
1
from __future__ import annotations from collections.abc import Generator def __UpperCAmelCase ( ) -> Generator[int, None, None]: """simple docstring""" SCREAMING_SNAKE_CASE_ : dict[int, int] = {} SCREAMING_SNAKE_CASE_ : Any = 2 while True: SCREAMING_SNAKE_CASE_ : Union[str, Any] = factor_map.pop(lowerCamelCase_ , lowerCamelCase_ ) if factor: SCREAMING_SNAKE_CASE_ : Tuple = factor + prime while x in factor_map: x += factor SCREAMING_SNAKE_CASE_ : List[str] = factor else: SCREAMING_SNAKE_CASE_ : List[str] = prime yield prime prime += 1 def __UpperCAmelCase ( lowerCamelCase_ : float = 1E10 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = sieve() SCREAMING_SNAKE_CASE_ : List[Any] = 1 while True: SCREAMING_SNAKE_CASE_ : Union[str, Any] = next(lowerCamelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase_ ) n += 2 if __name__ == "__main__": print(solution())
685
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
1
from __future__ import annotations from collections import namedtuple def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ) -> tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = namedtuple('result' , 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage' , power / current ) elif current == 0: return result('current' , power / voltage ) elif power == 0: return result('power' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
685
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
1
import cmath import math def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float ) -> complex: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = math.radians(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = math.radians(lowerCamelCase_ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE_ : List[str] = cmath.rect(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = cmath.rect(lowerCamelCase_ , lowerCamelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
1
from math import factorial UpperCamelCase__ : Optional[Any] = {str(d): factorial(d) for d in range(10)} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowerCamelCase_ ) if sum_of_digit_factorial(lowerCamelCase_ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
685
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
1
from __future__ import annotations UpperCamelCase__ : List[Any] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE_ : dict[str, str | None] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = source_vertex def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = {self.source_vertex} SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : int = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE_ : Dict = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = vertex queue.append(snake_case__ ) def snake_case ( self ,snake_case__ ): if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE_ : int = self.parent.get(snake_case__ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE_ : List[str] = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCamelCase__ : Tuple = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> bool: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) SCREAMING_SNAKE_CASE_ : Optional[int] = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = ''.join(sorted(lowerCamelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __UpperCAmelCase ( lowerCamelCase_ : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 1_00: raise ValueError('solution() only accepts values from 0 to 100' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = 1 while True: if check_bouncy(lowerCamelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 1_00 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
685
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase__ : int = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Optional[Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Tuple = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCamelCase_ , id=lowerCamelCase_ )
685
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Dict = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ['''ChineseCLIPFeatureExtractor'''] UpperCamelCase__ : Optional[int] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
685
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase__ : Dict = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,*snake_case__ ,**snake_case__ ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' ,snake_case__ ,) super().__init__(*snake_case__ ,**snake_case__ )
685
def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) else: return a * actual_power(lowerCamelCase_ , int(b / 2 ) ) * actual_power(lowerCamelCase_ , int(b / 2 ) ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowerCamelCase_ , lowerCamelCase_ ) return actual_power(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": print(power(-2, -3))
685
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Dict = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : str = "trajectory_transformer" __a : Optional[int] = ["past_key_values"] __a : int = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,snake_case__=100 ,snake_case__=5 ,snake_case__=1 ,snake_case__=1 ,snake_case__=249 ,snake_case__=6 ,snake_case__=17 ,snake_case__=25 ,snake_case__=4 ,snake_case__=4 ,snake_case__=128 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=0.0006 ,snake_case__=512 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=1 ,snake_case__=True ,snake_case__=1 ,snake_case__=50256 ,snake_case__=50256 ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = action_weight SCREAMING_SNAKE_CASE_ : Dict = reward_weight SCREAMING_SNAKE_CASE_ : str = value_weight SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = block_size SCREAMING_SNAKE_CASE_ : Optional[Any] = action_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = observation_dim SCREAMING_SNAKE_CASE_ : Tuple = transition_dim SCREAMING_SNAKE_CASE_ : Optional[int] = learning_rate SCREAMING_SNAKE_CASE_ : List[Any] = n_layer SCREAMING_SNAKE_CASE_ : Union[str, Any] = n_head SCREAMING_SNAKE_CASE_ : Any = n_embd SCREAMING_SNAKE_CASE_ : List[str] = embd_pdrop SCREAMING_SNAKE_CASE_ : List[Any] = attn_pdrop SCREAMING_SNAKE_CASE_ : Union[str, Any] = resid_pdrop SCREAMING_SNAKE_CASE_ : str = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = kaiming_initializer_range SCREAMING_SNAKE_CASE_ : int = use_cache super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ )
