code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) snake_case : List[str] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format snake_case : List[str] = PipelineDataFormat.from_str( format=lowercase ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(lowercase ,lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A ) -> int: snake_case : List[str] = nlp snake_case : Union[str, Any] = reader @staticmethod def UpperCAmelCase ( A ) -> Union[str, Any]: snake_case : str = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=A , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=A , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=A , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=A , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=A , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=A , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=A , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=A , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self._nlp, [] for entry in self._reader: snake_case : Union[str, Any] = nlp(**A ) if self._reader.is_multi_columns else nlp(A ) if isinstance(A , A ): outputs.append(A ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case : List[str] = self._reader.save_binary(A ) logger.warning(f"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(A )
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCamelCase : Dict = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCamelCase : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Optional[int] = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) snake_case : Dict = bs[:] snake_case : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 snake_case : Union[str, Any] = [chr(lowercase ) for n in cs] return dict(zip(lowercase ,lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Union[str, Any] = set() snake_case : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : List[str] = char return pairs class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Tuple: snake_case : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token snake_case : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token snake_case : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) snake_case : int = {v: k for k, v in self.encoder.items()} snake_case : str = errors # how to handle errors in decoding snake_case : Tuple = bytes_to_unicode() snake_case : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: snake_case : Dict = merges_handle.read().split("""\n""" )[1:-1] snake_case : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : List[Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : Optional[Any] = {} snake_case : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Optional[int] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self ) -> Dict: return len(self.encoder ) def UpperCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , A ) -> str: if token in self.cache: return self.cache[token] snake_case : List[str] = tuple(A ) snake_case : List[str] = get_pairs(A ) if not pairs: return token while True: snake_case : Union[str, Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case : str = bigram snake_case : Any = [] snake_case : Union[str, Any] = 0 while i < len(A ): try: snake_case : str = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Optional[int] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Any = tuple(A ) snake_case : Optional[Any] = new_word if len(A ) == 1: break else: snake_case : Union[str, Any] = get_pairs(A ) snake_case : Dict = """ """.join(A ) snake_case : List[str] = word return word def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Union[str, Any] = [] for token in re.findall(self.pat , A ): snake_case : Optional[int] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase ( self , A ) -> Optional[int]: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , A ) -> List[Any]: return self.decoder.get(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Union[str, Any] = """""".join(A ) snake_case : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) snake_case : int = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) snake_case : List[Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : int = [self.sep_token_id] snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A=False , **A ) -> Dict: snake_case : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): snake_case : Optional[int] = """ """ + text return (text, kwargs) def UpperCAmelCase ( self , A , A = None ) -> Dict: return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A ) -> List[int]: snake_case : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(A ) snake_case : Optional[Any] = """ """.join(A ) snake_case : List[str] = self.encode(A ) if len(A ) > self.model_max_length: snake_case : Any = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCamelCase : int = logging.get_logger(__name__) class __lowercase : """simple docstring""" def __init__( self , A , A ) -> str: snake_case : Dict = question_encoder snake_case : Optional[Any] = generator snake_case : Tuple = self.question_encoder def UpperCAmelCase ( self , A ) -> Optional[int]: if os.path.isfile(A ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(A , exist_ok=A ) snake_case : Tuple = os.path.join(A , """question_encoder_tokenizer""" ) snake_case : List[Any] = os.path.join(A , """generator_tokenizer""" ) self.question_encoder.save_pretrained(A ) self.generator.save_pretrained(A ) @classmethod def UpperCAmelCase ( cls , A , **A ) -> Any: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case : int = kwargs.pop("""config""" , A ) if config is None: snake_case : List[str] = RagConfig.from_pretrained(A ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained( A , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) snake_case : Optional[int] = AutoTokenizer.from_pretrained( A , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=A , generator=A ) def __call__( self , *A , **A ) -> str: return self.current_tokenizer(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> Dict: return self.generator.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.generator.decode(*A , **A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.question_encoder def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = self.generator def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = "longest" , A = None , A = True , **A , ) -> BatchEncoding: warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , A , ) if max_length is None: snake_case : List[str] = self.current_tokenizer.model_max_length snake_case : List[Any] = self( A , add_special_tokens=A , return_tensors=A , max_length=A , padding=A , truncation=A , **A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case : Optional[Any] = self.current_tokenizer.model_max_length snake_case : Dict = self( text_target=A , add_special_tokens=A , return_tensors=A , padding=A , max_length=A , truncation=A , **A , ) snake_case : int = labels["""input_ids"""] return model_inputs
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: snake_case : Union[str, Any] = parent snake_case : Union[str, Any] = batch_size snake_case : Optional[Any] = seq_length snake_case : Tuple = is_training snake_case : int = use_input_mask snake_case : Optional[int] = use_token_type_ids snake_case : Dict = use_labels snake_case : List[str] = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Any = hidden_act snake_case : int = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : Any = max_position_embeddings snake_case : Tuple = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : str = num_labels snake_case : List[str] = num_choices snake_case : List[str] = scope def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[str] = None if self.use_token_type_ids: snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[Any] = None snake_case : Union[str, Any] = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : str = model(A , token_type_ids=A ) snake_case : Union[str, Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : str = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : int = self.num_labels snake_case : Dict = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Dict = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : str = self.num_labels snake_case : List[str] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Any = self.num_choices snake_case : Tuple = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = self.prepare_config_and_inputs() ( snake_case ) : Tuple = config_and_inputs snake_case : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : str = NystromformerModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> str: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Any = model(A )[0] snake_case : Optional[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : List[str] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Tuple: snake_case : int = """the [MASK] of Belgium is Brussels""" snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : str = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Tuple = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : int = model(encoding.input_ids ).logits snake_case : Dict = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""image_processor""", """tokenizer"""] _snake_case = """LayoutLMv2ImageProcessor""" _snake_case = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , A=None , A=None , **A ) -> Optional[Any]: if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A , ) snake_case : Optional[Any] = kwargs.pop("""feature_extractor""" ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A , A ) def __call__( self , A , A = None , A = None , A = None , A = None , A = True , A = False , A = None , A = None , A = 0 , A = None , A = None , A = None , A = False , A = False , A = False , A = False , A = True , A = None , **A , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor snake_case : Tuple = self.image_processor(images=A , return_tensors=A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(A , A ): snake_case : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case : Optional[Any] = features["""words"""] snake_case : List[Any] = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=A , add_special_tokens=A , padding=A , truncation=A , max_length=A , stride=A , pad_to_multiple_of=A , return_token_type_ids=A , return_attention_mask=A , return_overflowing_tokens=A , return_special_tokens_mask=A , return_offsets_mapping=A , return_length=A , verbose=A , return_tensors=A , **A , ) # add pixel values snake_case : Dict = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: snake_case : Optional[int] = self.get_overflowing_images(A , encoded_inputs["""overflow_to_sample_mapping"""] ) snake_case : Optional[Any] = images return encoded_inputs def UpperCAmelCase ( self , A , A ) -> List[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case : List[Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(A ) != len(A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(A )} and {len(A )}""" ) return images_with_overflow def UpperCAmelCase ( self , *A , **A ) -> Union[str, Any]: return self.tokenizer.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> Optional[Any]: return self.tokenizer.decode(*A , **A ) @property def UpperCAmelCase ( self ) -> Optional[int]: return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A , ) return self.image_processor_class @property def UpperCAmelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , A , ) return self.image_processor
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = (UniPCMultistepScheduler,) _snake_case = (("""num_inference_steps""", 25),) def UpperCAmelCase ( self , **A ) -> Optional[Any]: snake_case : Union[str, Any] = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**A ) return config def UpperCAmelCase ( self , A=0 , **A ) -> int: snake_case : Dict = dict(self.forward_default_kwargs ) snake_case : Tuple = kwargs.pop("""num_inference_steps""" , A ) snake_case : List[Any] = self.dummy_sample snake_case : List[Any] = 0.1 * sample snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Union[str, Any] = self.get_scheduler_config(**A ) snake_case : Union[str, Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals snake_case : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) snake_case : Optional[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals snake_case : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case : Union[str, Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): snake_case : Tuple = scheduler.step(A , A , A , **A ).prev_sample snake_case : Optional[int] = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , A=0 , **A ) -> Tuple: snake_case : Union[str, Any] = dict(self.forward_default_kwargs ) snake_case : List[Any] = kwargs.pop("""num_inference_steps""" , A ) snake_case : Optional[int] = self.dummy_sample snake_case : List[Any] = 0.1 * sample snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Any = self.get_scheduler_config() snake_case : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) snake_case : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) snake_case : List[Any] = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) snake_case : str = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case : str = scheduler.step(A , A , A , **A ).prev_sample snake_case : Tuple = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , A=None , **A ) -> Optional[int]: if scheduler is None: snake_case : Tuple = self.scheduler_classes[0] snake_case : Dict = self.get_scheduler_config(**A ) snake_case : List[str] = scheduler_class(**A ) snake_case : str = self.scheduler_classes[0] snake_case : Optional[Any] = self.get_scheduler_config(**A ) snake_case : Any = scheduler_class(**A ) snake_case : Tuple = 1_0 snake_case : Tuple = self.dummy_model() snake_case : Any = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): snake_case : Tuple = model(A , A ) snake_case : Tuple = scheduler.step(A , A , A ).prev_sample return sample def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = dict(self.forward_default_kwargs ) snake_case : Optional[int] = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: snake_case : Optional[int] = self.get_scheduler_config() snake_case : Optional[Any] = scheduler_class(**A ) snake_case : str = self.dummy_sample snake_case : int = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): snake_case : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] snake_case : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] snake_case : int = scheduler.timesteps[5] snake_case : Any = scheduler.timesteps[6] snake_case : Optional[Any] = scheduler.step(A , A , A , **A ).prev_sample snake_case : List[Any] = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ) -> Dict: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case : Union[str, Any] = self.full_loop(scheduler=A ) snake_case : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 snake_case : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case : Optional[Any] = self.full_loop(scheduler=A ) snake_case : int = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase ( self ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A ) def UpperCAmelCase ( self ) -> Any: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , ) def UpperCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCAmelCase ( self ) -> List[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , ) snake_case : Dict = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCAmelCase ( self ) -> List[str]: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCAmelCase ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self.full_loop() snake_case : Dict = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = self.full_loop(prediction_type="""v_prediction""" ) snake_case : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = self.scheduler_classes[0] snake_case : List[str] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) snake_case : List[Any] = scheduler_class(**A ) snake_case : int = 1_0 snake_case : Tuple = self.dummy_model() snake_case : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): snake_case : Union[str, Any] = model(A , A ) snake_case : int = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase ( self , **A ) -> Optional[int]: for scheduler_class in self.scheduler_classes: snake_case : Optional[int] = self.get_scheduler_config(**A ) snake_case : Dict = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase = 600851475143 ) -> int: try: snake_case : Optional[int] = int(lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) snake_case : str = 2 snake_case : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case : Any = i while n % i == 0: snake_case : Dict = n // i i += 1 return int(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model'} lowerCamelCase : str = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowerCamelCase : List[str] = { 'AI-Sweden/gpt-sw3-126m': 2_0_4_8, 'AI-Sweden/gpt-sw3-350m': 2_0_4_8, 'AI-Sweden/gpt-sw3-1.6b': 2_0_4_8, 'AI-Sweden/gpt-sw3-6.7b': 2_0_4_8, 'AI-Sweden/gpt-sw3-20b': 2_0_4_8, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs snake_case : int = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) snake_case : Any = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case : Tuple = """<|endoftext|>""" if eos_token is None else eos_token snake_case : List[Any] = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case : List[str] = unk_token if pad_token is None else pad_token snake_case : Tuple = eos_token if bos_token is None else bos_token else: snake_case : Optional[int] = """<pad>""" if pad_token is None else pad_token snake_case : str = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Dict = do_lower_case snake_case : List[str] = remove_space snake_case : Union[str, Any] = keep_accents snake_case : List[str] = vocab_file snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off snake_case : Dict = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case : Union[str, Any] = re.compile( f"""[{"".join(map(A , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> Any: snake_case : Any = self.__dict__.copy() snake_case : Dict = None return state def __setstate__( self , A ) -> List[str]: snake_case : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : str = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase ( self , A ) -> str: snake_case : Union[str, Any] = self.non_printing_characters_re.sub("""""" , A ) # Normalize whitespaces snake_case : int = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization snake_case : str = unicodedata.normalize("""NFC""" , A ) return text def UpperCAmelCase ( self , A , **A ) -> List[str]: snake_case : Union[str, Any] = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> int: return self.sp_model.PieceToId(A ) def UpperCAmelCase ( self , A ) -> str: return self.sp_model.IdToPiece(A ) @staticmethod def UpperCAmelCase ( A ) -> str: return out_string def UpperCAmelCase ( self , A ) -> str: snake_case : int = [] snake_case : str = """""" snake_case : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token snake_case : str = True snake_case : Dict = [] else: current_sub_tokens.append(A ) snake_case : Any = False out_string += self.sp_model.decode(A ) return out_string def UpperCAmelCase ( self ) -> Dict[str, int]: snake_case : int = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Any = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCAmelCase ( self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(A , A ): snake_case : int = self.preprocess_text(A ) snake_case : str = self.sp_model.encode(A ) else: snake_case : Optional[int] = [self.preprocess_text(A ) for t in text] snake_case : Any = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": snake_case : Any = torch.tensor(A ) return token_ids def UpperCAmelCase ( self , A ) -> str: return self.sp_model.decode(A ) def UpperCAmelCase ( self , A ) -> List[int]: snake_case : List[Any] = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] snake_case : int = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(A ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=A )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: assert column_title.isupper() snake_case : List[str] = 0 snake_case : Tuple = len(lowercase ) - 1 snake_case : Any = 0 while index >= 0: snake_case : Optional[int] = (ord(column_title[index] ) - 64) * pow(26 ,lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self , A = None ) -> None: # Stores actual heap items. snake_case : list = [] # Stores indexes of each item for supporting updates and deletion. snake_case : dict = {} # Stores current size of heap. snake_case : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. snake_case : Any = key or (lambda A : x) def UpperCAmelCase ( self , A ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase ( self , A ) -> int | None: snake_case : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase ( self , A ) -> int | None: snake_case : Union[str, Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase ( self , A , A ) -> None: snake_case : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. snake_case : List[Any] = self.arr[j], self.arr[i] def UpperCAmelCase ( self , A , A ) -> bool: return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase ( self , A ) -> int: snake_case : Dict = self._left(A ) snake_case : Optional[Any] = self._right(A ) snake_case : str = i if left is not None and not self._cmp(A , A ): snake_case : str = left if right is not None and not self._cmp(A , A ): snake_case : Optional[Any] = right return valid_parent def UpperCAmelCase ( self , A ) -> None: snake_case : List[Any] = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) snake_case : Optional[Any] = parent, self._parent(A ) def UpperCAmelCase ( self , A ) -> None: snake_case : Any = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) snake_case : Union[str, Any] = valid_parent, self._get_valid_parent(A ) def UpperCAmelCase ( self , A , A ) -> None: if item not in self.pos_map: return snake_case : Dict = self.pos_map[item] snake_case : Tuple = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def UpperCAmelCase ( self , A ) -> None: if item not in self.pos_map: return snake_case : Optional[int] = self.pos_map[item] del self.pos_map[item] snake_case : int = self.arr[self.size - 1] snake_case : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def UpperCAmelCase ( self , A , A ) -> None: snake_case : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: snake_case : List[Any] = [item, self.key(A )] snake_case : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase ( self ) -> tuple | None: return self.arr[0] if self.size else None def UpperCAmelCase ( self ) -> tuple | None: snake_case : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def SCREAMING_SNAKE_CASE__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : str = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """swin2sr""" _snake_case = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=6_4 , A=1 , A=3 , A=1_8_0 , A=[6, 6, 6, 6, 6, 6] , A=[6, 6, 6, 6, 6, 6] , A=8 , A=2.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1e-5 , A=2 , A=1.0 , A="1conv" , A="pixelshuffle" , **A , ) -> Optional[Any]: super().__init__(**A ) snake_case : int = image_size snake_case : Tuple = patch_size snake_case : Union[str, Any] = num_channels snake_case : str = embed_dim snake_case : List[str] = depths snake_case : Dict = len(A ) snake_case : Any = num_heads snake_case : List[str] = window_size snake_case : Tuple = mlp_ratio snake_case : int = qkv_bias snake_case : int = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : int = drop_path_rate snake_case : List[Any] = hidden_act snake_case : List[Any] = use_absolute_embeddings snake_case : List[Any] = layer_norm_eps snake_case : Tuple = initializer_range snake_case : Any = upscale snake_case : Union[str, Any] = img_range snake_case : Optional[Any] = resi_connection snake_case : Tuple = upsampler
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self , A ) -> float: return 0.0 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[int | float, int | float]: snake_case : Any = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) snake_case : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: snake_case : Union[str, Any] = 512 snake_case : str = [1] + [0] * (size - 1) snake_case : Optional[Any] = [filter_type.process(lowercase ) for item in inputs] snake_case : List[str] = [0] * (samplerate - size) # zero-padding outputs += filler snake_case : Union[str, Any] = np.abs(np.fft.fft(lowercase ) ) snake_case : List[str] = 20 * np.logaa(lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds snake_case : Optional[int] = get_bounds(lowercase ,lowercase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(lowercase ) plt.show() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: snake_case : Optional[int] = 512 snake_case : Any = [1] + [0] * (size - 1) snake_case : Optional[Any] = [filter_type.process(lowercase ) for item in inputs] snake_case : str = [0] * (samplerate - size) # zero-padding outputs += filler snake_case : Any = np.angle(np.fft.fft(lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(lowercase ,-2 * pi ) ) plt.show()