685
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCAmelCase_ : def __init__( self ,snake_case__ ,snake_case__=13 ,snake_case__=7 ,snake_case__=True ,snake_case__=True ,snake_case__=False ,snake_case__=True ,snake_case__=99 ,snake_case__=32 ,snake_case__=5 ,snake_case__=4 ,snake_case__=37 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=16 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=3 ,snake_case__=4 ,snake_case__=None ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Tuple = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_input_mask SCREAMING_SNAKE_CASE_ : List[str] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : int = type_sequence_label_size SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : List[str] = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE_ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return LlamaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=snake_case__ ,initializer_range=self.initializer_range ,) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = LlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(snake_case__ ,attention_mask=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,): SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : List[Any] = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,use_cache=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : str = ids_tensor((self.batch_size, 3) ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Any = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) SCREAMING_SNAKE_CASE_ : Dict = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] SCREAMING_SNAKE_CASE_ : Tuple = model( snake_case__ ,attention_mask=snake_case__ ,encoder_hidden_states=snake_case__ ,encoder_attention_mask=snake_case__ ,past_key_values=snake_case__ ,output_hidden_states=snake_case__ ,)['hidden_states'][0] # select random slice SCREAMING_SNAKE_CASE_ : Any = ids_tensor((1,) ,output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE_ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-3 ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): __a : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __a : int = (LlamaForCausalLM,) if is_torch_available() else () __a : Any = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __a : Tuple = False __a : Tuple = False def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE_ : List[str] = ConfigTester(self ,config_class=snake_case__ ,hidden_size=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Dict = 3 SCREAMING_SNAKE_CASE_ : Optional[Any] = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : str = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Any = 3 SCREAMING_SNAKE_CASE_ : int = 'single_label_classification' SCREAMING_SNAKE_CASE_ : str = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Dict = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : str = 'multi_label_classification' SCREAMING_SNAKE_CASE_ : int = input_dict['input_ids'] SCREAMING_SNAKE_CASE_ : Tuple = input_ids.ne(1 ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE_ : Optional[int] = LlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(snake_case__ ,attention_mask=snake_case__ ,labels=snake_case__ ) self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def snake_case ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([1, 10] ,config.vocab_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : Any = LlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() SCREAMING_SNAKE_CASE_ : int = original_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : List[Any] = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE_ : List[Any] = {'type': scaling_type, 'factor': 10.0} SCREAMING_SNAKE_CASE_ : int = LlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() SCREAMING_SNAKE_CASE_ : str = scaled_model(snake_case__ ).last_hidden_state SCREAMING_SNAKE_CASE_ : Optional[int] = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ ,snake_case__ ,atol=1E-5 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Dict = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : Union[str, Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : Tuple = model(torch.tensor(snake_case__ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE_ : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE_ : str = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' ,device_map='auto' ) SCREAMING_SNAKE_CASE_ : int = model(torch.tensor(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] ,dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) ,snake_case__ ,atol=1E-2 ,rtol=1E-2 ) # fmt: off SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] ,snake_case__ ,atol=1E-5 ,rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' SCREAMING_SNAKE_CASE_ : List[str] = 'Simply put, the theory of relativity states that ' SCREAMING_SNAKE_CASE_ : str = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' ,device_map='sequential' ,use_safetensors=snake_case__ ) # greedy generation outputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.generate(snake_case__ ,max_new_tokens=64 ,top_p=snake_case__ ,temperature=1 ,do_sample=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(generated_ids[0] ,skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ ,snake_case__ )
685