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowercase ( UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A=None , A=True , A=None , **A ) -> Optional[int]: snake_case : Optional[Any] = parent snake_case : Tuple = config_class snake_case : Dict = has_text_modality snake_case : Optional[Any] = kwargs snake_case : List[Any] = common_properties def UpperCAmelCase ( self ) -> Dict: snake_case : Any = self.config_class(**self.inputs_dict ) snake_case : Optional[Any] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(A , A ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(A ): try: setattr(A , A , A ) self.parent.assertEqual( getattr(A , A ) , A , msg=f"""`{name} value {idx} expected, but was {getattr(A , A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(A ): try: snake_case : List[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(A , A ) , A , msg=f"""`{name} value {idx} expected, but was {getattr(A , A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = self.config_class(**self.inputs_dict ) snake_case : Optional[Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Dict = os.path.join(A , """config.json""" ) config_first.to_json_file(A ) snake_case : Any = self.config_class.from_json_file(A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(A ) snake_case : List[Any] = self.config_class.from_pretrained(A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) snake_case : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case : List[str] = os.path.join(A , A ) config_first.save_pretrained(A ) snake_case : Union[str, Any] = self.config_class.from_pretrained(A , subfolder=A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case : Any = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase ( self ) -> List[str]: if self.config_class.is_composition: return snake_case : Optional[int] = self.config_class() self.parent.assertIsNotNone(A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[Any] = copy.deepcopy(A ) snake_case : List[Any] = self.config_class(**A ) snake_case : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(A , A ) != value: wrong_values.append((key, getattr(A , A ), value) ) if len(A ) > 0: snake_case : Union[str, Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCamelCase : Optional[int] = 'facebook/wmt19-en-de' lowerCamelCase : List[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCamelCase : Any = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCamelCase : List[Any] = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test lowerCamelCase : List[Any] = tokenizer(['Making tiny model'], return_tensors='pt') lowerCamelCase : int = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save lowerCamelCase : Union[str, Any] = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase : Optional[int] = pytest.mark.integration @require_faiss class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(A ) for x in np.arange(3_0 ).tolist()]} ) return dset def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Dataset = self._create_dummy_dataset() snake_case : Optional[int] = dset.map( lambda A , A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A , keep_in_memory=A ) snake_case : Tuple = dset.add_faiss_index("""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case : Optional[int] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def UpperCAmelCase ( self ) -> List[Any]: import faiss snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) snake_case : List[str] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) snake_case : Any = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(A , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase ( self ) -> Any: from elasticsearch import Elasticsearch snake_case : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: snake_case : int = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 3_0 ) snake_case : List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 2_9}]}} snake_case : Dict = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=A ) snake_case : Optional[int] = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: import faiss snake_case : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query snake_case : Any = np.zeros(5 , dtype=np.floataa ) snake_case : List[str] = 1 snake_case : int = index.search(A ) self.assertRaises(A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries snake_case : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] snake_case : List[Any] = index.search_batch(A ) self.assertRaises(A , index.search_batch , queries[0] ) snake_case : Tuple = [scores[0] for scores in total_scores] snake_case : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A ) def UpperCAmelCase ( self ) -> Tuple: import faiss snake_case : List[str] = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) snake_case : List[Any] = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A ): snake_case : Tuple = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Optional[Any] = faiss.IndexFlat(5 ) snake_case : Any = FaissIndex(custom_index=A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase ( self ) -> List[Any]: import faiss snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: index.save(tmp_file.name ) snake_case : Dict = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) snake_case : Tuple = np.zeros(5 , dtype=np.floataa ) snake_case : Optional[int] = 1 snake_case : List[Any] = index.search(A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: import faiss snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) snake_case : int = """index.faiss""" snake_case : int = f"""mock://{index_name}""" index.save(lowercase ,storage_options=mockfs.storage_options ) snake_case : Dict = FaissIndex.load(lowercase ,storage_options=mockfs.storage_options ) snake_case : Dict = np.zeros(5 ,dtype=np.floataa ) snake_case : str = 1 snake_case : Optional[Any] = index.search(lowercase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> str: from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: snake_case : Dict = Elasticsearch() snake_case : Tuple = {"""acknowledged""": True} snake_case : int = ElasticSearchIndex(es_client=A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query snake_case : Optional[int] = """foo""" snake_case : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case : Tuple = index.search(A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout snake_case : List[Any] = """foo""" snake_case : Dict = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case : Any = index.search(A , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries snake_case : Tuple = ["""foo""", """bar""", """foobar"""] snake_case : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case : Any = index.search_batch(A ) snake_case : List[Any] = [scores[0] for scores in total_scores] snake_case : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A ) # batched queries with timeout snake_case : Optional[Any] = ["""foo""", """bar""", """foobar"""] snake_case : int = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case : Union[str, Any] = index.search_batch(A , request_timeout=3_0 ) snake_case : int = [scores[0] for scores in total_scores] snake_case : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A )
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase : Optional[Any] = 'pt' elif is_tf_available(): lowerCamelCase : Dict = 'tf' else: lowerCamelCase : str = 'jax' class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ByTaTokenizer _snake_case = False def UpperCAmelCase ( self ) -> List[str]: super().setUp() snake_case : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ) -> Any: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCAmelCase ( self , **A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A , A=False , A=2_0 , A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. snake_case : List[str] = [] for i in range(len(A ) ): try: snake_case : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=A ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case : List[Any] = list(filter(lambda A : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , A ) ) snake_case : Any = list(filter(lambda A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A ) , A ) ) if max_length is not None and len(A ) > max_length: snake_case : Dict = toks[:max_length] if min_length is not None and len(A ) < min_length and len(A ) > 0: while len(A ) < min_length: snake_case : Any = toks + toks # toks_str = [t[1] for t in toks] snake_case : Union[str, Any] = [t[0] for t in toks] # Ensure consistency snake_case : List[str] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) if " " not in output_txt and len(A ) > 1: snake_case : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A ) ) if with_prefix_space: snake_case : Optional[int] = """ """ + output_txt snake_case : Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) return output_txt, output_ids def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = self.ta_base_tokenizer snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) snake_case : Union[str, Any] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = self.ta_base_tokenizer snake_case : Optional[Any] = """Unicode €.""" snake_case : Any = tokenizer(A ) snake_case : Optional[int] = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["""input_ids"""] , A ) # decoding snake_case : List[Any] = tokenizer.decode(A ) self.assertEqual(A , """Unicode €.</s>""" ) snake_case : int = tokenizer("""e è é ê ë""" ) snake_case : List[str] = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["""input_ids"""] , A ) # decoding snake_case : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def UpperCAmelCase ( self ) -> str: snake_case : Union[str, Any] = self.ta_base_tokenizer snake_case : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off snake_case : int = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on snake_case : str = tokenizer(A , padding=A , return_tensors=A ) self.assertIsInstance(A , A ) if FRAMEWORK != "jax": snake_case : List[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A , A ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = self.ta_base_tokenizer snake_case : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case : List[str] = tokenizer(A , padding=A , return_tensors=A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , A ) self.assertIn("""attention_mask""" , A ) self.assertNotIn("""decoder_input_ids""" , A ) self.assertNotIn("""decoder_attention_mask""" , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = self.ta_base_tokenizer snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] snake_case : Tuple = tokenizer( text_target=A , max_length=3_2 , padding="""max_length""" , truncation=A , return_tensors=A ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = self.ta_base_tokenizer snake_case : Optional[Any] = ["""A long paragraph for summarization. </s>"""] snake_case : List[Any] = ["""Summary of the text. </s>"""] # fmt: off snake_case : Dict = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] snake_case : List[Any] = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on snake_case : Dict = tokenizer(A , text_target=A ) self.assertEqual(A , batch["""input_ids"""][0] ) self.assertEqual(A , batch["""labels"""][0] ) def UpperCAmelCase ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case : Dict = tempfile.mkdtemp() snake_case : str = """ He is very happy, UNwant\u00E9d,running""" snake_case : Dict = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) snake_case : List[Any] = tokenizer.__class__.from_pretrained(A ) snake_case : Tuple = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) shutil.rmtree(A ) snake_case : Tuple = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case : List[str] = tempfile.mkdtemp() snake_case : Any = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) snake_case : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) snake_case : Tuple = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) snake_case : Tuple = tokenizer.__class__.from_pretrained(A ) snake_case : int = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case : Optional[int] = tokenizer.__class__.from_pretrained(A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) with open(os.path.join(A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: snake_case : Union[str, Any] = json.load(A ) with open(os.path.join(A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: snake_case : Dict = json.load(A ) snake_case : int = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] snake_case : Any = added_tokens_extra_ids + [ """an_additional_special_token""" ] snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) with open(os.path.join(A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case : Tuple = tokenizer_class.from_pretrained( A , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=A )] snake_case : List[Any] = tokenizer_class.from_pretrained( A , additional_special_tokens=A , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) snake_case : Any = tokenizer_class.from_pretrained(A ) self.assertTrue(tokenizer.decode([2_5_5] ) == """""" ) def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens snake_case : Optional[Any] = self.get_tokenizers(fast=A , do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): snake_case : Optional[Any] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(A ) self.assertIsInstance(A , A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): snake_case : Union[str, Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] snake_case : Optional[int] = 0 snake_case : Tuple = tokenizer.convert_ids_to_tokens( A , skip_special_tokens=A ) for attr in attributes_list: setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [] ) setattr(A , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase = get_tests_dir('fixtures') class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: # A mock response for an HTTP head request to emulate server down snake_case : Optional[int] = mock.Mock() snake_case : List[str] = 5_0_0 snake_case : Optional[int] = {} snake_case : Any = HTTPError snake_case : int = {} # Download this model to make sure it's in the cache. snake_case : Any = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=A ) as mock_head: snake_case : str = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase ( self ) -> Dict: # This test is for deprecated behavior and can be removed in v5 snake_case : Optional[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def UpperCAmelCase ( self ) -> Optional[Any]: with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder snake_case : Optional[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(A ) @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> str: snake_case : str = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[int] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case : Optional[int] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""test-image-processor""" , push_to_hub=A , use_auth_token=self._token ) snake_case : int = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case : Union[str, Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=A , use_auth_token=self._token ) snake_case : List[str] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> Optional[int]: CustomImageProcessor.register_for_auto_class() snake_case : Optional[int] = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case : Optional[Any] = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) == 0: return [] snake_case : Optional[Any] = min(lowercase ), max(lowercase ) snake_case : List[Any] = int(max_value - min_value ) + 1 snake_case : list[list] = [[] for _ in range(lowercase )] for i in my_list: buckets[int(i - min_value )].append(lowercase ) return [v for bucket in buckets for v in sorted(lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """xmod""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> str: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : str = vocab_size snake_case : List[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[str] = hidden_act snake_case : str = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : str = initializer_range snake_case : List[str] = layer_norm_eps snake_case : str = position_embedding_type snake_case : List[Any] = use_cache snake_case : Dict = classifier_dropout snake_case : Union[str, Any] = pre_norm snake_case : Union[str, Any] = adapter_reduction_factor snake_case : Optional[int] = adapter_layer_norm snake_case : str = adapter_reuse_layer_norm snake_case : Tuple = ln_before_adapter snake_case : List[Any] = list(A ) snake_case : Tuple = default_language class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=True , A=False , A=False , A=False , A=2 , A=9_9 , A=0 , A=3_2 , A=5 , A=4 , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=2 , A=4 , A="last" , A=True , A=None , A=0 , ) -> Union[str, Any]: snake_case : Optional[Any] = parent snake_case : Dict = batch_size snake_case : List[str] = seq_length snake_case : str = is_training snake_case : str = use_input_lengths snake_case : List[Any] = use_token_type_ids snake_case : Optional[int] = use_labels snake_case : Optional[int] = gelu_activation snake_case : Dict = sinusoidal_embeddings snake_case : Any = causal snake_case : str = asm snake_case : Dict = n_langs snake_case : Optional[Any] = vocab_size snake_case : Any = n_special snake_case : List[str] = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : List[Any] = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Optional[Any] = type_sequence_label_size snake_case : Any = initializer_range snake_case : List[str] = num_labels snake_case : str = num_choices snake_case : Union[str, Any] = summary_type snake_case : Optional[int] = use_proj snake_case : List[Any] = scope snake_case : List[str] = bos_token_id def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Any = None if self.use_input_lengths: snake_case : Tuple = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : Any = None if self.use_token_type_ids: snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : Optional[int] = None snake_case : List[Any] = None snake_case : Dict = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[str] = ids_tensor([self.batch_size] , 2 ).float() snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self ) -> int: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> List[str]: snake_case : List[Any] = XLMModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , lengths=A , langs=A ) snake_case : Optional[Any] = model(A , langs=A ) snake_case : str = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Any: snake_case : str = XLMWithLMHeadModel(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Union[str, Any]: snake_case : List[str] = XLMForQuestionAnsweringSimple(A ) model.to(A ) model.eval() snake_case : Tuple = model(A ) snake_case : List[str] = model(A , start_positions=A , end_positions=A ) snake_case : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : Any = XLMForQuestionAnswering(A ) model.to(A ) model.eval() snake_case : Union[str, Any] = model(A ) snake_case : Dict = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , p_mask=A , ) snake_case : List[Any] = model( A , start_positions=A , end_positions=A , cls_index=A , is_impossible=A , ) (snake_case ) : List[str] = result_with_labels.to_tuple() snake_case : int = model(A , start_positions=A , end_positions=A ) (snake_case ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : Any = XLMForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Optional[Any] = model(A ) snake_case : Optional[int] = model(A , labels=A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> int: snake_case : Tuple = self.num_labels snake_case : Any = XLMForTokenClassification(A ) model.to(A ) model.eval() snake_case : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> str: snake_case : Optional[Any] = self.num_choices snake_case : Optional[Any] = XLMForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = self.prepare_config_and_inputs() ( snake_case ) : Tuple = config_and_inputs snake_case : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _snake_case = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self , A , A , A , A , A ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self , A , A , A=False ) -> int: snake_case : Any = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A ) return inputs_dict def UpperCAmelCase ( self ) -> List[str]: snake_case : int = XLMModelTester(self ) snake_case : int = ConfigTester(self , config_class=A , emb_dim=3_7 ) def UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> int: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A ) def UpperCAmelCase ( self ) -> int: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> List[Any]: self.assertIsInstance(A , A ) self.assertListEqual( [isinstance(A , A ) for iter_attentions in attentions] , [True] * len(A ) ) self.assertEqual(len(A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(A ): # adds PAD dummy token snake_case : Tuple = min_length + idx + 1 snake_case : Dict = min_length + idx + 1 snake_case : List[str] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A ) ) def UpperCAmelCase ( self , A , A , A , A , A , A=False , A=1 ) -> str: self.assertIsInstance(A , A ) self.assertListEqual( [isinstance(A , A ) for iter_hidden_states in hidden_states] , [True] * len(A ) , ) self.assertEqual(len(A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(A ): # adds PAD dummy token snake_case : Optional[Any] = min_length + idx + 1 snake_case : Tuple = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A ) , ) pass @slow def UpperCAmelCase ( self ) -> str: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = XLMModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(A ) snake_case : List[Any] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=A ) # the president snake_case : int = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case : List[Any] = model.generate(A , do_sample=A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A )
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax""", """transformers"""] )
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') lowerCamelCase : Tuple = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowerCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: with open(lowercase ,"""rb""" ) as f: snake_case : Optional[int] = Image.open(lowercase ) return im.convert("""RGB""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the training data."""} ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def UpperCAmelCase ( self ) -> Any: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCamelCase__ )} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case = field(default=UpperCamelCase__ , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : str = torch.stack([example["""pixel_values"""] for example in examples] ) snake_case : str = torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""" ,lowercase ,lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : List[str] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case : Union[str, Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,use_auth_token=True if model_args.use_auth_token else None ,) else: snake_case : List[str] = {} if data_args.train_dir is not None: snake_case : int = os.path.join(data_args.train_dir ,"""**""" ) if data_args.validation_dir is not None: snake_case : Optional[int] = os.path.join(data_args.validation_dir ,"""**""" ) snake_case : Optional[Any] = load_dataset( """imagefolder""" ,data_files=lowercase ,cache_dir=model_args.cache_dir ,task="""image-classification""" ,) # If we don't have a validation split, split off a percentage of train as validation. snake_case : List[Any] = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split ,lowercase ) and data_args.train_val_split > 0.0: snake_case : Optional[int] = dataset["""train"""].train_test_split(data_args.train_val_split ) snake_case : List[Any] = split["""train"""] snake_case : int = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case : List[str] = dataset["""train"""].features["""labels"""].names snake_case : Optional[int] = {}, {} for i, label in enumerate(lowercase ): snake_case : Dict = str(lowercase ) snake_case : Union[str, Any] = label # Load the accuracy metric from the datasets package snake_case : Dict = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase ): return metric.compute(predictions=np.argmax(p.predictions ,axis=1 ) ,references=p.label_ids ) snake_case : int = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path ,num_labels=len(lowercase ) ,labelaid=lowercase ,idalabel=lowercase ,finetuning_task="""image-classification""" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) snake_case : Tuple = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) ,config=lowercase ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) snake_case : List[str] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case : List[Any] = image_processor.size["""shortest_edge"""] else: snake_case : Dict = (image_processor.size["""height"""], image_processor.size["""width"""]) snake_case : List[str] = Normalize(mean=image_processor.image_mean ,std=image_processor.image_std ) snake_case : Dict = Compose( [ RandomResizedCrop(lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case : Optional[Any] = Compose( [ Resize(lowercase ), CenterCrop(lowercase ), ToTensor(), normalize, ] ) def train_transforms(lowercase ): snake_case : Union[str, Any] = [ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(lowercase ): snake_case : List[Any] = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: snake_case : Optional[Any] = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: snake_case : List[str] = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowercase ) # Initalize our trainer snake_case : Union[str, Any] = Trainer( model=lowercase ,args=lowercase ,train_dataset=dataset["""train"""] if training_args.do_train else None ,eval_dataset=dataset["""validation"""] if training_args.do_eval else None ,compute_metrics=lowercase ,tokenizer=lowercase ,data_collator=lowercase ,) # Training if training_args.do_train: snake_case : List[Any] = None if training_args.resume_from_checkpoint is not None: snake_case : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : int = last_checkpoint snake_case : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("""train""" ,train_result.metrics ) trainer.save_metrics("""train""" ,train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Any = trainer.evaluate() trainer.log_metrics("""eval""" ,lowercase ) trainer.save_metrics("""eval""" ,lowercase ) # Write model card and (optionally) push to hub snake_case : int = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : Union[str, Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[str] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( ) -> str: snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) snake_case : Optional[int] = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase="eval" ) -> int: snake_case : Union[str, Any] = os.path.join(lowercase ,f"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase ,"""r""" ) as f: return json.load(lowercase ) raise ValueError(f"""can't find {path}""" ) lowerCamelCase : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self.get_auto_remove_tmp_dir() snake_case : int = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A , """argv""" , A ): run_flax_glue.main() snake_case : Union[str, Any] = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = self.get_auto_remove_tmp_dir() snake_case : List[str] = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A , """argv""" , A ): run_clm_flax.main() snake_case : Optional[int] = get_results(A ) self.assertLess(result["""eval_perplexity"""] , 1_0_0 ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A , """argv""" , A ): run_summarization_flax.main() snake_case : Optional[Any] = get_results(A , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 1_0 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = self.get_auto_remove_tmp_dir() snake_case : str = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A , """argv""" , A ): run_mlm_flax.main() snake_case : Optional[int] = get_results(A ) self.assertLess(result["""eval_perplexity"""] , 4_2 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = self.get_auto_remove_tmp_dir() snake_case : Optional[Any] = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A , """argv""" , A ): run_ta_mlm_flax.main() snake_case : Tuple = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.42 ) @slow def UpperCAmelCase ( self ) -> Any: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case : Tuple = 7 if get_gpu_count() > 1 else 2 snake_case : str = self.get_auto_remove_tmp_dir() snake_case : int = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A , """argv""" , A ): run_flax_ner.main() snake_case : Any = get_results(A ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.get_auto_remove_tmp_dir() snake_case : Optional[int] = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A , """argv""" , A ): run_qa.main() snake_case : Dict = get_results(A ) self.assertGreaterEqual(result["""eval_f1"""] , 3_0 ) self.assertGreaterEqual(result["""eval_exact"""] , 3_0 )
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = None ,lowercase = None ) -> None: if start is None: snake_case : List[str] = 0 if end is None: snake_case : Any = len(lowercase ) - 1 if start >= end: return snake_case : Union[str, Any] = (start + end) // 2 slowsort(lowercase ,lowercase ,lowercase ) slowsort(lowercase ,mid + 1 ,lowercase ) if sequence[end] < sequence[mid]: snake_case : Optional[Any] = sequence[mid], sequence[end] slowsort(lowercase ,lowercase ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase : Any = logging.getLogger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """masked_bert""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=0 , A="topK" , A="constant" , A=0.0 , **A , ) -> Union[str, Any]: super().__init__(pad_token_id=A , **A ) snake_case : Union[str, Any] = vocab_size snake_case : int = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = hidden_act snake_case : Union[str, Any] = intermediate_size snake_case : str = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[str] = max_position_embeddings snake_case : Optional[Any] = type_vocab_size snake_case : Tuple = initializer_range snake_case : List[Any] = layer_norm_eps snake_case : Optional[Any] = pruning_method snake_case : Any = mask_init snake_case : List[Any] = mask_scale
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> Union[str, Any]: try: snake_case : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case : Any = default else: # KEY is set, convert it to True or False. try: snake_case : List[Any] = strtobool(lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value lowerCamelCase : List[str] = parse_flag_from_env('RUN_SLOW', default=False) lowerCamelCase : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) lowerCamelCase : str = parse_flag_from_env('RUN_LOCAL', default=True) lowerCamelCase : int = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression lowerCamelCase : List[str] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') lowerCamelCase : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') lowerCamelCase : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio lowerCamelCase : List[str] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam lowerCamelCase : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility lowerCamelCase : Tuple = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows lowerCamelCase : List[Any] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import faiss # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires faiss""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: try: import regex # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires regex""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: try: import elasticsearch # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires elasticsearch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: try: import sqlalchemy # noqa except ImportError: snake_case : Tuple = unittest.skip("""test requires sqlalchemy""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: if not config.TORCH_AVAILABLE: snake_case : Optional[Any] = unittest.skip("""test requires PyTorch""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: if not config.TF_AVAILABLE: snake_case : Union[str, Any] = unittest.skip("""test requires TensorFlow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if not config.JAX_AVAILABLE: snake_case : List[str] = unittest.skip("""test requires JAX""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not config.PIL_AVAILABLE: snake_case : List[Any] = unittest.skip("""test requires Pillow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: def _require_spacy_model(lowercase ): try: import spacy # noqa F401 spacy.load(lowercase ) except ImportError: return unittest.skip("""test requires spacy""" )(lowercase ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowercase ) )(lowercase ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowercase ) else: return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_slow_tests or _run_slow_tests == 0: snake_case : Optional[int] = unittest.skip("""test is slow""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if not _run_local_tests or _run_local_tests == 0: snake_case : Tuple = unittest.skip("""test is local""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: if not _run_packaged_tests or _run_packaged_tests == 0: snake_case : Tuple = unittest.skip("""test is packaged""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: if not _run_remote_tests or _run_remote_tests == 0: snake_case : Dict = unittest.skip("""test requires remote""" )(lowercase ) return test_case def SCREAMING_SNAKE_CASE__ ( *lowercase ) -> int: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowercase ) and name.startswith("""test""" ): for decorator in decorators: snake_case : Any = decorator(lowercase ) setattr(cls ,lowercase ,lowercase ) return cls return decorate class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 0 _snake_case = 1 _snake_case = 2 @contextmanager def SCREAMING_SNAKE_CASE__ ( lowercase=OfflineSimulationMode.CONNECTION_FAILS ,lowercase=1E-16 ) -> List[Any]: snake_case : Any = requests.Session().request def timeout_request(lowercase ,lowercase ,lowercase ,**lowercase ): # Change the url to an invalid url so that the connection hangs snake_case : List[Any] = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) snake_case : Any = timeout try: return online_request(lowercase ,lowercase ,**lowercase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier snake_case : Dict = url snake_case : Optional[int] = e.args[0] snake_case : List[Any] = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"""OfflineMock[{url}]""" ),) snake_case : Dict = (max_retry_error,) raise def raise_connection_error(lowercase ,lowercase ,**lowercase ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=lowercase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,lowercase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,lowercase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,lowercase ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def SCREAMING_SNAKE_CASE__ ( *lowercase ,**lowercase ) -> Optional[Any]: snake_case : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowercase ,**lowercase ) as tmp_dir: try: os.chdir(lowercase ) yield finally: os.chdir(lowercase ) @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Dict: import gc gc.collect() snake_case : Tuple = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: import gc gc.collect() snake_case : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: return deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() == deepcopy(lowercase ).integers(0 ,100 ,10 ).tolist() def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: import decorator from requests.exceptions import HTTPError def _wrapper(lowercase ,*lowercase ,**lowercase ): try: return func(*lowercase ,**lowercase ) except HTTPError as err: if str(lowercase ).startswith("""500""" ) or str(lowercase ).startswith("""502""" ): pytest.xfail(str(lowercase ) ) raise err return decorator.decorator(_wrapper ,lowercase ) class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Optional[int]: snake_case : List[Any] = returncode snake_case : Tuple = stdout snake_case : Dict = stderr async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: while True: snake_case : List[str] = await stream.readline() if line: callback(lowercase ) else: break async def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,lowercase=False ,lowercase=False ) -> _RunOutput: if echo: print("""\nRunning: """ ,""" """.join(lowercase ) ) snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=lowercase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=lowercase ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case : str = [] snake_case : List[str] = [] def tee(lowercase ,lowercase ,lowercase ,lowercase="" ): snake_case : List[str] = line.decode("""utf-8""" ).rstrip() sink.append(lowercase ) if not quiet: print(lowercase ,lowercase ,file=lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda lowercase : tee(lowercase ,lowercase ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda lowercase : tee(lowercase ,lowercase ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=lowercase ,) return _RunOutput(await p.wait() ,lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ,lowercase=None ,lowercase=180 ,lowercase=False ,lowercase=True ) -> _RunOutput: snake_case : Dict = asyncio.get_event_loop() snake_case : Optional[int] = loop.run_until_complete( _stream_subprocess(lowercase ,env=lowercase ,stdin=lowercase ,timeout=lowercase ,quiet=lowercase ,echo=lowercase ) ) snake_case : Any = """ """.join(lowercase ) if result.returncode > 0: snake_case : List[str] = """\n""".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"""'{cmd_str}' produced no output.""" ) return result def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: snake_case : Optional[Any] = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) snake_case : Tuple = re.sub(R"""^gw""" ,"""""" ,lowercase ,0 ,re.M ) return int(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Dict = 29500 snake_case : int = pytest_xdist_worker_id() return port + uniq_delta
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( lowercase = "" ) -> dict[str, float]: snake_case : Any = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" snake_case : Any = BeautifulSoup(requests.get(lowercase ).text ,"""html.parser""" ) snake_case : Optional[Any] = soup.find_all("""td""" ,attrs="""titleColumn""" ) snake_case : List[str] = soup.find_all("""td""" ,class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase ,lowercase ) } def SCREAMING_SNAKE_CASE__ ( lowercase = "IMDb_Top_250_Movies.csv" ) -> None: snake_case : Dict = get_imdb_top_aaa_movies() with open(lowercase ,"""w""" ,newline="""""" ) as out_file: snake_case : Union[str, Any] = csv.writer(lowercase ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Union[str, Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def SCREAMING_SNAKE_CASE__ ( lowercase = 100 ) -> int: snake_case : Union[str, Any] = 1 snake_case : List[Any] = 2 for i in range(2 ,max_n + 1 ): snake_case : Optional[int] = pre_numerator snake_case : Dict = 2 * i // 3 if i % 3 == 0 else 1 snake_case : Dict = cur_numerator snake_case : List[str] = e_cont * pre_numerator + temp return sum_digits(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" snake_case : Optional[Any] = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase ,lowercase ,num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("""unsupported backend""" ): map_nested(lowercase ,lowercase ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" ,[2, -1] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Any = [1, 2] snake_case : List[Any] = {"""a""": 1, """b""": 2} snake_case : Tuple = {"""a""": [1, 2], """b""": [3, 4]} snake_case : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} snake_case : Union[str, Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} snake_case : int = [2, 3] snake_case : Union[str, Any] = {"""a""": 2, """b""": 3} snake_case : Union[str, Any] = {"""a""": [2, 3], """b""": [4, 5]} snake_case : Optional[Any] = {"""a""": {"""1""": 2}, """b""": 3} snake_case : List[Any] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase ,lowercase ,num_proc=lowercase ) == expected_map_nested_sa
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: snake_case : Union[str, Any] = len(lowercase ) for i in range(1 ,lowercase ): snake_case : Union[str, Any] = collection[i] snake_case : List[Any] = 0 snake_case : Optional[int] = i - 1 while low <= high: snake_case : Dict = (low + high) // 2 if val < collection[mid]: snake_case : str = mid - 1 else: snake_case : Any = mid + 1 for j in range(lowercase ,lowercase ,-1 ): snake_case : Optional[int] = collection[j - 1] snake_case : Any = val return collection if __name__ == "__main__": lowerCamelCase : str = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A=None , A=None , *A , **A ) -> Optional[int]: super().__init__(*A , **A ) if config is None: assert isinstance(self.model , A ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) snake_case : Tuple = self.model.config else: snake_case : Union[str, Any] = config snake_case : Tuple = data_args snake_case : Any = self.config.tgt_vocab_size if isinstance(self.config , A ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" """ padding..""" ) if self.args.label_smoothing == 0: snake_case : List[str] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss snake_case : Dict = label_smoothed_nll_loss def UpperCAmelCase ( self , A ) -> List[str]: if self.optimizer is None: snake_case : Union[str, Any] = ["""bias""", """LayerNorm.weight"""] snake_case : Dict = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] snake_case : List[str] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: snake_case : List[Any] = Adafactor snake_case : Optional[int] = {"""scale_parameter""": False, """relative_step""": False} else: snake_case : List[str] = AdamW snake_case : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } snake_case : str = self.args.learning_rate if self.sharded_ddp: snake_case : List[Any] = OSS( params=A , optim=A , **A , ) else: snake_case : List[Any] = optimizer_cls(A , **A ) if self.lr_scheduler is None: snake_case : Any = self._get_lr_scheduler(A ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def UpperCAmelCase ( self , A ) -> Any: snake_case : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": snake_case : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": snake_case : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: snake_case : int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=A ) return scheduler def UpperCAmelCase ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCAmelCase ( self , A , A , A ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token snake_case : Any = model(**A , use_cache=A )[0] snake_case : Any = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models snake_case : int = model(**A , labels=A , use_cache=A )[:2] else: # compute label smoothed loss snake_case : Any = model(**A , use_cache=A )[0] snake_case : Optional[int] = torch.nn.functional.log_softmax(A , dim=-1 ) snake_case : Union[str, Any] = self.loss_fn(A , A , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def UpperCAmelCase ( self , A , A ) -> int: snake_case : int = inputs.pop("""labels""" ) snake_case : Union[str, Any] = self._compute_loss(A , A , A ) return loss def UpperCAmelCase ( self , A , A , A , A = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: snake_case : List[Any] = self._prepare_inputs(A ) snake_case : Tuple = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: snake_case : List[Any] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **A , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: snake_case : Any = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) snake_case : Optional[Any] = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data snake_case : List[Any] = self._compute_loss(A , A , A ) snake_case : int = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) snake_case : Dict = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: snake_case : Union[str, Any] = self._pad_tensors_to_max_len(A , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def UpperCAmelCase ( self , A , A ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined snake_case : Tuple = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f""" padded to `max_length`={max_length}""" ) snake_case : List[str] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) snake_case : Tuple = tensor return padded_tensor
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = OpenAIGPTTokenizer _snake_case = OpenAIGPTTokenizerFast _snake_case = True _snake_case = False def UpperCAmelCase ( self ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case : Union[str, Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : Tuple = ["""#version: 0.2""", """l o""", """lo w""", """e r</w>""", """"""] snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , A ) -> List[str]: return "lower newer", "lower newer" def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) snake_case : int = """lower""" snake_case : List[str] = ["""low""", """er</w>"""] snake_case : List[str] = tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : Optional[Any] = tokens + ["""<unk>"""] snake_case : List[str] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self , A=1_5 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : str = self.rust_tokenizer_class.from_pretrained(A , **A ) # Simple input snake_case : Dict = """This is a simple input""" snake_case : str = ["""This is a simple input 1""", """This is a simple input 2"""] snake_case : Any = ("""This is a simple input""", """This is a pair""") snake_case : Optional[int] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) def UpperCAmelCase ( self ) -> Optional[int]: pass @require_ftfy @require_spacy @require_tokenizers class __lowercase (UpperCamelCase__ ): """simple docstring""" pass
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : Union[str, Any] = 1_6 lowerCamelCase : Tuple = 3_2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 16 ,lowercase = "bert-base-cased" ) -> int: snake_case : Optional[int] = AutoTokenizer.from_pretrained(lowercase ) snake_case : Optional[Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case : Any = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case : Optional[int] = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(lowercase ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. snake_case : str = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) snake_case : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: model.eval() snake_case : Union[str, Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : int = model(**lowercase ) snake_case : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case : Any = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: snake_case : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase ,references=lowercase ,) snake_case : List[str] = metric.compute() return eval_metric["accuracy"] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: # Initialize accelerator snake_case : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : Optional[Any] = config["""lr"""] snake_case : Union[str, Any] = int(config["""num_epochs"""] ) snake_case : Dict = int(config["""seed"""] ) snake_case : Union[str, Any] = int(config["""batch_size"""] ) snake_case : Tuple = args.model_name_or_path set_seed(lowercase ) snake_case : Optional[Any] = get_dataloaders(lowercase ,lowercase ,lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase ,return_dict=lowercase ) # Instantiate optimizer snake_case : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case : List[str] = optimizer_cls(params=model.parameters() ,lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: snake_case : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case : List[Any] = 1 snake_case : Tuple = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case : Any = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=0 ,num_training_steps=lowercase ,) else: snake_case : Optional[int] = DummyScheduler(lowercase ,total_num_steps=lowercase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case : List[Any] = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # We need to keep track of how many total steps we have iterated over snake_case : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = evaluate.load("""glue""" ,"""mrpc""" ) snake_case : Any = num_epochs if args.partial_train_epoch is not None: snake_case : str = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case : str = args.resume_from_checkpoint.split("""epoch_""" )[1] snake_case : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case : List[str] = int(lowercase ) + 1 snake_case : Union[str, Any] = evaluation_loop(lowercase ,lowercase ,lowercase ,lowercase ) accelerator.print("""resumed checkpoint performance:""" ,lowercase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" ,lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" ,optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir ,f"""state_{starting_epoch-1}.json""" ) ,"""r""" ) as f: snake_case : Any = json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case : List[Any] = {} for epoch in range(lowercase ,lowercase ): model.train() for step, batch in enumerate(lowercase ): snake_case : str = model(**lowercase ) snake_case : str = outputs.loss snake_case : Dict = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case : Optional[int] = f"""epoch_{epoch}""" snake_case : Optional[int] = os.path.join(args.output_dir ,lowercase ) accelerator.save_state(lowercase ) snake_case : Dict = evaluation_loop(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : str = accuracy snake_case : Optional[Any] = lr_scheduler.get_lr()[0] snake_case : List[str] = optimizer.param_groups[0]["""lr"""] snake_case : int = epoch snake_case : int = overall_step accelerator.print(f"""epoch {epoch}:""" ,lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f"""state_{epoch}.json""" ) ,"""w""" ) as f: json.dump(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowercase ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowercase ,) parser.add_argument( """--output_dir""" ,type=lowercase ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--resume_from_checkpoint""" ,type=lowercase ,default=lowercase ,help="""If the training should continue from a checkpoint folder.""" ,) parser.add_argument( """--partial_train_epoch""" ,type=lowercase ,default=lowercase ,help="""If passed, the training will stop after this number of epochs.""" ,) parser.add_argument( """--num_epochs""" ,type=lowercase ,default=2 ,help="""Number of train epochs.""" ,) snake_case : Optional[Any] = parser.parse_args() snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Any = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """dpt""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=3_8_4 , A=1_6 , A=3 , A=False , A=True , A=[2, 5, 8, 1_1] , A="project" , A=[4, 2, 1, 0.5] , A=[9_6, 1_9_2, 3_8_4, 7_6_8] , A=2_5_6 , A=-1 , A=False , A=True , A=0.4 , A=2_5_5 , A=0.1 , A=[1, 1_0_2_4, 2_4, 2_4] , A=[0, 1] , A=None , **A , ) -> Tuple: super().__init__(**A ) snake_case : List[Any] = hidden_size snake_case : List[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case : Optional[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } snake_case : Optional[Any] = BitConfig(**A ) elif isinstance(A , A ): logger.info("""Initializing the config with a `BiT` backbone.""" ) snake_case : Tuple = BitConfig(**A ) elif isinstance(A , A ): snake_case : Dict = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) snake_case : Union[str, Any] = backbone_featmap_shape snake_case : str = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: snake_case : Union[str, Any] = None snake_case : Tuple = None snake_case : List[Any] = [] snake_case : Tuple = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Dict = intermediate_size snake_case : Optional[Any] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Tuple = initializer_range snake_case : int = layer_norm_eps snake_case : Tuple = image_size snake_case : int = patch_size snake_case : Union[str, Any] = num_channels snake_case : Tuple = qkv_bias snake_case : List[str] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) snake_case : Any = readout_type snake_case : int = reassemble_factors snake_case : Union[str, Any] = neck_hidden_sizes snake_case : Optional[int] = fusion_hidden_size snake_case : Optional[int] = head_in_index snake_case : Tuple = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case : int = use_auxiliary_head snake_case : Tuple = auxiliary_loss_weight snake_case : str = semantic_loss_ignore_index snake_case : Tuple = semantic_classifier_dropout def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case : Optional[Any] = self.backbone_config.to_dict() snake_case : Tuple = self.__class__.model_type return output