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase__ : List[Any] = float('''nan''') class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = sys.stdout SCREAMING_SNAKE_CASE_ : Optional[Any] = open(snake_case__ ,'a' ) def __getattr__( self ,snake_case__ ): return getattr(self.stdout ,snake_case__ ) def snake_case ( self ,snake_case__ ): self.stdout.write(snake_case__ ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' ,'' ,snake_case__ ,0 ,re.M ) ) def __UpperCAmelCase ( lowerCamelCase_ : str=80 , lowerCamelCase_ : List[str]=False ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] # deal with critical env vars SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.environ.get(lowerCamelCase_ , lowerCamelCase_ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE_ : int = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(lowerCamelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Tuple = '' while len(lowerCamelCase_ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(lowerCamelCase_ ) == 0 or len(lowerCamelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = '' return "\\\n".join(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = re.sub(R'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE_ : Dict = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE_ : str = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ) -> Optional[int]: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 1_0.3_1, 1_0_0.2, 5_5.6_6_6_6, 2_2_2.2_2_2_2_2_2_2_2] )} , ) SCREAMING_SNAKE_CASE_ : Tuple = subprocess.run(lowerCamelCase_ , capture_output=lowerCamelCase_ , text=lowerCamelCase_ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams SCREAMING_SNAKE_CASE_ : Dict = variation.replace(' ' , '-' ) with open(Path(lowerCamelCase_ ) / F'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(lowerCamelCase_ ) / F'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.load(lowerCamelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : str , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = F'{id}: {variation:<{longest_variation_len}}' SCREAMING_SNAKE_CASE_ : Optional[int] = F'{preamble}: ' SCREAMING_SNAKE_CASE_ : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowerCamelCase_ ) , desc=lowerCamelCase_ , leave=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = process_run_single( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = single_run_metrics[target_metric_key] if not math.isnan(lowerCamelCase_ ): metrics.append(lowerCamelCase_ ) results.append(lowerCamelCase_ ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE_ : Tuple = F'\33[2K\r{outcome}' if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE_ : Tuple = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE_ : List[Any] = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE_ : List[str] = F'{outcome} {mean_target}' if len(lowerCamelCase_ ) > 1: results_str += F' {tuple(round(lowerCamelCase_ , 2 ) for x in results )}' print(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = variation return mean_metrics else: print(lowerCamelCase_ ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = pd.DataFrame(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'variation' SCREAMING_SNAKE_CASE_ : List[str] = 'diff_%' SCREAMING_SNAKE_CASE_ : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE_ : Dict = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowerCamelCase_ ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE_ : Tuple = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = df.apply( lambda lowerCamelCase_ : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns SCREAMING_SNAKE_CASE_ : str = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE_ : List[str] = df.reindex(lowerCamelCase_ , axis='columns' ) # reorder cols # capitalize SCREAMING_SNAKE_CASE_ : Optional[Any] = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE_ : Any = df.rename(lambda lowerCamelCase_ : c.replace('_' , '<br>' ) , axis='columns' ) SCREAMING_SNAKE_CASE_ : List[str] = df.rename(lambda lowerCamelCase_ : c.replace('_' , '\n' ) , axis='columns' ) SCREAMING_SNAKE_CASE_ : List[str] = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowerCamelCase_ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowerCamelCase_ , floatfmt='.2f' )] print('\n\n'.join(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Base cmd' , ) parser.add_argument( '--variations' , default=lowerCamelCase_ , type=lowerCamelCase_ , nargs='+' , required=lowerCamelCase_ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=lowerCamelCase_ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=lowerCamelCase_ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=lowerCamelCase_ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=lowerCamelCase_ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE_ : Optional[Any] = args.output_dir Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = get_base_command(lowerCamelCase_ , lowerCamelCase_ ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE_ : str = [list(map(str.strip , re.split(R'\|' , lowerCamelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE_ : int = list(map(str.strip , map(' '.join , itertools.product(*lowerCamelCase_ ) ) ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = max(len(lowerCamelCase_ ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE_ : Optional[Any] = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) SCREAMING_SNAKE_CASE_ : List[str] = Tee(lowerCamelCase_ ) print(F'\n*** Running {len(lowerCamelCase_ )} benchmarks:' ) print(F'Base command: {" ".join(lowerCamelCase_ )}' ) SCREAMING_SNAKE_CASE_ : List[Any] = 'variation' SCREAMING_SNAKE_CASE_ : Any = [] for id, variation in enumerate(tqdm(lowerCamelCase_ , desc='Total completion: ' , leave=lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.target_metric_key , lowerCamelCase_ , args.repeat_times , lowerCamelCase_ , args.verbose , ) ) process_results(lowerCamelCase_ , args.target_metric_key , lowerCamelCase_ , args.base_variation , lowerCamelCase_ ) if __name__ == "__main__": main()
685
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
1