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from __future__ import annotations import time lowerCamelCase : int = list[tuple[int, int]] lowerCamelCase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase : str = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowercase : """simple docstring""" def __init__( self , A , A , A , A , A ) -> str: snake_case : int = pos_x snake_case : Union[str, Any] = pos_y snake_case : Optional[Any] = (pos_y, pos_x) snake_case : Optional[int] = goal_x snake_case : List[Any] = goal_y snake_case : str = parent class __lowercase : """simple docstring""" def __init__( self , A , A ) -> int: snake_case : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , A ) snake_case : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , A ) snake_case : Dict = [self.start] snake_case : Optional[Any] = False def UpperCAmelCase ( self ) -> Path | None: while self.node_queue: snake_case : Optional[int] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case : Optional[int] = True return self.retrace_path(A ) snake_case : List[str] = self.get_successors(A ) for node in successors: self.node_queue.append(A ) if not self.reached: return [self.start.pos] return None def UpperCAmelCase ( self , A ) -> list[Node]: snake_case : Tuple = [] for action in delta: snake_case : List[str] = parent.pos_x + action[1] snake_case : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(A , A , self.target.pos_y , self.target.pos_x , A ) ) return successors def UpperCAmelCase ( self , A ) -> Path: snake_case : Optional[int] = node snake_case : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case : Dict = current_node.parent path.reverse() return path class __lowercase : """simple docstring""" def __init__( self , A , A ) -> Union[str, Any]: snake_case : Union[str, Any] = BreadthFirstSearch(A , A ) snake_case : List[str] = BreadthFirstSearch(A , A ) snake_case : Optional[int] = False def UpperCAmelCase ( self ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case : List[Any] = self.fwd_bfs.node_queue.pop(0 ) snake_case : List[Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case : List[str] = True return self.retrace_bidirectional_path( A , A ) snake_case : str = current_bwd_node snake_case : List[Any] = current_fwd_node snake_case : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(A ), self.bwd_bfs: self.bwd_bfs.get_successors(A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def UpperCAmelCase ( self , A , A ) -> Path: snake_case : List[str] = self.fwd_bfs.retrace_path(A ) snake_case : Optional[Any] = self.bwd_bfs.retrace_path(A ) bwd_path.pop() bwd_path.reverse() snake_case : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase : List[Any] = (0, 0) lowerCamelCase : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase : Union[str, Any] = time.time() lowerCamelCase : Any = BreadthFirstSearch(init, goal) lowerCamelCase : List[Any] = bfs.search() lowerCamelCase : List[Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) lowerCamelCase : Tuple = time.time() lowerCamelCase : List[Any] = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase : Dict = bd_bfs.search() lowerCamelCase : List[str] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import heapq def SCREAMING_SNAKE_CASE__ ( lowercase ) -> set[int]: snake_case : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase ,[-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices snake_case : List[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices snake_case : Union[str, Any] = heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: snake_case : Any = elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Dict = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( lowercase = None ) -> int: if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) snake_case : int = nums[0] for i in range(1 ,len(lowercase ) ): snake_case : int = nums[i] snake_case : str = max(lowercase ,ans + num ,lowercase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : str = int(input('Enter number of elements : ').strip()) lowerCamelCase : Any = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A="</s>" , A="<unk>" , A="<pad>" , A=1_2_5 , A=None , **A , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case : str = [f"""<extra_id_{i}>""" for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case : int = len(set(filter(lambda A : bool("""extra_id""" in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) snake_case : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token snake_case : int = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , **A , ) snake_case : Union[str, Any] = extra_ids snake_case : Tuple = 2**8 # utf is 8 bits # define special tokens dict snake_case : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case : str = len(self.special_tokens_encoder ) snake_case : Any = len(A ) for i, token in enumerate(A ): snake_case : Optional[int] = self.vocab_size + i - n snake_case : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def UpperCAmelCase ( self ) -> Union[str, Any]: return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A ) -> List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Dict = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: snake_case : Optional[int] = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Tuple = [chr(A ) for i in text.encode("""utf-8""" )] return tokens def UpperCAmelCase ( self , A ) -> Dict: if token in self.special_tokens_encoder: snake_case : str = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case : Union[str, Any] = self.added_tokens_encoder[token] elif len(A ) != 1: snake_case : List[str] = self.unk_token_id else: snake_case : Union[str, Any] = ord(A ) + self._num_special_tokens return token_id def UpperCAmelCase ( self , A ) -> Optional[Any]: if index in self.special_tokens_decoder: snake_case : str = self.special_tokens_decoder[index] else: snake_case : List[Any] = chr(index - self._num_special_tokens ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[Any] = B"""""" for token in tokens: if token in self.special_tokens_decoder: snake_case : int = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: snake_case : List[str] = self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: snake_case : List[Any] = token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: snake_case : List[Any] = token.encode("""utf-8""" ) else: snake_case : Tuple = bytes([ord(A )] ) bstring += tok_string snake_case : Optional[Any] = bstring.decode("""utf-8""" , errors="""ignore""" ) return string def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: return ()
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase : List[str] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowerCamelCase : str = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase : List[Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowerCamelCase : List[str] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowerCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) snake_case : List[str] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[list, list, list, list]: if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) snake_case : Tuple = len(lowercase ) snake_case : Dict = matrix_length // 2 snake_case : List[Any] = [[a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase )] snake_case : Optional[int] = [ [a[i][j] for j in range(lowercase ,lowercase )] for i in range(lowercase ,lowercase ) ] snake_case : Optional[int] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] snake_case : Any = [[a[i][j] for j in range(lowercase )] for i in range(lowercase ,lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[int, int]: return len(lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: print("""\n""".join(str(lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase ,lowercase ) snake_case : Any = split_matrix(lowercase ) snake_case : Dict = split_matrix(lowercase ) snake_case : Optional[int] = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : Any = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Union[str, Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,lowercase ) snake_case : Any = actual_strassen(lowercase ,matrix_subtraction(lowercase ,lowercase ) ) snake_case : List[Any] = actual_strassen(matrix_addition(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : Union[str, Any] = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : Tuple = actual_strassen(matrix_subtraction(lowercase ,lowercase ) ,matrix_addition(lowercase ,lowercase ) ) snake_case : str = matrix_addition(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) snake_case : Union[str, Any] = matrix_addition(lowercase ,lowercase ) snake_case : Tuple = matrix_addition(lowercase ,lowercase ) snake_case : Tuple = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase ,lowercase ) ,lowercase ) ,lowercase ) # construct the new matrix from our 4 quadrants snake_case : int = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: snake_case : Any = ( """Unable to multiply these matrices, please check the dimensions.\n""" f"""Matrix A: {matrixa}\n""" f"""Matrix B: {matrixa}""" ) raise Exception(lowercase ) snake_case : Dict = matrix_dimensions(lowercase ) snake_case : Any = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] snake_case : Dict = max(*lowercase ,*lowercase ) snake_case : Union[str, Any] = int(math.pow(2 ,math.ceil(math.loga(lowercase ) ) ) ) snake_case : List[str] = matrixa snake_case : List[Any] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) snake_case : List[str] = actual_strassen(lowercase ,lowercase ) # Removing the additional zeros for i in range(0 ,lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] ,lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Optional[int] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : str = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """openai-gpt""" _snake_case = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A=4_0_4_7_8 , A=5_1_2 , A=7_6_8 , A=1_2 , A=1_2 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.02 , A="cls_index" , A=True , A=None , A=True , A=0.1 , **A , ) -> str: snake_case : Dict = vocab_size snake_case : str = n_positions snake_case : str = n_embd snake_case : Union[str, Any] = n_layer snake_case : List[str] = n_head snake_case : List[Any] = afn snake_case : List[Any] = resid_pdrop snake_case : Optional[int] = embd_pdrop snake_case : Tuple = attn_pdrop snake_case : Tuple = layer_norm_epsilon snake_case : str = initializer_range snake_case : Optional[Any] = summary_type snake_case : Union[str, Any] = summary_use_proj snake_case : Any = summary_activation snake_case : Any = summary_first_dropout snake_case : List[Any] = summary_proj_to_labels super().__init__(**A )
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase = 4 ) -> list[list[int]]: snake_case : str = abs(lowercase ) or 4 return [[1 + x + y * row_size for x in range(lowercase )] for y in range(lowercase )] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_row(transpose(lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_row(reverse_column(lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_column(transpose(lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : Tuple = [list(lowercase ) for x in zip(*lowercase )] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : List[str] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : Dict = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: for i in matrix: print(*lowercase ) if __name__ == "__main__": lowerCamelCase : Dict = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowerCamelCase : Union[str, Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowerCamelCase : List[str] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : Optional[Any] = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A = "▁" , A = True , A = "<unk>" , A = "</s>" , A = "<pad>" , ) -> str: snake_case : Optional[int] = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case : Union[str, Any] = token_dict["""token"""] snake_case : Any = Tokenizer(Unigram() ) snake_case : List[str] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case : str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A , add_prefix_space=A ), pre_tokenizers.Digits(individual_digits=A ), pre_tokenizers.Punctuation(), ] ) snake_case : Tuple = decoders.Metaspace(replacement=A , add_prefix_space=A ) snake_case : int = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case : Optional[Any] = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(A , A ) def UpperCAmelCase ( self , A , A = 8_0_0_0 , A = True , ) -> Optional[Any]: snake_case : Dict = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) if isinstance(A , A ): snake_case : List[str] = [files] self._tokenizer.train(A , trainer=A ) self.add_unk_id() def UpperCAmelCase ( self , A , A = 8_0_0_0 , A = True , ) -> List[str]: snake_case : Optional[int] = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) self._tokenizer.train_from_iterator(A , trainer=A ) self.add_unk_id() def UpperCAmelCase ( self ) -> int: snake_case : Any = json.loads(self._tokenizer.to_str() ) snake_case : List[Any] = self.special_tokens["""unk"""]["""id"""] snake_case : Union[str, Any] = Tokenizer.from_str(json.dumps(A ) )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
from __future__ import annotations lowerCamelCase : List[Any] = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCamelCase : int = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : List[str] = [] snake_case : Dict = len(lowercase ) for i in range(lowercase ): snake_case : float = -1 for j in range(i + 1 ,lowercase ): if arr[i] < arr[j]: snake_case : List[Any] = arr[j] break result.append(lowercase ) return result def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : Union[str, Any] = [] for i, outer in enumerate(lowercase ): snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case : Tuple = inner break result.append(lowercase ) return result def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : Optional[Any] = len(lowercase ) snake_case : list[float] = [] snake_case : list[float] = [-1] * arr_size for index in reversed(range(lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import re import string import numpy as np import datasets lowerCamelCase : Any = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowerCamelCase : Optional[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowerCamelCase : List[Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCAmelCase ( self , A , A , A=None , A=False , A=False , A=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case : Optional[int] = np.array([re.sub(A , """""" , A ) for x in predictions] ) snake_case : Optional[int] = np.array([re.sub(A , """""" , A ) for x in references] ) else: snake_case : List[Any] = np.asarray(A ) snake_case : List[Any] = np.asarray(A ) if ignore_case: snake_case : List[Any] = np.char.lower(A ) snake_case : List[str] = np.char.lower(A ) if ignore_punctuation: snake_case : List[str] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case : Dict = np.char.translate(A , table=A ) snake_case : Optional[int] = np.char.translate(A , table=A ) if ignore_numbers: snake_case : Dict = string.digits.maketrans("""""" , """""" , string.digits ) snake_case : List[str] = np.char.translate(A , table=A ) snake_case : Tuple = np.char.translate(A , table=A ) snake_case : Dict = predictions == references return {"exact_match": np.mean(A ) * 1_0_0}
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
lowerCamelCase : List[Any] = 2_5_6 # Modulus to hash a string lowerCamelCase : Tuple = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> bool: snake_case : Optional[int] = len(lowercase ) snake_case : Optional[Any] = len(lowercase ) if p_len > t_len: return False snake_case : List[str] = 0 snake_case : Optional[int] = 0 snake_case : List[str] = 1 # Calculating the hash of pattern and substring of text for i in range(lowercase ): snake_case : Any = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case : str = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case : Optional[int] = (modulus_power * alphabet_size) % modulus for i in range(0 ,t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case : Any = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> None: snake_case : int = """abc1abc12""" snake_case : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" snake_case : Dict = """alskfjaldsk23adsfabcabc""" assert rabin_karp(lowercase ,lowercase ) and not rabin_karp(lowercase ,lowercase ) # Test 2) snake_case : int = """ABABX""" snake_case : Tuple = """ABABZABABYABABX""" assert rabin_karp(lowercase ,lowercase ) # Test 3) snake_case : Optional[int] = """AAAB""" snake_case : Union[str, Any] = """ABAAAAAB""" assert rabin_karp(lowercase ,lowercase ) # Test 4) snake_case : Union[str, Any] = """abcdabcy""" snake_case : Optional[int] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(lowercase ,lowercase ) # Test 5) snake_case : Tuple = """Lü""" snake_case : Tuple = """Lüsai""" assert rabin_karp(lowercase ,lowercase ) snake_case : Optional[Any] = """Lue""" assert not rabin_karp(lowercase ,lowercase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=lowercase ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=lowercase ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=lowercase ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Union[str, Any] = parse_args() # Import training_script as a module. snake_case : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case : Union[str, Any] = script_fpath.stem snake_case : Optional[Any] = importlib.import_module(lowercase ) # Patch sys.argv snake_case : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase : str = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class __lowercase : """simple docstring""" def __init__( self , A = 1_4 ) -> None: if group not in primes: raise ValueError("""Unsupported Group""" ) snake_case : Dict = primes[group]["""prime"""] snake_case : str = primes[group]["""generator"""] snake_case : Optional[Any] = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def UpperCAmelCase ( self ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase ( self ) -> str: snake_case : Dict = pow(self.generator , self.__private_key , self.prime ) return hex(A )[2:] def UpperCAmelCase ( self , A ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase ( self , A ) -> str: snake_case : Tuple = int(A , base=1_6 ) if not self.is_valid_public_key(A ): raise ValueError("""Invalid public key""" ) snake_case : Optional[int] = pow(A , self.__private_key , self.prime ) return shaaaa(str(A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase ( A , A ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(A , (prime - 1) // 2 , A ) == 1 ) @staticmethod def UpperCAmelCase ( A , A , A = 1_4 ) -> str: snake_case : Tuple = int(A , base=1_6 ) snake_case : Optional[int] = int(A , base=1_6 ) snake_case : Tuple = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(A , A ): raise ValueError("""Invalid public key""" ) snake_case : int = pow(A , A , A ) return shaaaa(str(A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCamelCase : Optional[Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['BeitFeatureExtractor'] lowerCamelCase : Tuple = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Dict = tau * frequency / samplerate snake_case : int = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : List[Any] = _sin / (2 * q_factor) snake_case : Tuple = (1 - _cos) / 2 snake_case : int = 1 - _cos snake_case : Union[str, Any] = 1 + alpha snake_case : List[Any] = -2 * _cos snake_case : int = 1 - alpha snake_case : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Tuple = tau * frequency / samplerate snake_case : Union[str, Any] = sin(lowercase ) snake_case : Tuple = cos(lowercase ) snake_case : List[str] = _sin / (2 * q_factor) snake_case : List[Any] = (1 + _cos) / 2 snake_case : Any = -1 - _cos snake_case : Union[str, Any] = 1 + alpha snake_case : int = -2 * _cos snake_case : str = 1 - alpha snake_case : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Union[str, Any] = tau * frequency / samplerate snake_case : Any = sin(lowercase ) snake_case : str = cos(lowercase ) snake_case : List[Any] = _sin / (2 * q_factor) snake_case : List[str] = _sin / 2 snake_case : Optional[Any] = 0 snake_case : List[str] = -ba snake_case : str = 1 + alpha snake_case : List[Any] = -2 * _cos snake_case : List[str] = 1 - alpha snake_case : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Optional[Any] = tau * frequency / samplerate snake_case : Any = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : Dict = _sin / (2 * q_factor) snake_case : Tuple = 1 - alpha snake_case : List[str] = -2 * _cos snake_case : List[Any] = 1 + alpha snake_case : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : int = tau * frequency / samplerate snake_case : Optional[Any] = sin(lowercase ) snake_case : str = cos(lowercase ) snake_case : Optional[int] = _sin / (2 * q_factor) snake_case : Dict = 10 ** (gain_db / 40) snake_case : str = 1 + alpha * big_a snake_case : Optional[Any] = -2 * _cos snake_case : Tuple = 1 - alpha * big_a snake_case : Dict = 1 + alpha / big_a snake_case : int = -2 * _cos snake_case : Any = 1 - alpha / big_a snake_case : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : Any = tau * frequency / samplerate snake_case : Optional[int] = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : Dict = _sin / (2 * q_factor) snake_case : List[str] = 10 ** (gain_db / 40) snake_case : Tuple = (big_a + 1) - (big_a - 1) * _cos snake_case : Any = (big_a + 1) + (big_a - 1) * _cos snake_case : List[Any] = (big_a - 1) - (big_a + 1) * _cos snake_case : List[Any] = (big_a - 1) + (big_a + 1) * _cos snake_case : int = 2 * sqrt(lowercase ) * alpha snake_case : List[Any] = big_a * (pmc + aaa) snake_case : Dict = 2 * big_a * mpc snake_case : List[Any] = big_a * (pmc - aaa) snake_case : int = ppmc + aaa snake_case : Dict = -2 * pmpc snake_case : str = ppmc - aaa snake_case : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : Union[str, Any] = tau * frequency / samplerate snake_case : Tuple = sin(lowercase ) snake_case : Any = cos(lowercase ) snake_case : Tuple = _sin / (2 * q_factor) snake_case : int = 10 ** (gain_db / 40) snake_case : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos snake_case : Dict = (big_a + 1) + (big_a - 1) * _cos snake_case : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos snake_case : List[Any] = (big_a - 1) + (big_a + 1) * _cos snake_case : Dict = 2 * sqrt(lowercase ) * alpha snake_case : List[Any] = big_a * (ppmc + aaa) snake_case : List[Any] = -2 * big_a * pmpc snake_case : str = big_a * (ppmc - aaa) snake_case : List[str] = pmc + aaa snake_case : List[str] = 2 * mpc snake_case : Union[str, Any] = pmc - aaa snake_case : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCamelCase : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCamelCase : Tuple = {'facebook/blenderbot-3B': 1_2_8} class __lowercase ( UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = BlenderbotTokenizer def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Any: super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : Optional[int] = getattr(A , pre_tok_state.pop("""type""" ) ) snake_case : Dict = add_prefix_space snake_case : List[str] = pre_tok_class(**A ) snake_case : Any = add_prefix_space snake_case : List[str] = """post_processor""" snake_case : Union[str, Any] = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case : Union[str, Any] = tuple(state["""sep"""] ) if "cls" in state: snake_case : int = tuple(state["""cls"""] ) snake_case : List[Any] = False if state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : str = add_prefix_space snake_case : int = True if state.get("""trim_offsets""" , A ) != trim_offsets: snake_case : Dict = trim_offsets snake_case : Union[str, Any] = True if changes_to_apply: snake_case : List[str] = getattr(A , state.pop("""type""" ) ) snake_case : Any = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self , A ) -> Any: snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value snake_case : str = value def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : Optional[int] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : List[Any] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : Union[str, Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Union[str, Any] = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A ) -> List[int]: snake_case : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(A ) snake_case : int = """ """.join(A ) snake_case : Any = self.encode(A ) if len(A ) > self.model_max_length: snake_case : str = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase : Tuple = getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 8 ,lowercase = 1024 ,lowercase="val" ,lowercase=None ,lowercase=False ,lowercase="summarization" ,lowercase=None ,lowercase=1 ,lowercase = None ,lowercase="" ,**lowercase ,) -> Dict: snake_case : Union[str, Any] = str(lowercase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" ,rank=lowercase ) snake_case : Union[str, Any] = Path(lowercase ) snake_case : Tuple = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(lowercase ) snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(lowercase ).cuda() if fpaa: snake_case : int = model.half() # determine if we need to increase num_beams use_task_specific_params(lowercase ,lowercase ) # update config with task specific params snake_case : Optional[Any] = generate_kwargs.pop("""num_beams""" ,model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: snake_case : Union[str, Any] = num_return_sequences snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: snake_case : Dict = tokenizer.model_max_length if prefix is None: snake_case : str = prefix or getattr(model.config ,"""prefix""" ,"""""" ) or """""" snake_case : Union[str, Any] = SeqaSeqDataset( lowercase ,lowercase ,lowercase ,max_target_length=1024 ,type_path=lowercase ,n_obs=lowercase ,prefix=lowercase ,**lowercase ,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. snake_case : Dict = ds.make_sortish_sampler(lowercase ,distributed=lowercase ,add_extra_examples=lowercase ,shuffle=lowercase ) snake_case : Union[str, Any] = DataLoader(lowercase ,sampler=lowercase ,batch_size=lowercase ,collate_fn=ds.collate_fn ) snake_case : Optional[int] = [] for batch in tqdm(lowercase ): snake_case : int = model.generate( input_ids=batch["""input_ids"""].to(model.device ) ,attention_mask=batch["""attention_mask"""].to(model.device ) ,num_return_sequences=lowercase ,num_beams=lowercase ,**lowercase ,) snake_case : List[Any] = tokenizer.batch_decode(lowercase ,skip_special_tokens=lowercase ,clean_up_tokenization_spaces=lowercase ) snake_case : List[str] = batch["""ids"""] if num_return_sequences > 1: snake_case : Union[str, Any] = chunks(lowercase ,lowercase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowercase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(lowercase ,lowercase ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[int] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" ,type=lowercase ,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" ,type=lowercase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ,default="""sshleifer/distilbart-xsum-12-3""" ,) parser.add_argument("""--save_dir""" ,type=lowercase ,help="""where to save""" ,default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" ,type=lowercase ,default=lowercase ) parser.add_argument( """--type_path""" ,type=lowercase ,default="""test""" ,help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" ,type=lowercase ,default="""summarization""" ,help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" ,type=lowercase ,default=8 ,required=lowercase ,help="""batch size""" ) parser.add_argument( """--local_rank""" ,type=lowercase ,default=-1 ,required=lowercase ,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" ,type=lowercase ,default=lowercase ,required=lowercase ,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" ,type=lowercase ,default=1 ,required=lowercase ,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" ,type=lowercase ,default=600 ,required=lowercase ,help="""How long should master process wait for other processes to finish.""" ,) parser.add_argument("""--src_lang""" ,type=lowercase ,default=lowercase ,required=lowercase ) parser.add_argument("""--tgt_lang""" ,type=lowercase ,default=lowercase ,required=lowercase ) parser.add_argument( """--prefix""" ,type=lowercase ,required=lowercase ,default=lowercase ,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" ,action="""store_true""" ) parser.add_argument("""--debug""" ,action="""store_true""" ) snake_case : Optional[Any] = time.time() snake_case : Optional[Any] = parser.parse_known_args() snake_case : int = parse_numeric_n_bool_cl_kwargs(lowercase ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) snake_case : Tuple = Path(args.save_dir + """_tmp""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) # this handles locking. snake_case : Any = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. snake_case : List[Any] = {} if args.src_lang is not None: snake_case : Dict = args.src_lang if args.tgt_lang is not None: snake_case : Any = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowercase ) snake_case : Tuple = eval_data_dir( args.data_dir ,lowercase ,args.model_name ,type_path=args.type_path ,bs=args.bs ,fpaa=args.fpaa ,task=args.task ,local_rank=args.local_rank ,n_obs=args.n_obs ,max_source_length=args.max_source_length ,num_return_sequences=args.num_return_sequences ,prefix=args.prefix ,dataset_kwargs=lowercase ,**lowercase ,) if args.local_rank <= 0: snake_case : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowercase ) snake_case : int = gather_results_from_each_node(lowercase ,lowercase ,args.sync_timeout ) snake_case : Dict = combine_partial_results(lowercase ) if args.num_return_sequences > 1: snake_case : Union[str, Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(lowercase ,lowercase ) return snake_case : Tuple = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(lowercase ) as f: snake_case : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowercase )] # Calculate metrics, save metrics, and save _generations.txt snake_case : List[str] = """translation""" in args.task snake_case : Tuple = calculate_bleu if calc_bleu else calculate_rouge snake_case : int = """bleu""" if calc_bleu else """rouge""" snake_case : Dict = score_fn(lowercase ,lowercase ) snake_case : int = len(lowercase ) snake_case : Union[str, Any] = time.time() - start_time snake_case : Union[str, Any] = round(runtime / metrics["""n_obs"""] ,4 ) snake_case : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics snake_case : List[Any] = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(lowercase ,lowercase ,indent=lowercase ) print(lowercase ) write_txt_file(lowercase ,save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(lowercase ,save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List: snake_case : Optional[int] = [] for partial_result in partial_results: records.extend(lowercase ) snake_case : Any = sorted(lowercase ,key=lambda lowercase : x["id"] ) snake_case : Union[str, Any] = [x["""pred"""] for x in records] return preds def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files snake_case : List[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) snake_case : Union[str, Any] = None while (time.time() - start_wait) < timeout: snake_case : str = list(save_dir.glob("""rank_*.json""" ) ) if len(lowercase ) < num_replicas: continue try: # make sure all json files are fully saved snake_case : List[Any] = lmap(lowercase ,lowercase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase : Dict = True from torch.cuda.amp import autocast lowerCamelCase : List[Any] = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" _snake_case = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) _snake_case = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) _snake_case = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) _snake_case = field( default=0.999_995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) snake_case : int = logging.WARNING if model_args.verbose_logging: snake_case : List[str] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case : Any = logging.INFO logger.setLevel(lowercase ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _snake_case = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) _snake_case = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _snake_case = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _snake_case = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __lowercase : """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = """longest""" _snake_case = None _snake_case = None def __call__( self , A ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format snake_case : Dict = self.feature_extractor.pad( A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) snake_case : Tuple = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) snake_case : Any = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case : Optional[int] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) snake_case : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case : List[str] = 1 snake_case : str = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case : Tuple = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=A , min_masks=2 , ) return batch class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , A=1 , A=0 , A=1.0 , **A ) -> int: super().__init__(*A , **A ) snake_case : Optional[Any] = 0 snake_case : Union[str, Any] = max_gumbel_temp snake_case : List[str] = min_gumbel_temp snake_case : List[Any] = gumbel_temp_decay def UpperCAmelCase ( self , A , A ) -> torch.Tensor: model.train() snake_case : Optional[Any] = self._prepare_inputs(A ) if self.use_amp: with autocast(): snake_case : int = self.compute_loss(A , A ) else: snake_case : Tuple = self.compute_loss(A , A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case : Union[str, Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case : Optional[int] = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A ).backward() elif self.use_apex: with amp.scale_loss(A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case : List[str] = parser.parse_args_into_dataclasses() configure_logger(lowercase ,lowercase ) # Downloading and loading a dataset from the hub. snake_case : Tuple = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case : List[Any] = DatasetDict() snake_case : Union[str, Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" ,cache_dir=model_args.cache_dir ,) snake_case : str = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" ,cache_dir=model_args.cache_dir ,) else: # make sure only "validation" and "train" keys remain" snake_case : Optional[int] = DatasetDict() snake_case : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split="""validation""" ,cache_dir=model_args.cache_dir ,) snake_case : Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}""" ,cache_dir=model_args.cache_dir ,) # only normalized-inputs-training is supported snake_case : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,do_normalize=lowercase ) def prepare_dataset(lowercase ): # check that all files have the correct sampling rate snake_case : str = librosa.load(batch[data_args.speech_file_column] ,sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case : List[str] = datasets.map( lowercase ,num_proc=data_args.preprocessing_num_workers ,remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long snake_case : Union[str, Any] = vectorized_datasets.filter( lambda lowercase : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase ): return feature_extractor(batch["""speech"""] ,sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case : str = vectorized_datasets.map( lowercase ,batched=lowercase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,remove_columns=vectorized_datasets["""train"""].column_names ,) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case : Union[str, Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,gradient_checkpointing=training_args.gradient_checkpointing ,) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) snake_case : Union[str, Any] = WavaVecaForPreTraining(lowercase ) snake_case : List[str] = DataCollatorForWavaVecaPretraining(model=lowercase ,feature_extractor=lowercase ) snake_case : str = WavaVecaPreTrainer( model=lowercase ,data_collator=lowercase ,args=lowercase ,train_dataset=vectorized_datasets["""train"""] ,eval_dataset=vectorized_datasets["""validation"""] ,tokenizer=lowercase ,max_gumbel_temp=model_args.max_gumbel_temperature ,min_gumbel_temp=model_args.min_gumbel_temperature ,gumbel_temp_decay=model_args.gumbel_temperature_decay ,) trainer.train() if __name__ == "__main__": main()
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A ) -> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 1 , A = None , A = 0.0 , A = 5_0 , A = None , A = "pil" , A = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , A ): snake_case : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case : Tuple = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case : Any = self.unet(A , A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case : Any = self.scheduler.step( A , A , A , eta=A , use_clipped_model_output=A , generator=A ).prev_sample snake_case : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: create_state_space_tree(lowercase ,[] ,0 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> None: if index == len(lowercase ): print(lowercase ) return create_state_space_tree(lowercase ,lowercase ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase ,lowercase ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase : str = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: return torch.atana(lowercase ,lowercase ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Tuple = torch.sin(t * math.pi / 2 ) ** 2 snake_case : Tuple = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowercase ,lowercase ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A ) -> Any: super().__init__() snake_case : Optional[int] = DiffusionAttnUnetaD(A , n_attn_layers=4 ) snake_case : Tuple = deepcopy(self.diffusion ) snake_case : List[Any] = torch.quasirandom.SobolEngine(1 , scramble=A ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : str = MODELS_MAP[model_name]["""url"""] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowerCamelCase : Optional[Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowerCamelCase : int = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowerCamelCase : Optional[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowerCamelCase : int = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowerCamelCase : Dict = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if name.startswith("""skip""" ): return name.replace("""skip""" ,RES_CONV_MAP["""skip"""] ) # name has to be of format main.{digit} if not name.startswith("""main.""" ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] ,RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: for key, value in ATTN_MAP.items(): if name.startswith(lowercase ) and not isinstance(lowercase ,lowercase ): return name.replace(lowercase ,lowercase ) elif name.startswith(lowercase ): return [name.replace(lowercase ,lowercase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=13 ) -> Any: snake_case : List[Any] = input_string if string.split(""".""" )[0] == "timestep_embed": return string.replace("""timestep_embed""" ,"""time_proj""" ) snake_case : Optional[Any] = 0 if string.startswith("""net.3.""" ): depth += 1 snake_case : Union[str, Any] = string[6:] elif string.startswith("""net.""" ): snake_case : Tuple = string[4:] while string.startswith("""main.7.""" ): depth += 1 snake_case : List[Any] = string[7:] if string.startswith("""main.""" ): snake_case : Union[str, Any] = string[5:] # mid block if string[:2].isdigit(): snake_case : List[str] = string[:2] snake_case : str = string[2:] else: snake_case : Optional[Any] = string[0] snake_case : str = string[1:] if depth == max_depth: snake_case : str = MID_NUM_TO_LAYER[layer_num] snake_case : Optional[Any] = """mid_block""" elif depth > 0 and int(lowercase ) < 7: snake_case : Optional[int] = DOWN_NUM_TO_LAYER[layer_num] snake_case : List[Any] = f"""down_blocks.{depth}""" elif depth > 0 and int(lowercase ) > 7: snake_case : Optional[int] = UP_NUM_TO_LAYER[layer_num] snake_case : Dict = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: snake_case : Tuple = DEPTH_0_TO_LAYER[layer_num] snake_case : Union[str, Any] = f"""up_blocks.{max_depth - 1}""" if int(lowercase ) > 3 else """down_blocks.0""" if not string_left.startswith(""".""" ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) snake_case : Any = string_left[1:] if "resnets" in new_layer: snake_case : Any = convert_resconv_naming(lowercase ) elif "attentions" in new_layer: snake_case : int = convert_attn_naming(lowercase ) snake_case : Optional[Any] = new_string_left if not isinstance(lowercase ,lowercase ): snake_case : Optional[Any] = prefix + """.""" + new_layer + """.""" + string_left else: snake_case : Union[str, Any] = [prefix + """.""" + new_layer + """.""" + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[Any] = {} for k, v in state_dict.items(): if k.endswith("""kernel""" ): # up- and downsample layers, don't have trainable weights continue snake_case : List[str] = rename(lowercase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowercase ,lowercase ): snake_case : Any = transform_conv_attns(lowercase ,lowercase ,lowercase ) else: snake_case : Optional[Any] = v return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) == 1: if len(v.shape ) == 3: # weight snake_case : int = v[:, :, 0] else: # bias snake_case : Any = v else: # qkv matrices snake_case : str = v.shape[0] snake_case : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case : Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case : Tuple = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) snake_case : Dict = args.model_path.split("""/""" )[-1].split(""".""" )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" snake_case : Union[str, Any] = download(lowercase ) snake_case : Tuple = MODELS_MAP[model_name]["""sample_rate"""] snake_case : Tuple = MODELS_MAP[model_name]["""sample_size"""] snake_case : Tuple = Object() snake_case : int = sample_size snake_case : List[str] = sample_rate snake_case : int = 0 snake_case : List[Any] = UNetaDModel(sample_size=lowercase ,sample_rate=lowercase ) snake_case : Optional[Any] = diffusers_model.state_dict() snake_case : Optional[Any] = DiffusionUncond(lowercase ) orig_model.load_state_dict(torch.load(args.model_path ,map_location=lowercase )["""state_dict"""] ) snake_case : Union[str, Any] = orig_model.diffusion_ema.eval() snake_case : Optional[Any] = orig_model.state_dict() snake_case : Union[str, Any] = rename_orig_weights(lowercase ) snake_case : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case : Tuple = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowercase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("""kernel""" ) for k in list(lowercase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": snake_case : Optional[int] = value.squeeze() snake_case : int = value diffusers_model.load_state_dict(lowercase ) snake_case : List[Any] = 100 snake_case : List[str] = 33 snake_case : Optional[Any] = IPNDMScheduler(num_train_timesteps=lowercase ) snake_case : Tuple = torch.manual_seed(lowercase ) snake_case : Optional[int] = torch.randn([1, 2, config.sample_size] ,generator=lowercase ).to(lowercase ) snake_case : Union[str, Any] = torch.linspace(1 ,0 ,steps + 1 ,device=lowercase )[:-1] snake_case : Optional[Any] = get_crash_schedule(lowercase ) snake_case : Tuple = DanceDiffusionPipeline(unet=lowercase ,scheduler=lowercase ) snake_case : Dict = torch.manual_seed(33 ) snake_case : str = pipe(num_inference_steps=lowercase ,generator=lowercase ).audios snake_case : Tuple = sampling.iplms_sample(lowercase ,lowercase ,lowercase ,{} ) snake_case : Any = generated.clamp(-1 ,1 ) snake_case : List[Any] = (generated - audio).abs().sum() snake_case : Tuple = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("""Diff sum""" ,lowercase ) print("""Diff max""" ,lowercase ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase : List[str] = parser.parse_args() main(args)
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase : Any = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE__ ( lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowercase ): snake_case : Any = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase )[1] in (".py", ".ipynb"): yield os.path.join(lowercase ,lowercase ).lstrip("""./""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return f"""{i * " "}*""" if i else "\n##" def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: snake_case : Union[str, Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(lowercase )} {new_part.replace("_" ," " ).title()}""" ) return new_path def SCREAMING_SNAKE_CASE__ ( lowercase = "." ) -> None: snake_case : str = """""" for filepath in sorted(good_file_paths(lowercase ) ): snake_case : Optional[Any] = os.path.split(lowercase ) if filepath != old_path: snake_case : Any = print_path(lowercase ,lowercase ) snake_case : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case : List[str] = f"""{filepath}/{filename}""".replace(""" """ ,"""%20""" ) snake_case : Optional[int] = os.path.splitext(filename.replace("""_""" ,""" """ ).title() )[0] print(f"""{md_prefix(lowercase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: snake_case : int = 1_0 def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = [1, 2, 3, 4] snake_case : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] snake_case : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] snake_case : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" snake_case : Optional[Any] = process_story(A ) self.assertEqual(A , [] ) def UpperCAmelCase ( self ) -> str: snake_case : Dict = """""" snake_case : Tuple = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def UpperCAmelCase ( self ) -> List[str]: snake_case : int = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) snake_case : List[Any] = process_story(A ) snake_case : str = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(A , A ) snake_case : List[str] = ["""It was the best of times."""] self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Any: snake_case : Dict = torch.tensor([1, 2, 3, 4] ) snake_case : Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) snake_case : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 2_3 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = 1_0_1 snake_case : int = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) snake_case : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case : List[Any] = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings( UpperCamelCase__ , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self , A ) -> np.ndarray: if self.framework == "tf": snake_case : Union[str, Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ) else: raise ValueError("""Unsupported framework""" ) return masked_index def UpperCAmelCase ( self , A ) -> np.ndarray: snake_case : List[Any] = self.get_masked_index(A ) snake_case : Dict = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def UpperCAmelCase ( self , A ) -> Dict: if isinstance(A , A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def UpperCAmelCase ( self , A , A=None , **A ) -> Dict[str, GenericTensor]: if return_tensors is None: snake_case : Optional[int] = self.framework snake_case : Dict = self.tokenizer(A , return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def UpperCAmelCase ( self , A ) -> int: snake_case : Dict = self.model(**A ) snake_case : Tuple = model_inputs["""input_ids"""] return model_outputs def UpperCAmelCase ( self , A , A=5 , A=None ) -> List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case : Any = target_ids.shape[0] snake_case : Dict = model_outputs["""input_ids"""][0] snake_case : Optional[int] = model_outputs["""logits"""] if self.framework == "tf": snake_case : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case : Dict = outputs.numpy() snake_case : Optional[Any] = outputs[0, masked_index, :] snake_case : Optional[Any] = stable_softmax(A , axis=-1 ) if target_ids is not None: snake_case : str = tf.gather_nd(tf.squeeze(A , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case : Any = tf.expand_dims(A , 0 ) snake_case : Tuple = tf.math.top_k(A , k=A ) snake_case : int = topk.values.numpy(), topk.indices.numpy() else: snake_case : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case : int = outputs[0, masked_index, :] snake_case : Dict = logits.softmax(dim=-1 ) if target_ids is not None: snake_case : Optional[Any] = probs[..., target_ids] snake_case : Optional[Any] = probs.topk(A ) snake_case : List[Any] = [] snake_case : Optional[Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case : str = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case : List[str] = input_ids.numpy().copy() if target_ids is not None: snake_case : Any = target_ids[p].tolist() snake_case : List[Any] = p # Filter padding out: snake_case : List[str] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case : Tuple = self.tokenizer.decode(A , skip_special_tokens=A ) snake_case : List[str] = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def UpperCAmelCase ( self , A , A=None ) -> List[str]: if isinstance(A , A ): snake_case : Optional[Any] = [targets] try: snake_case : Union[str, Any] = self.tokenizer.get_vocab() except Exception: snake_case : Any = {} snake_case : str = [] for target in targets: snake_case : Union[str, Any] = vocab.get(A , A ) if id_ is None: snake_case : int = self.tokenizer( A , add_special_tokens=A , return_attention_mask=A , return_token_type_ids=A , max_length=1 , truncation=A , )["""input_ids"""] if len(A ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) snake_case : Union[str, Any] = list(set(A ) ) if len(A ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case : str = np.array(A ) return target_ids def UpperCAmelCase ( self , A=None , A=None ) -> str: snake_case : Tuple = {} if targets is not None: snake_case : List[Any] = self.get_target_ids(A , A ) snake_case : Optional[Any] = target_ids if top_k is not None: snake_case : List[str] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , A , *A , **A ) -> Tuple: snake_case : int = super().__call__(A , **A ) if isinstance(A , A ) and len(A ) == 1: return outputs[0] return outputs