def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Any: """simple docstring""" stooge(lowerCamelCase_ , 0 , len(lowerCamelCase_ ) - 1 ) return arr def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict ) -> Any: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: SCREAMING_SNAKE_CASE_ : Dict = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowerCamelCase_ , lowerCamelCase_ , (h - t) ) # Recursively sort last 2/3 elements stooge(lowerCamelCase_ , i + t , (lowerCamelCase_) ) # Recursively sort first 2/3 elements stooge(lowerCamelCase_ , lowerCamelCase_ , (h - t) ) if __name__ == "__main__": UpperCamelCase__ : str = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : str = [int(item) for item in user_input.split(''',''')] print(stooge_sort(unsorted))
685
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase__ : Tuple = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
685
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowerCAmelCase_ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 1.0 ,snake_case__ = None ,): super().__init__() SCREAMING_SNAKE_CASE_ : str = initial_learning_rate SCREAMING_SNAKE_CASE_ : int = warmup_steps SCREAMING_SNAKE_CASE_ : int = power SCREAMING_SNAKE_CASE_ : Optional[Any] = decay_schedule_fn SCREAMING_SNAKE_CASE_ : Union[str, Any] = name def __call__( self ,snake_case__ ): with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. SCREAMING_SNAKE_CASE_ : Dict = tf.cast(snake_case__ ,tf.floataa ) SCREAMING_SNAKE_CASE_ : Dict = tf.cast(self.warmup_steps ,tf.floataa ) SCREAMING_SNAKE_CASE_ : Optional[int] = global_step_float / warmup_steps_float SCREAMING_SNAKE_CASE_ : str = self.initial_learning_rate * tf.math.pow(snake_case__ ,self.power ) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=snake_case__ ,) def snake_case ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 0.9 , lowerCamelCase_ : float = 0.9_9_9 , lowerCamelCase_ : float = 1E-8 , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[List[str]] = None , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCamelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCamelCase_ , ) if num_warmup_steps: SCREAMING_SNAKE_CASE_ : Tuple = WarmUp( initial_learning_rate=lowerCamelCase_ , decay_schedule_fn=lowerCamelCase_ , warmup_steps=lowerCamelCase_ , ) if weight_decay_rate > 0.0: SCREAMING_SNAKE_CASE_ : Dict = AdamWeightDecay( learning_rate=lowerCamelCase_ , weight_decay_rate=lowerCamelCase_ , beta_a=lowerCamelCase_ , beta_a=lowerCamelCase_ , epsilon=lowerCamelCase_ , clipnorm=lowerCamelCase_ , global_clipnorm=lowerCamelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=lowerCamelCase_ , ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.keras.optimizers.Adam( learning_rate=lowerCamelCase_ , beta_a=lowerCamelCase_ , beta_a=lowerCamelCase_ , epsilon=lowerCamelCase_ , clipnorm=lowerCamelCase_ , global_clipnorm=lowerCamelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ = 0.001 ,snake_case__ = 0.9 ,snake_case__ = 0.999 ,snake_case__ = 1E-7 ,snake_case__ = False ,snake_case__ = 0.0 ,snake_case__ = None ,snake_case__ = None ,snake_case__ = "AdamWeightDecay" ,**snake_case__ ,): super().__init__(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = weight_decay_rate SCREAMING_SNAKE_CASE_ : Tuple = include_in_weight_decay SCREAMING_SNAKE_CASE_ : Union[str, Any] = exclude_from_weight_decay @classmethod def snake_case ( cls ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = {'WarmUp': WarmUp} return super(snake_case__ ,cls ).from_config(snake_case__ ,custom_objects=snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): super(snake_case__ ,self )._prepare_local(snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.constant( self.weight_decay_rate ,name='adam_weight_decay_rate' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] ,use_locking=self._use_locking ,) return tf.no_op() def snake_case ( self ,snake_case__ ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = list(zip(*snake_case__ ) ) return super(snake_case__ ,self ).apply_gradients(zip(snake_case__ ,snake_case__ ) ,name=snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = apply_state or {} SCREAMING_SNAKE_CASE_ : str = apply_state.get((var_device, var_dtype) ) if coefficients is None: SCREAMING_SNAKE_CASE_ : str = self._fallback_apply_state(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self._get_lr(var.device ,var.dtype.base_dtype ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = self._decay_weights_op(snake_case__ ,snake_case__ ,snake_case__ ) with tf.control_dependencies([decay] ): return super(snake_case__ ,self )._resource_apply_dense(snake_case__ ,snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self._get_lr(var.device ,var.dtype.base_dtype ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = self._decay_weights_op(snake_case__ ,snake_case__ ,snake_case__ ) with tf.control_dependencies([decay] ): return super(snake_case__ ,self )._resource_apply_sparse(snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def snake_case ( self ,snake_case__ ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(snake_case__ ,snake_case__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(snake_case__ ,snake_case__ ) is not None: return False return True class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ): SCREAMING_SNAKE_CASE_ : Tuple = [] SCREAMING_SNAKE_CASE_ : List[Any] = None @property def snake_case ( self ): if self._accum_steps is None: SCREAMING_SNAKE_CASE_ : Tuple = tf.Variable( tf.constant(0 ,dtype=tf.intaa ) ,trainable=snake_case__ ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def snake_case ( self ): if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self ,snake_case__ ): if not self._gradients: SCREAMING_SNAKE_CASE_ : Tuple = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(snake_case__ ) ,trainable=snake_case__ ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ] ) if len(snake_case__ ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(snake_case__ )}' ) for accum_gradient, gradient in zip(self._gradients ,snake_case__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(snake_case__ ) self._accum_steps.assign_add(1 ) def snake_case ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(snake_case__ ) )