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase : Tuple = TypeVar('T') def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (2 * position) + 2 class __lowercase (Generic[T] ): """simple docstring""" def __init__( self ) -> None: snake_case : list[tuple[T, int]] = [] snake_case : dict[T, int] = {} snake_case : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def UpperCAmelCase ( self , A , A ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) snake_case : Optional[Any] = self.elements self.elements += 1 self._bubble_up(A ) def UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) snake_case : Dict = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: snake_case : Optional[int] = self.heap[0] self._bubble_down(A ) return elem def UpperCAmelCase ( self , A , A ) -> None: # Update the weight of the given key snake_case : List[str] = self.position_map[elem] snake_case : Optional[Any] = (elem, weight) if position > 0: snake_case : Union[str, Any] = get_parent_position(A ) snake_case : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(A ) else: self._bubble_down(A ) else: self._bubble_down(A ) def UpperCAmelCase ( self , A ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] snake_case : Any = self.position_map[elem] if curr_pos == 0: return None snake_case : Union[str, Any] = get_parent_position(A ) snake_case : str = self.heap[curr_pos] snake_case : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(A , A ) return self._bubble_up(A ) return None def UpperCAmelCase ( self , A ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] snake_case : List[Any] = self.position_map[elem] snake_case : Union[str, Any] = self.heap[curr_pos] snake_case : Dict = get_child_left_position(A ) snake_case : Any = get_child_right_position(A ) if child_left_position < self.elements and child_right_position < self.elements: snake_case : List[str] = self.heap[child_left_position] snake_case : Optional[int] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) if child_left_position < self.elements: snake_case : str = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) else: return None if child_right_position < self.elements: snake_case : Any = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) return None def UpperCAmelCase ( self , A , A ) -> None: # Swap the nodes at the given positions snake_case : Optional[int] = self.heap[nodea_pos][0] snake_case : Any = self.heap[nodea_pos][0] snake_case : Optional[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) snake_case : str = nodea_pos snake_case : List[str] = nodea_pos class __lowercase (Generic[T] ): """simple docstring""" def __init__( self ) -> None: snake_case : dict[T, dict[T, int]] = {} snake_case : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def UpperCAmelCase ( self , A ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: snake_case : List[Any] = {} self.nodes += 1 def UpperCAmelCase ( self , A , A , A ) -> None: # Add an edge between 2 nodes in the graph self.add_node(A ) self.add_node(A ) snake_case : Any = weight snake_case : str = weight def SCREAMING_SNAKE_CASE__ ( lowercase ,) -> tuple[dict[T, int], dict[T, T | None]]: snake_case : dict[T, int] = {node: maxsize for node in graph.connections} snake_case : dict[T, T | None] = {node: None for node in graph.connections} snake_case : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowercase ,lowercase ) if priority_queue.is_empty(): return dist, parent # initialization snake_case : Dict = priority_queue.extract_min() snake_case : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase ,dist[neighbour] ) snake_case : str = node # running prim's algorithm while not priority_queue.is_empty(): snake_case : Union[str, Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase ,dist[neighbour] ) snake_case : Dict = node return dist, parent
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("""foo.json""",)] ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Any = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) snake_case : Optional[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = AutoConfig.from_pretrained("""gpt2""" ) snake_case : Optional[int] = GenerationConfig.from_model_config(A ) snake_case : Dict = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase ( self ) -> Dict: snake_case : List[Any] = GenerationConfig() snake_case : Union[str, Any] = { """max_new_tokens""": 1_0_2_4, """foo""": """bar""", } snake_case : int = copy.deepcopy(A ) snake_case : Optional[Any] = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {"""foo""": """bar"""} ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = GenerationConfig() snake_case : Optional[int] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(A ) snake_case : str = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) snake_case : int = GenerationConfig.from_model_config(A ) assert not hasattr(A , """foo""" ) # no new kwargs should be initialized if from config def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) snake_case : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) snake_case : Any = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> str: snake_case : int = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) snake_case : str = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""test-generation-config""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Optional[int] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=1024 ) -> Dict: snake_case : Union[str, Any] = [], [] snake_case : List[str] = list(zip(lowercase ,lowercase ) ) snake_case : str = sorted_examples[0] def is_too_big(lowercase ): return tok(lowercase ,return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case : str = new_src + """ """ + src snake_case : Optional[int] = new_tgt + """ """ + tgt if is_too_big(lowercase ) or is_too_big(lowercase ): # cant fit, finalize example finished_src.append(lowercase ) finished_tgt.append(lowercase ) snake_case : Optional[Any] = src, tgt else: # can fit, keep adding snake_case : str = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowercase ) finished_tgt.append(lowercase ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: snake_case : str = Path(lowercase ) save_path.mkdir(exist_ok=lowercase ) for split in ["train"]: snake_case : Union[str, Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case : Optional[Any] = [x.rstrip() for x in Path(lowercase ).open().readlines()] snake_case : Union[str, Any] = [x.rstrip() for x in Path(lowercase ).open().readlines()] snake_case : Dict = pack_examples(lowercase ,lowercase ,lowercase ,lowercase ) print(f"""packed {split} split from {len(lowercase )} examples -> {len(lowercase )}.""" ) Path(save_path / f"""{split}.source""" ).open("""w""" ).write("""\n""".join(lowercase ) ) Path(save_path / f"""{split}.target""" ).open("""w""" ).write("""\n""".join(lowercase ) ) for split in ["val", "test"]: snake_case : List[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(lowercase ,save_path / f"""{split}.source""" ) shutil.copyfile(lowercase ,save_path / f"""{split}.target""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--tok_name""" ,type=lowercase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" ,type=lowercase ,default=128 ) parser.add_argument("""--data_dir""" ,type=lowercase ) parser.add_argument("""--save_path""" ,type=lowercase ) snake_case : Union[str, Any] = parser.parse_args() snake_case : Any = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowercase ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCamelCase : List[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) lowerCamelCase : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCamelCase : Any = 'zero2' lowerCamelCase : Dict = 'zero3' lowerCamelCase : List[Any] = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[int]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case : Optional[Any] = parameterized.to_safe_name("""_""".join(str(lowercase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCamelCase : Optional[int] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowercase (UpperCamelCase__ ): """simple docstring""" @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> Dict: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @require_torch_multi_gpu @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> List[Any]: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> str: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @require_torch_multi_gpu @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) def UpperCAmelCase ( self , A ) -> Tuple: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase ( self , A , A , A = 1_0 , A = True , A = True , A = True , ) -> Tuple: snake_case : List[str] = models[model] snake_case : List[Any] = self.run_trainer( stage=A , model_name=A , eval_steps=A , num_train_epochs=1 , distributed=A , fpaa=A , ) self.do_checks(A ) return output_dir def UpperCAmelCase ( self , A , A , A = 1_0 , A = 1 , A = True , A = True , ) -> Dict: snake_case : List[Any] = self.get_auto_remove_tmp_dir("""./xxx""" , after=A ) snake_case : List[Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(A )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case : Union[str, Any] = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case : List[Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case : str = self.get_launcher(A ) snake_case : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) return output_dir def UpperCAmelCase ( self , A=False ) -> Optional[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) snake_case : str = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase : Dict = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCamelCase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> Tuple: snake_case : Dict = create_model( """HTSAT-tiny""" ,"""roberta""" ,lowercase ,precision="""fp32""" ,device="""cuda:0""" if torch.cuda.is_available() else """cpu""" ,enable_fusion=lowercase ,fusion_type="""aff_2d""" if enable_fusion else None ,) return model, model_cfg def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : str = {} snake_case : List[Any] = R""".*sequential.(\d+).*""" snake_case : List[Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case : Dict = key.replace(lowercase ,lowercase ) if re.match(lowercase ,lowercase ): # replace sequential layers with list snake_case : Any = re.match(lowercase ,lowercase ).group(1 ) snake_case : Any = key.replace(f"""sequential.{sequential_layer}.""" ,f"""layers.{int(lowercase )//3}.linear.""" ) elif re.match(lowercase ,lowercase ): snake_case : Union[str, Any] = int(re.match(lowercase ,lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case : Any = 1 if projecton_layer == 0 else 2 snake_case : Tuple = key.replace(f"""_projection.{projecton_layer}.""" ,f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case : Tuple = value snake_case : List[str] = mixed_qkv.size(0 ) // 3 snake_case : Any = mixed_qkv[:qkv_dim] snake_case : Any = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case : Tuple = mixed_qkv[qkv_dim * 2 :] snake_case : Dict = query_layer snake_case : Optional[Any] = key_layer snake_case : str = value_layer else: snake_case : Optional[int] = value return model_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=False ) -> List[Any]: snake_case : Optional[int] = init_clap(lowercase ,enable_fusion=lowercase ) clap_model.eval() snake_case : str = clap_model.state_dict() snake_case : int = rename_state_dict(lowercase ) snake_case : Any = ClapConfig() snake_case : Any = enable_fusion snake_case : str = ClapModel(lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase ,strict=lowercase ) model.save_pretrained(lowercase ) transformers_config.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
from __future__ import annotations import collections import pprint from pathlib import Path def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: return "".join(sorted(lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[str]: return word_by_signature[signature(lowercase )] lowerCamelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') lowerCamelCase : int = sorted({word.strip().lower() for word in data.splitlines()}) lowerCamelCase : List[str] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": lowerCamelCase : Dict = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from math import sqrt def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = 0 for i in range(1 ,int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def SCREAMING_SNAKE_CASE__ ( lowercase = 10000 ) -> int: snake_case : Dict = sum( i for i in range(1 ,lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
lowerCamelCase : int = [0, 2, 4, 6, 8] lowerCamelCase : Optional[Any] = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 ,-1 ,-1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case : int = 0 for digit in range(10 ): snake_case : Optional[int] = digit result += reversible_numbers( 0 ,(remainder + 2 * digit) // 10 ,lowercase ,lowercase ) return result snake_case : List[Any] = 0 for digita in range(10 ): snake_case : str = digita if (remainder + digita) % 2 == 0: snake_case : Any = ODD_DIGITS else: snake_case : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: snake_case : List[str] = digita result += reversible_numbers( remaining_length - 2 ,(remainder + digita + digita) // 10 ,lowercase ,lowercase ,) return result def SCREAMING_SNAKE_CASE__ ( lowercase = 9 ) -> int: snake_case : Optional[int] = 0 for length in range(1 ,max_power + 1 ): result += reversible_numbers(lowercase ,0 ,[0] * length ,lowercase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=False ) -> Any: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: snake_case : Any = os.path.abspath(lowercase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) snake_case : Any = torch.load(lowercase ,map_location="""cpu""" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) snake_case : Union[str, Any] = convert_pytorch_state_dict_to_flax(lowercase ,lowercase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files snake_case : List[Any] = convert_pytorch_sharded_state_dict_to_flax(lowercase ,lowercase ) return flax_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,) -> (Tuple[str], np.ndarray): def is_key_or_prefix_key_in_dict(lowercase ) -> bool: return len(set(lowercase ) & {key, (model_prefix,) + key} ) > 0 # layer norm snake_case : List[Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean snake_case : str = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var snake_case : Optional[int] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # embedding snake_case : Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(lowercase ): return renamed_pt_tuple_key, pt_tensor # conv layer snake_case : int = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(lowercase ): snake_case : Optional[Any] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(lowercase ): snake_case : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case : int = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case : str = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 snake_case : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): snake_case : Optional[Any] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): snake_case : List[str] = pt_tuple_key[-2] + """_v""" if name is not None: snake_case : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: # convert pytorch tensor to numpy snake_case : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case : Dict = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: snake_case : List[str] = flax_model.params["""params"""] else: snake_case : List[str] = flax_model.params snake_case : List[Any] = flatten_dict(lowercase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case : Optional[int] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(lowercase ) snake_case : Optional[Any] = {} snake_case : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case : Any = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : Union[str, Any] = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Tuple = pt_tuple_key[1:] # Correctly rename weight parameters snake_case : str = rename_key_and_reshape_tensor( lowercase ,lowercase ,lowercase ,lowercase ) # add model prefix if necessary snake_case : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: snake_case : str = jnp.asarray(lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase ,lowercase ) continue # also add unexpected weight so that warning is thrown snake_case : int = jnp.asarray(lowercase ) else: # also add unexpected weight so that warning is thrown snake_case : str = jnp.asarray(lowercase ) return unflatten_dict(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: import torch # Load the index snake_case : Any = {} for shard_file in shard_filenames: # load using msgpack utils snake_case : Tuple = torch.load(lowercase ) snake_case : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} snake_case : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: snake_case : List[Any] = flax_model.params["""params"""] snake_case : Optional[int] = flatten_dict(lowercase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: snake_case : Optional[int] = flax_model.params snake_case : Optional[int] = flatten_dict(lowercase ) snake_case : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) snake_case : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary snake_case : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Dict = pt_tuple_key[1:] # Correctly rename weight parameters snake_case : Union[str, Any] = rename_key_and_reshape_tensor( lowercase ,lowercase ,lowercase ,lowercase ) # add model prefix if necessary snake_case : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: snake_case : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: snake_case : Tuple = jnp.asarray(lowercase ) continue if "var" in flax_key[-1]: snake_case : List[Any] = jnp.asarray(lowercase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(lowercase ,lowercase ) continue # also add unexpected weight so that warning is thrown snake_case : List[str] = jnp.asarray(lowercase ) else: # also add unexpected weight so that warning is thrown snake_case : Optional[Any] = jnp.asarray(lowercase ) return unflatten_dict(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : str = os.path.abspath(lowercase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class snake_case : str = getattr(lowercase ,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(lowercase ,"""rb""" ) as state_f: try: snake_case : str = from_bytes(lowercase ,state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights snake_case : Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa ,lowercase ) ).values() if any(lowercase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) snake_case : Dict = jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,lowercase ) snake_case : List[Any] = flatten_dict(lowercase ) snake_case : Optional[Any] = pt_model.state_dict() snake_case : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) snake_case : Dict = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys snake_case : int = [] snake_case : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case : List[str] = flax_key_tuple[0] == pt_model.base_model_prefix snake_case : Union[str, Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: snake_case : Optional[int] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: snake_case : Optional[int] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(lowercase ) not in pt_model_dict: # conv layer snake_case : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) snake_case : Union[str, Any] = jnp.transpose(lowercase ,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase ) not in pt_model_dict: # linear layer snake_case : List[Any] = flax_key_tuple[:-1] + ("""weight""",) snake_case : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: snake_case : List[Any] = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: snake_case : Any = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: snake_case : List[Any] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: snake_case : List[str] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: snake_case : str = """.""".join(lowercase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. snake_case : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: snake_case : Tuple = key.split(""".""" ) snake_case : Union[str, Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: snake_case : List[Any] = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: snake_case : Tuple = key_components[-2] + """_v""" if name is not None: snake_case : List[str] = key_components[:-3] + [name] snake_case : Optional[int] = """.""".join(lowercase ) snake_case : Optional[Any] = key if flax_key in special_pt_names: snake_case : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict snake_case : str = np.asarray(lowercase ) if not isinstance(lowercase ,np.ndarray ) else flax_tensor snake_case : List[Any] = torch.from_numpy(lowercase ) # remove from missing keys missing_keys.remove(lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase ) pt_model.load_state_dict(lowercase ) # re-transform missing_keys to list snake_case : Optional[int] = list(lowercase ) if len(lowercase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(lowercase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[Any]: snake_case : Optional[int] = 0 if start < end: snake_case : Any = randint(lowercase ,lowercase ) snake_case : List[Any] = a[end] snake_case : str = a[pivot] snake_case : int = temp snake_case : Any = _in_place_partition(lowercase ,lowercase ,lowercase ) count += _in_place_quick_sort(lowercase ,lowercase ,p - 1 ) count += _in_place_quick_sort(lowercase ,p + 1 ,lowercase ) return count def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Dict: snake_case : List[Any] = 0 snake_case : Optional[int] = randint(lowercase ,lowercase ) snake_case : List[str] = a[end] snake_case : Tuple = a[pivot] snake_case : Dict = temp snake_case : Any = start - 1 for index in range(lowercase ,lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value snake_case : List[Any] = new_pivot_index + 1 snake_case : int = a[new_pivot_index] snake_case : Dict = a[index] snake_case : str = temp snake_case : Tuple = a[new_pivot_index + 1] snake_case : Tuple = a[end] snake_case : Any = temp return new_pivot_index + 1, count lowerCamelCase : Optional[int] = TemporaryFile() lowerCamelCase : List[str] = 1_0_0 # 1000 elements are to be sorted lowerCamelCase : int = 0, 1 # mean and standard deviation lowerCamelCase : List[str] = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array lowerCamelCase : List[Any] = np.load(outfile) lowerCamelCase : Tuple = len(M) - 1 lowerCamelCase : int = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = SMALL_MODEL_IDENTIFIER snake_case : List[Any] = """pt""" snake_case : Any = """tf""" def UpperCAmelCase ( self , A ) -> Any: snake_case : Union[str, Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(A ) def UpperCAmelCase ( self , A ) -> Any: snake_case : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=A ) model_tf.save_pretrained(A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = """mock_framework""" # Framework provided - return whatever the user provides snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model , A ) self.assertEqual(A , A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) snake_case : str = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) snake_case : Dict = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Dict: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) snake_case : int = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) snake_case : Optional[Any] = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(A ): snake_case : Any = FeaturesManager.determine_framework(A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ): snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case : Optional[Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_torch_available""" , A ): snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_tf ) # Both in environment -> use PyTorch snake_case : List[Any] = MagicMock(return_value=A ) snake_case : Any = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ), patch( """transformers.onnx.features.is_torch_available""" , A ): snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # Both not in environment -> raise error snake_case : Union[str, Any] = MagicMock(return_value=A ) snake_case : List[Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ), patch( """transformers.onnx.features.is_torch_available""" , A ): with self.assertRaises(A ): snake_case : Dict = FeaturesManager.determine_framework(self.test_model )