685
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any]=False ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int]=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_ : Union[str, Any] = '' else: SCREAMING_SNAKE_CASE_ : Tuple = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_ : Tuple = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_ : int = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_ : Any = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_ : Dict = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = val def __UpperCAmelCase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ViTMSNConfig() SCREAMING_SNAKE_CASE_ : Optional[Any] = 10_00 SCREAMING_SNAKE_CASE_ : Optional[Any] = 'datasets/huggingface/label-files' SCREAMING_SNAKE_CASE_ : int = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : Dict = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) , 'r' ) ) SCREAMING_SNAKE_CASE_ : Tuple = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE_ : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] = 3_84 SCREAMING_SNAKE_CASE_ : Any = 15_36 SCREAMING_SNAKE_CASE_ : Tuple = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[Any] = 10_24 SCREAMING_SNAKE_CASE_ : Dict = 40_96 SCREAMING_SNAKE_CASE_ : Optional[Any] = 24 SCREAMING_SNAKE_CASE_ : Any = 16 SCREAMING_SNAKE_CASE_ : int = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Optional[int] = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Tuple = 7 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10_24 SCREAMING_SNAKE_CASE_ : Optional[int] = 40_96 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 24 SCREAMING_SNAKE_CASE_ : Any = 16 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 SCREAMING_SNAKE_CASE_ : int = ViTMSNModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['target_encoder'] SCREAMING_SNAKE_CASE_ : Dict = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = create_rename_keys(lowerCamelCase_ , base_model=lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_ , base_model=lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE_ : Dict = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) SCREAMING_SNAKE_CASE_ : Any = ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processor(images=lowerCamelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_ : Any = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase_ , atol=1E-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
685
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE_ : int = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) DownloadCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) RunCommand.register_subcommand(lowerCamelCase_ ) ServeCommand.register_subcommand(lowerCamelCase_ ) UserCommands.register_subcommand(lowerCamelCase_ ) AddNewModelCommand.register_subcommand(lowerCamelCase_ ) AddNewModelLikeCommand.register_subcommand(lowerCamelCase_ ) LfsCommands.register_subcommand(lowerCamelCase_ ) PTtoTFCommand.register_subcommand(lowerCamelCase_ ) # Let's go SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : Optional[Any] = args.func(lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
685
1
from __future__ import annotations from typing import Any class lowerCAmelCase_ : def __init__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = num_of_nodes SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : dict[int, int] = {} def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): self.m_edges.append([u_node, v_node, weight] ) def snake_case ( self ,snake_case__ ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def snake_case ( self ,snake_case__ ): if self.m_component[u_node] != u_node: for k in self.m_component: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.find_component(snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ): if component_size[u_node] <= component_size[v_node]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: SCREAMING_SNAKE_CASE_ : Dict = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = edge SCREAMING_SNAKE_CASE_ : int = self.m_component[u] SCREAMING_SNAKE_CASE_ : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): SCREAMING_SNAKE_CASE_ : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = edge SCREAMING_SNAKE_CASE_ : Any = self.m_component[u] SCREAMING_SNAKE_CASE_ : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ ,snake_case__ ,snake_case__ ) print(F'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 SCREAMING_SNAKE_CASE_ : str = [-1] * self.m_num_of_nodes print(F'The total weight of the minimal spanning tree is: {mst_weight}' ) def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
import numpy as np from transformers import Pipeline def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.max(lowerCamelCase_ , axis=-1 , keepdims=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = {} if "second_text" in kwargs: SCREAMING_SNAKE_CASE_ : int = kwargs['second_text'] return preprocess_kwargs, {}, {} def snake_case ( self ,snake_case__ ,snake_case__=None ): return self.tokenizer(snake_case__ ,text_pair=snake_case__ ,return_tensors=self.framework ) def snake_case ( self ,snake_case__ ): return self.model(**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = model_outputs.logits[0].numpy() SCREAMING_SNAKE_CASE_ : Dict = softmax(snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = np.argmax(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.model.config.idalabel[best_class] SCREAMING_SNAKE_CASE_ : List[str] = probabilities[best_class].item() SCREAMING_SNAKE_CASE_ : Dict = logits.tolist() return {"label": label, "score": score, "logits": logits}
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1