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import os from collections import deque import torch from torch.utils.data import Dataset class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A="" , A="train" ) -> int: assert os.path.isdir(A ) snake_case : Optional[Any] = [] snake_case : int = os.listdir(A ) for story_filename in story_filenames_list: if "summary" in story_filename: continue snake_case : Tuple = os.path.join(A , A ) if not os.path.isfile(A ): continue self.documents.append(A ) def __len__( self ) -> int: return len(self.documents ) def __getitem__( self , A ) -> List[str]: snake_case : str = self.documents[idx] snake_case : Any = document_path.split("""/""" )[-1] with open(A , encoding="""utf-8""" ) as source: snake_case : List[Any] = source.read() snake_case : Optional[Any] = process_story(A ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : int = list(filter(lambda lowercase : len(lowercase ) != 0 ,[line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it snake_case : Union[str, Any] = [_add_missing_period(lowercase ) for line in nonempty_lines] # gather article lines snake_case : List[str] = [] snake_case : Dict = deque(lowercase ) while True: try: snake_case : Union[str, Any] = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(lowercase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines snake_case : str = list(filter(lambda lowercase : not t.startswith("""@highlight""" ) ,lowercase ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : List[str] = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowercase )) ) return sequence def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Optional[Any] = torch.ones_like(lowercase ) snake_case : List[Any] = sequence == pad_token_id snake_case : List[Any] = 0 return mask def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Dict: snake_case : Tuple = [tokenizer.encode(lowercase ) for line in story_lines] snake_case : int = [token for sentence in story_lines_token_ids for token in sentence] snake_case : Optional[int] = [tokenizer.encode(lowercase ) for line in summary_lines] snake_case : Union[str, Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: snake_case : Optional[Any] = [] for sequence in batch: snake_case : Dict = -1 snake_case : Optional[int] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowercase ) return torch.tensor(lowercase )
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging UpperCamelCase__ : Dict = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) UpperCamelCase__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE_ : Optional[int] = json.loads(request.urlopen(lowerCamelCase_ ).read() )['releases'].keys() return sorted(lowerCamelCase_ , key=lambda lowerCamelCase_ : version.Version(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Path(lowerCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] ) -> Any: """simple docstring""" init_hf_modules() SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ : Tuple = re.findall('^\s*import\s+\.(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase_ ) ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = [module_file] SCREAMING_SNAKE_CASE_ : Tuple = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : int = Path(lowerCamelCase_ ).parent SCREAMING_SNAKE_CASE_ : int = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ : Any = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE_ : Optional[int] = len(lowerCamelCase_ ) == 0 all_relative_imports.extend(lowerCamelCase_ ) return all_relative_imports def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ : List[str] = re.findall('^\s*import\s+(\S+)\s*$' , lowerCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , lowerCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ : List[str] = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(set(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : List[str] = [] for imp in imports: try: importlib.import_module(lowerCamelCase_ ) except ImportError: missing_packages.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(lowerCamelCase_ )}. Run `pip install {" ".join(lowerCamelCase_ )}`' ) return get_relative_imports(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE_ : Any = importlib.import_module(lowerCamelCase_ ) if class_name is None: return find_pipeline_class(lowerCamelCase_ ) return getattr(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ : List[Any] = dict(inspect.getmembers(lowerCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE_ : Any = cls return pipeline_class def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = str(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = module_file_or_url SCREAMING_SNAKE_CASE_ : Dict = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE_ : List[str] = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ : Dict = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ : int = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE_ : List[Any] = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ : Tuple = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase_ , pipeline=lowerCamelCase_ ) try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = cached_download( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Tuple = 'git' SCREAMING_SNAKE_CASE_ : Dict = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ : List[str] = hf_hub_download( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ : Dict = check_imports(lowerCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ : int = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = model_info(lowerCamelCase_ , revision=lowerCamelCase_ , token=lowerCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ : Any = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase_ , F'{module_needed}.py' , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : Dict , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_cached_module_file( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) return get_class_in_module(lowerCamelCase_ , final_module.replace('.py' , '' ) )
685
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[Any] = ["image_processor", "tokenizer"] __a : List[Any] = "ChineseCLIPImageProcessor" __a : Tuple = ("BertTokenizer", "BertTokenizerFast") def __init__( self ,snake_case__=None ,snake_case__=None ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : int = self.image_processor def __call__( self ,snake_case__=None ,snake_case__=None ,snake_case__=None ,**snake_case__ ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(snake_case__ ,return_tensors=snake_case__ ,**snake_case__ ) if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(snake_case__ ,return_tensors=snake_case__ ,**snake_case__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) ,tensor_type=snake_case__ ) def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.batch_decode(*snake_case__ ,**snake_case__ ) def snake_case ( self ,*snake_case__ ,**snake_case__ ): return self.tokenizer.decode(*snake_case__ ,**snake_case__ ) @property def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,snake_case__ ,) return self.image_processor_class
685
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[int] = "visual_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=512 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=False ,snake_case__=True ,snake_case__=1 ,snake_case__=0 ,snake_case__=2 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = visual_embedding_dim SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = bypass_transformer SCREAMING_SNAKE_CASE_ : Optional[Any] = special_visual_initialize
685
1
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase__ : Optional[int] = logging.getLogger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Optional[Any] = "masked_bert" def __init__( self ,snake_case__=30522 ,snake_case__=768 ,snake_case__=12 ,snake_case__=12 ,snake_case__=3072 ,snake_case__="gelu" ,snake_case__=0.1 ,snake_case__=0.1 ,snake_case__=512 ,snake_case__=2 ,snake_case__=0.02 ,snake_case__=1E-12 ,snake_case__=0 ,snake_case__="topK" ,snake_case__="constant" ,snake_case__=0.0 ,**snake_case__ ,): super().__init__(pad_token_id=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : str = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE_ : str = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = pruning_method SCREAMING_SNAKE_CASE_ : str = mask_init SCREAMING_SNAKE_CASE_ : Union[str, Any] = mask_scale
685
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" def is_in_circle(lowerCamelCase_ : float , lowerCamelCase_ : float ) -> bool: SCREAMING_SNAKE_CASE_ : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase_ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ : Tuple = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Callable[[float], float] , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(lowerCamelCase_ , lowerCamelCase_ ) ) for _ in range(lowerCamelCase_ ) ) * (max_value - min_value) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(lowerCamelCase_ : float ) -> float: return x SCREAMING_SNAKE_CASE_ : str = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def __UpperCAmelCase ( lowerCamelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(lowerCamelCase_ : float ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ : Dict = area_under_curve_estimator( lowerCamelCase_ , lowerCamelCase_ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Dict = "deformable_detr" __a : Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self ,snake_case__=True ,snake_case__=None ,snake_case__=3 ,snake_case__=300 ,snake_case__=1024 ,snake_case__=6 ,snake_case__=1024 ,snake_case__=8 ,snake_case__=6 ,snake_case__=1024 ,snake_case__=8 ,snake_case__=0.0 ,snake_case__=True ,snake_case__="relu" ,snake_case__=256 ,snake_case__=0.1 ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=0.02 ,snake_case__=1.0 ,snake_case__=True ,snake_case__=False ,snake_case__="sine" ,snake_case__="resnet50" ,snake_case__=True ,snake_case__=False ,snake_case__=4 ,snake_case__=4 ,snake_case__=4 ,snake_case__=False ,snake_case__=300 ,snake_case__=False ,snake_case__=1 ,snake_case__=5 ,snake_case__=2 ,snake_case__=1 ,snake_case__=1 ,snake_case__=5 ,snake_case__=2 ,snake_case__=0.1 ,snake_case__=0.25 ,snake_case__=False ,**snake_case__ ,): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) SCREAMING_SNAKE_CASE_ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = backbone_config.get('model_type' ) SCREAMING_SNAKE_CASE_ : Tuple = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ : List[Any] = config_class.from_dict(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = use_timm_backbone SCREAMING_SNAKE_CASE_ : Any = backbone_config SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = num_queries SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = d_model SCREAMING_SNAKE_CASE_ : Union[str, Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE_ : int = decoder_attention_heads SCREAMING_SNAKE_CASE_ : Any = dropout SCREAMING_SNAKE_CASE_ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE_ : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = activation_function SCREAMING_SNAKE_CASE_ : Tuple = init_std SCREAMING_SNAKE_CASE_ : Optional[int] = init_xavier_std SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE_ : str = auxiliary_loss SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Optional[int] = backbone SCREAMING_SNAKE_CASE_ : List[str] = use_pretrained_backbone SCREAMING_SNAKE_CASE_ : Any = dilation # deformable attributes SCREAMING_SNAKE_CASE_ : Optional[int] = num_feature_levels SCREAMING_SNAKE_CASE_ : Any = encoder_n_points SCREAMING_SNAKE_CASE_ : Dict = decoder_n_points SCREAMING_SNAKE_CASE_ : List[str] = two_stage SCREAMING_SNAKE_CASE_ : Optional[Any] = two_stage_num_proposals SCREAMING_SNAKE_CASE_ : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher SCREAMING_SNAKE_CASE_ : List[str] = class_cost SCREAMING_SNAKE_CASE_ : Optional[int] = bbox_cost SCREAMING_SNAKE_CASE_ : Tuple = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_loss_coefficient SCREAMING_SNAKE_CASE_ : List[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE_ : List[str] = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ : Union[str, Any] = giou_loss_coefficient SCREAMING_SNAKE_CASE_ : List[str] = eos_coefficient SCREAMING_SNAKE_CASE_ : Any = focal_alpha SCREAMING_SNAKE_CASE_ : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=snake_case__ ,**snake_case__ ) @property def snake_case ( self ): return self.encoder_attention_heads @property def snake_case ( self ): return self.d_model def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = self.__class__.model_type return output
685
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=3 ,snake_case__=18 ,snake_case__=30 ,snake_case__=400 ,snake_case__=True ,snake_case__=None ,snake_case__=True ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE_ : str = parent SCREAMING_SNAKE_CASE_ : List[str] = batch_size SCREAMING_SNAKE_CASE_ : Tuple = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[int] = min_resolution SCREAMING_SNAKE_CASE_ : int = max_resolution SCREAMING_SNAKE_CASE_ : Dict = do_resize SCREAMING_SNAKE_CASE_ : Dict = size SCREAMING_SNAKE_CASE_ : str = apply_ocr def snake_case ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = LayoutLMvaImageProcessingTester(self ) @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ ,'do_resize' ) ) self.assertTrue(hasattr(snake_case__ ,'size' ) ) self.assertTrue(hasattr(snake_case__ ,'apply_ocr' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{'height': 42, 'width': 42} ) def snake_case ( self ): pass def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) self.assertIsInstance(encoding.words ,snake_case__ ) self.assertIsInstance(encoding.boxes ,snake_case__ ) # Test batched SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ : int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[str] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # Initialize image_processing SCREAMING_SNAKE_CASE_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=snake_case__ ,torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ ,torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ : Tuple = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) # Test batched SCREAMING_SNAKE_CASE_ : List[Any] = image_processing(snake_case__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) ,) def snake_case ( self ): # with apply_OCR = True SCREAMING_SNAKE_CASE_ : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' ,split='test' ) SCREAMING_SNAKE_CASE_ : str = Image.open(ds[0]['file'] ).convert('RGB' ) SCREAMING_SNAKE_CASE_ : Any = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE_ : Any = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 SCREAMING_SNAKE_CASE_ : Any = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,snake_case__ ) self.assertListEqual(encoding.boxes ,snake_case__ ) # with apply_OCR = False SCREAMING_SNAKE_CASE_ : Optional[int] = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = image_processing(snake_case__ ,return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
685
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : List[str] = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : List[Any] = PegasusTokenizer __a : List[str] = PegasusTokenizerFast __a : List[str] = True __a : List[Any] = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : Union[str, Any] = PegasusTokenizer(snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def snake_case ( self ,**snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): return ("This is a test", "This is a test") def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = '</s>' SCREAMING_SNAKE_CASE_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) ,snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'</s>' ) self.assertEqual(vocab_keys[-1] ,'v' ) self.assertEqual(len(snake_case__ ) ,1103 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,1103 ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE_ : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] SCREAMING_SNAKE_CASE_ : Any = py_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE_ : Tuple = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE_ : Dict = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer([raw_input_str] ,return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE_ : List[str] = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE_ : int = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : str = tokenizer([raw_input_str] ,return_tensors=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE_ : Dict = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer(snake_case__ ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : List[str] = self._large_tokenizer( text_target=snake_case__ ,max_length=5 ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. @slow def snake_case ( self ): # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = {'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ ,model_name='google/bigbird-pegasus-large-arxiv' ,revision='ba85d0851d708441f91440d509690f1ab6353415' ,) @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = PegasusTokenizer __a : List[str] = PegasusTokenizerFast __a : Dict = True __a : str = True def snake_case ( self ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : List[str] = PegasusTokenizer(snake_case__ ,offset=0 ,mask_token_sent=snake_case__ ,mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case ( self ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def snake_case ( self ,**snake_case__ ): return PegasusTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): return ("This is a test", "This is a test") def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE_ : str = rust_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = py_tokenizer([raw_input_str] ,return_tensors=snake_case__ ,add_special_tokens=snake_case__ ).input_ids[0] self.assertListEqual(snake_case__ ,snake_case__ ) @require_torch def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = ['This is going to be way too long.' * 1000, 'short example'] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE_ : str = self._large_tokenizer(snake_case__ ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer( text_target=snake_case__ ,max_length=5 ,padding=snake_case__ ,truncation=snake_case__ ,return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(snake_case__ ) == 2 # input_ids, attention_mask. def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer(snake_case__ ).input_ids self.assertListEqual( snake_case__ ,[182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] ,)
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = int(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = t // 36_00, (t // 60) % 60, t % 60 return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}' def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=3_00 ) -> List[str]: """simple docstring""" return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: SCREAMING_SNAKE_CASE_ : Tuple = F'{elt:.6f}' if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else str(lowerCamelCase_ ) html_code += F' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCAmelCase_ : __a : Optional[Any] = 5 __a : int = 0.2 def __init__( self ,snake_case__ ,snake_case__ = None ,snake_case__ = True ,snake_case__ = None ,snake_case__ = 300 ,): SCREAMING_SNAKE_CASE_ : str = total SCREAMING_SNAKE_CASE_ : int = '' if prefix is None else prefix SCREAMING_SNAKE_CASE_ : List[str] = leave SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : List[Any] = width SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : List[Any] = None def snake_case ( self ,snake_case__ ,snake_case__ = False ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : str = value if comment is not None: SCREAMING_SNAKE_CASE_ : int = comment if self.last_value is None: SCREAMING_SNAKE_CASE_ : Optional[int] = time.time() SCREAMING_SNAKE_CASE_ : Dict = value SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = self.warmup SCREAMING_SNAKE_CASE_ : List[Any] = 1 self.update_bar(snake_case__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for ,self.total ): if self.first_calls > 0: self.first_calls -= 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = time.time() SCREAMING_SNAKE_CASE_ : Optional[Any] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: SCREAMING_SNAKE_CASE_ : Any = self.elapsed_time / (value - self.start_value) else: SCREAMING_SNAKE_CASE_ : List[Any] = None if value >= self.total: SCREAMING_SNAKE_CASE_ : Dict = self.total SCREAMING_SNAKE_CASE_ : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = value SCREAMING_SNAKE_CASE_ : int = current_time if self.average_time_per_item is None: SCREAMING_SNAKE_CASE_ : int = 1 else: SCREAMING_SNAKE_CASE_ : Any = max(int(self.update_every / self.average_time_per_item ) ,1 ) def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ' ' * (len(str(self.total ) ) - len(str(snake_case__ ) )) + str(snake_case__ ) if self.elapsed_time is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = F'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: SCREAMING_SNAKE_CASE_ : Tuple = F'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: SCREAMING_SNAKE_CASE_ : str = ( F'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' F' {format_time(self.predicted_remaining )}' ) self.label += F', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F', {self.comment}]' self.display() def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: SCREAMING_SNAKE_CASE_ : Tuple = disp.display(disp.HTML(self.html_code ) ,display_id=snake_case__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__=None ): super().__init__(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = None if column_names is None else [column_names] SCREAMING_SNAKE_CASE_ : Dict = None def snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = html_progress_bar(self.value ,self.total ,self.prefix ,self.label ,self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: SCREAMING_SNAKE_CASE_ : List[Any] = disp.display(disp.HTML(self.html_code ) ,display_id=snake_case__ ) else: self.output.update(disp.HTML(self.html_code ) ) def snake_case ( self ,snake_case__ ): if self.inner_table is None: SCREAMING_SNAKE_CASE_ : Any = [list(values.keys() ), list(values.values() )] else: SCREAMING_SNAKE_CASE_ : Tuple = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def snake_case ( self ,snake_case__ ,snake_case__=None ,snake_case__=300 ): SCREAMING_SNAKE_CASE_ : Dict = NotebookProgressBar(snake_case__ ,prefix=snake_case__ ,parent=self ,width=snake_case__ ) return self.child_bar def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = None self.display() class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ): SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : int = False def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : str = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : str = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) SCREAMING_SNAKE_CASE_ : Tuple = NotebookTrainingTracker(state.max_steps ,snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 ,comment=F'Epoch {epoch}/{state.num_train_epochs}' ,force_update=self._force_next_update ,) SCREAMING_SNAKE_CASE_ : Optional[Any] = False def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): if not has_length(snake_case__ ): return if self.prediction_bar is None: if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.training_tracker.add_child(len(snake_case__ ) ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = NotebookProgressBar(len(snake_case__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ): if self.prediction_bar is not None: self.prediction_bar.close() SCREAMING_SNAKE_CASE_ : str = None def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: SCREAMING_SNAKE_CASE_ : List[Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy SCREAMING_SNAKE_CASE_ : Any = state.global_step self.training_tracker.write_line(snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__=None ,**snake_case__ ): if self.training_tracker is not None: SCREAMING_SNAKE_CASE_ : Dict = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: SCREAMING_SNAKE_CASE_ : List[str] = log['loss'] break if self.first_column == "Epoch": SCREAMING_SNAKE_CASE_ : Tuple = int(state.epoch ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = state.global_step SCREAMING_SNAKE_CASE_ : str = 'eval' for k in metrics: if k.endswith('_loss' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'\_loss$' ,'' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = metrics.pop('total_flos' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = metrics.pop('epoch' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = metrics.pop(F'{metric_key_prefix}_runtime' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = metrics.pop(F'{metric_key_prefix}_samples_per_second' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = metrics.pop(F'{metric_key_prefix}_steps_per_second' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = metrics.pop(F'{metric_key_prefix}_jit_compilation_time' ,snake_case__ ) for k, v in metrics.items(): if k == F'{metric_key_prefix}_loss': SCREAMING_SNAKE_CASE_ : Tuple = v else: SCREAMING_SNAKE_CASE_ : List[str] = k.split('_' ) SCREAMING_SNAKE_CASE_ : List[str] = ' '.join([part.capitalize() for part in splits[1:]] ) SCREAMING_SNAKE_CASE_ : int = v self.training_tracker.write_line(snake_case__ ) self.training_tracker.remove_child() SCREAMING_SNAKE_CASE_ : str = None # Evaluation takes a long time so we should force the next update. SCREAMING_SNAKE_CASE_ : str = True def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ): self.training_tracker.update( state.global_step ,comment=F'Epoch {int(state.epoch )}/{state.num_train_epochs}' ,force_update=snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = None
685
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] ) -> int: """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: SCREAMING_SNAKE_CASE_ : str = dataset_size < in_memory_max_size else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[Any] = is_small_dataset(lowerCamelCase_ ) assert result == expected
685
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = MobileBertConfig.from_json_file(lowerCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : Tuple = MobileBertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE_ : Tuple = load_tf_weights_in_mobilebert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
685
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase__ : Any = 3_00 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ : float , lowerCamelCase_ : float , lowerCamelCase_ : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
1
def __UpperCAmelCase ( lowerCamelCase_ : list[list] ) -> list[list]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = current_set.copy() for row_index, row in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = row[0] for column_index, column in enumerate(lowerCamelCase_ ): if magnitude == 0: SCREAMING_SNAKE_CASE_ : str = column continue SCREAMING_SNAKE_CASE_ : Tuple = column / magnitude # Subtract to cancel term SCREAMING_SNAKE_CASE_ : List[Any] = current_set[0] SCREAMING_SNAKE_CASE_ : Optional[int] = [first_row] SCREAMING_SNAKE_CASE_ : Optional[int] = current_set[1::] for row in current_set: SCREAMING_SNAKE_CASE_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase_ ) continue for column_index in range(len(lowerCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: SCREAMING_SNAKE_CASE_ : Tuple = final_set[0] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) SCREAMING_SNAKE_CASE_ : Optional[int] = simplify(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = resultant return final_set def __UpperCAmelCase ( lowerCamelCase_ : list[list] ) -> list: """simple docstring""" if len(lowerCamelCase_ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) SCREAMING_SNAKE_CASE_ : Tuple = len(lowerCamelCase_ ) + 1 if any(len(lowerCamelCase_ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowerCamelCase_ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowerCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] SCREAMING_SNAKE_CASE_ : int = equations.copy() if any(0 in row for row in data_set ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = data_set.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = [] for row_index, row in enumerate(lowerCamelCase_ ): if 0 not in row: SCREAMING_SNAKE_CASE_ : int = data_set.pop(lowerCamelCase_ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = data_set.copy() SCREAMING_SNAKE_CASE_ : str = simplify(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = simplified[::-1] SCREAMING_SNAKE_CASE_ : list = [] for row in simplified: SCREAMING_SNAKE_CASE_ : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue SCREAMING_SNAKE_CASE_ : Dict = row.copy()[: len(lowerCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase_ ) == 0: solutions.append(0 ) continue SCREAMING_SNAKE_CASE_ : int = temp_row[1::] SCREAMING_SNAKE_CASE_ : Dict = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = [] for item in solutions: final.append(float(round(lowerCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
685
class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ ( lowerCamelCase_ ): pass class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [], [], [], ] def snake_case ( self ,snake_case__ ,snake_case__ ): try: if len(self.queues[priority] ) >= 100: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(snake_case__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def snake_case ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self ): return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class lowerCAmelCase_ : def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = [] def snake_case ( self ,snake_case__ ): if len(self.queue ) == 100: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(snake_case__ ) def snake_case ( self ): if not self.queue: raise UnderFlowError('The queue is empty' ) else: SCREAMING_SNAKE_CASE_ : List[Any] = min(self.queue ) self.queue.remove(snake_case__ ) return data def __str__( self ): return str(self.queue ) def __UpperCAmelCase ( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} UpperCamelCase__ : int = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } UpperCamelCase__ : str = { '''abeja/gpt-neox-japanese-2.7b''': 20_48, } def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Tuple ) -> List[str]: """simple docstring""" with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : Dict = collections.OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = collections.OrderedDict() with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.readlines() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = b SCREAMING_SNAKE_CASE_ : Dict = idx for wd in b: SCREAMING_SNAKE_CASE_ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCAmelCase_ ( lowerCamelCase_ ): __a : Union[str, Any] = VOCAB_FILES_NAMES __a : List[str] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__="<|endoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__="<|startoftext|>" ,snake_case__="<|endoftext|>" ,snake_case__=False ,**snake_case__ ,): super().__init__( unk_token=snake_case__ ,pad_token=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,do_clean_text=snake_case__ ,**snake_case__ ,) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case__ ): raise ValueError( F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) SCREAMING_SNAKE_CASE_ : str = do_clean_text SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = load_vocab_and_emoji(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case ( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def snake_case ( self ): return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.tokenize(snake_case__ ,clean=self.do_clean_text ) def snake_case ( self ,snake_case__ ): return self.vocab.get(snake_case__ ,self.vocab.get(self.unk_token ) ) def snake_case ( self ,snake_case__ ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = ''.join(snake_case__ ).strip() return out_string def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ ,add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: SCREAMING_SNAKE_CASE_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 if os.path.isdir(snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: SCREAMING_SNAKE_CASE_ : Tuple = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) SCREAMING_SNAKE_CASE_ : Dict = token_index writer.write(','.join(snake_case__ ) + '\n' ) index += 1 with open(snake_case__ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,snake_case__ ) return vocab_file, emoji_file class lowerCAmelCase_ ( lowerCamelCase_ ): def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = vocab # same as swe SCREAMING_SNAKE_CASE_ : Optional[int] = ids_to_tokens # same as bpe SCREAMING_SNAKE_CASE_ : Dict = emoji SCREAMING_SNAKE_CASE_ : int = np.max([len(snake_case__ ) for w in self.vocab.keys()] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : str = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) SCREAMING_SNAKE_CASE_ : List[str] = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) SCREAMING_SNAKE_CASE_ : str = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' SCREAMING_SNAKE_CASE_ : int = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' SCREAMING_SNAKE_CASE_ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<URL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = self.content_repattera.sub('<EMAIL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<TEL>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.content_repattera.sub('<DATE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.content_repattera.sub('<PRICE>' ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: SCREAMING_SNAKE_CASE_ : Union[str, Any] = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case ( self ,snake_case__ ,snake_case__=False ): SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace(' ' ,'<SP>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('\r\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\n' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text.replace('\r' ,'<BR>' ) SCREAMING_SNAKE_CASE_ : List[str] = text.replace('\t' ,'<TAB>' ) SCREAMING_SNAKE_CASE_ : List[Any] = text.replace('—' ,'ー' ) SCREAMING_SNAKE_CASE_ : Optional[int] = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: SCREAMING_SNAKE_CASE_ : int = text.replace(snake_case__ ,snake_case__ ) if clean: SCREAMING_SNAKE_CASE_ : str = self.clean_text(snake_case__ ) def check_simbol(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: SCREAMING_SNAKE_CASE_ : str = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: SCREAMING_SNAKE_CASE_ : Dict = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_8080 and c <= 0XE2_B07F: return True return False SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[Any] = [] while pos < len(snake_case__ ): SCREAMING_SNAKE_CASE_ : List[Any] = min(len(snake_case__ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 SCREAMING_SNAKE_CASE_ : List[Any] = [] # (token_id, token, pos) for e in range(snake_case__ ,snake_case__ ,-1 ): SCREAMING_SNAKE_CASE_ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: SCREAMING_SNAKE_CASE_ : Optional[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted(snake_case__ ,key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = e else: SCREAMING_SNAKE_CASE_ : Any = pos + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = text[pos:end] if check_simbol(snake_case__ ): result.append('<KIGOU>' ) elif checkuae(snake_case__ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) SCREAMING_SNAKE_CASE_ : int = end return result def snake_case ( self ,snake_case__ ,snake_case__="\n" ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Dict = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode('utf-8' ,errors='replace' ) ) SCREAMING_SNAKE_CASE_ : int = ''.join(snake_case__ ) return text
685
def __UpperCAmelCase ( lowerCamelCase_ : int = 10_00 ) -> int: """simple docstring""" return sum(e for e in range(3 , lowerCamelCase_ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
685
1
from string import ascii_uppercase UpperCamelCase__ : Dict = {char: i for i, char in enumerate(ascii_uppercase)} UpperCamelCase__ : Any = dict(enumerate(ascii_uppercase)) def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = 0 while True: if x == i: SCREAMING_SNAKE_CASE_ : int = 0 if len(lowerCamelCase_ ) == len(lowerCamelCase_ ): break key += key[i] i += 1 return key def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = '' SCREAMING_SNAKE_CASE_ : Tuple = 0 for letter in message: if letter == " ": cipher_text += " " else: SCREAMING_SNAKE_CASE_ : Tuple = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = '' SCREAMING_SNAKE_CASE_ : Tuple = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: SCREAMING_SNAKE_CASE_ : List[str] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'THE GERMAN ATTACK' SCREAMING_SNAKE_CASE_ : str = 'SECRET' SCREAMING_SNAKE_CASE_ : Optional[int] = generate_key(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = cipher_text(lowerCamelCase_ , lowerCamelCase_ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(lowerCamelCase_ , lowerCamelCase_ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
685
from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Tuple = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[str] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Any = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Union[str, Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : List[Any] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Dict = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : Optional[int] = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) class lowerCAmelCase_ ( metaclass=lowerCamelCase_ ): __a : str = ["flax"] def __init__( self ,*snake_case__ ,**snake_case__ ): requires_backends(self ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] ) @classmethod def snake_case ( cls ,*snake_case__ ,**snake_case__ ): requires_backends(cls ,['flax'] )
685
1
from __future__ import annotations from random import choice def __UpperCAmelCase ( lowerCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" return choice(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE_ : Dict = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE_ : Optional[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_ , k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
685
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase__ : Union[str, Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) UpperCamelCase__ : Dict = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[Any] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} UpperCamelCase__ : Any = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] UpperCamelCase__ : Union[str, Any] = 0 for log in Path().glob('''*.log'''): UpperCamelCase__ : Optional[int] = 0 with open(log, '''r''') as f: for line in f: UpperCamelCase__ : Any = json.loads(line) if line.get('''nodeid''', '''''') != "": UpperCamelCase__ : Tuple = line['''nodeid'''] if line.get('''duration''', None) is not None: UpperCamelCase__ : List[Any] = F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase__ : Tuple = [] log.unlink() UpperCamelCase__ : List[Any] = '''''' UpperCamelCase__ : List[str] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[int] = {} for test in failed_tests: UpperCamelCase__ : str = test[0].split('''::''') UpperCamelCase__ : List[Any] = data[0].split('''/''')[-1] if data[0] not in filesafailed: UpperCamelCase__ : int = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase__ : str = [test[0] for test in failed_table] UpperCamelCase__ : Union[str, Any] = list(set(files)) # Count number of instances in failed_tests UpperCamelCase__ : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase__ : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: UpperCamelCase__ : List[Any] = '''Too many failed tests, please see the full report in the Action results.''' UpperCamelCase__ : Optional[Any] = len(err) + 10 UpperCamelCase__ : List[str] = message[: 30_00 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: UpperCamelCase__ : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient UpperCamelCase__ : int = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) UpperCamelCase__ : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) UpperCamelCase__ : Optional[Any] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) UpperCamelCase__ : Tuple = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) UpperCamelCase__ : Any = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase__ : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase__ : str = row[0] else: UpperCamelCase__ : str = '''''' UpperCamelCase__ : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
685
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller UpperCamelCase__ : Any = 3 def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" print('Generating primitive root of p' ) while True: SCREAMING_SNAKE_CASE_ : Tuple = random.randrange(3 , lowerCamelCase_ ) if pow(lowerCamelCase_ , 2 , lowerCamelCase_ ) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_ : int ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('Generating prime p...' ) SCREAMING_SNAKE_CASE_ : List[Any] = rabin_miller.generate_large_prime(lowerCamelCase_ ) # select large prime number. SCREAMING_SNAKE_CASE_ : Union[str, Any] = primitive_root(lowerCamelCase_ ) # one primitive root on modulo p. SCREAMING_SNAKE_CASE_ : List[str] = random.randrange(3 , lowerCamelCase_ ) # private_key -> have to be greater than 2 for safety. SCREAMING_SNAKE_CASE_ : str = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = (key_size, e_a, e_a, p) SCREAMING_SNAKE_CASE_ : Tuple = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : int ) -> None: """simple docstring""" if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = generate_key(lowerCamelCase_ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as fo: fo.write(F'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as fo: fo.write(F'{private_key[0]},{private_key[1]}' ) def __UpperCAmelCase ( ) -> None: """simple docstring""" print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
685
def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('Input value must be an \'int\' type' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : str = '''▁''' UpperCamelCase__ : str = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } UpperCamelCase__ : Any = { '''facebook/m2m100_418M''': 10_24, } # fmt: off UpperCamelCase__ : List[Any] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : str = VOCAB_FILES_NAMES __a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : int = ["input_ids", "attention_mask"] __a : List[int] = [] __a : List[int] = [] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="</s>" ,snake_case__="<pad>" ,snake_case__="<unk>" ,snake_case__="m2m100" ,snake_case__ = None ,snake_case__=8 ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ : int = language_codes SCREAMING_SNAKE_CASE_ : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] SCREAMING_SNAKE_CASE_ : List[str] = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(snake_case__ ) for lang_code in fairseq_language_code if self.get_lang_token(snake_case__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=snake_case__ ,tgt_lang=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,sep_token=snake_case__ ,unk_token=snake_case__ ,pad_token=snake_case__ ,language_codes=snake_case__ ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : Dict = vocab_file SCREAMING_SNAKE_CASE_ : int = load_json(snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : int = spm_file SCREAMING_SNAKE_CASE_ : List[str] = load_spm(snake_case__ ,self.sp_model_kwargs ) SCREAMING_SNAKE_CASE_ : List[str] = len(self.encoder ) SCREAMING_SNAKE_CASE_ : Optional[int] = { self.get_lang_token(snake_case__ ): self.encoder_size + i for i, lang_code in enumerate(snake_case__ ) } SCREAMING_SNAKE_CASE_ : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(snake_case__ )} SCREAMING_SNAKE_CASE_ : Optional[Any] = {v: k for k, v in self.lang_token_to_id.items()} SCREAMING_SNAKE_CASE_ : int = src_lang if src_lang is not None else 'en' SCREAMING_SNAKE_CASE_ : Optional[int] = tgt_lang SCREAMING_SNAKE_CASE_ : Dict = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) SCREAMING_SNAKE_CASE_ : Dict = num_madeup_words @property def snake_case ( self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def snake_case ( self ): return self._src_lang @src_lang.setter def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case ( self ,snake_case__ ): return self.sp_model.encode(snake_case__ ,out_type=snake_case__ ) def snake_case ( self ,snake_case__ ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(snake_case__ ,self.encoder[self.unk_token] ) def snake_case ( self ,snake_case__ ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(snake_case__ ,self.unk_token ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : Tuple = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def snake_case ( self ,snake_case__ ,snake_case__ = None ,snake_case__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ ,token_ids_a=snake_case__ ,already_has_special_tokens=snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def snake_case ( self ,snake_case__ ,snake_case__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Tuple = None return state def __setstate__( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : int = load_spm(self.spm_file ,self.sp_model_kwargs ) def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Tuple = Path(snake_case__ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) SCREAMING_SNAKE_CASE_ : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,snake_case__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,snake_case__ ) elif not os.path.isfile(self.spm_file ): with open(snake_case__ ,'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (str(snake_case__ ), str(snake_case__ )) def snake_case ( self ,snake_case__ ,snake_case__ = "en" ,snake_case__ = None ,snake_case__ = "ro" ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = src_lang SCREAMING_SNAKE_CASE_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(snake_case__ ,snake_case__ ,**snake_case__ ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__ ,**snake_case__ ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE_ : Optional[int] = src_lang SCREAMING_SNAKE_CASE_ : Optional[Any] = self(snake_case__ ,add_special_tokens=snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.get_lang_id(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = tgt_lang_id return inputs def snake_case ( self ): self.set_src_lang_special_tokens(self.src_lang ) def snake_case ( self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Any = self.get_lang_token(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE_ : str = [self.cur_lang_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.eos_token_id] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_lang_token(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE_ : Any = [self.cur_lang_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.eos_token_id] def snake_case ( self ,snake_case__ ): return self.lang_code_to_token[lang] def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_lang_token(snake_case__ ) return self.lang_token_to_id[lang_token] def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = sentencepiece.SentencePieceProcessor(**lowerCamelCase_ ) spm.Load(str(lowerCamelCase_ ) ) return spm def __UpperCAmelCase ( lowerCamelCase_ : str ) -> Union[Dict, List]: """simple docstring""" with open(lowerCamelCase_ , 'r' ) as f: return json.load(lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str ) -> None: """simple docstring""" with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=2 )
685
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
1