code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCamelCase : Dict = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ) -> Union[str, Any]: if rng is None: snake_case : Any = random.Random() snake_case : List[Any] = 1 for dim in shape: total_dims *= dim snake_case : Optional[int] = [] for _ in range(lowercase ): values.append(rng.randint(0 ,vocab_size - 1 ) ) snake_case : int = np.array(lowercase ,dtype=jnp.intaa ).reshape(lowercase ) return output def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> Optional[Any]: snake_case : Any = ids_tensor(lowercase ,vocab_size=2 ,rng=lowercase ) # make sure that at least one token is attended to for each batch snake_case : Optional[int] = 1 return attn_mask @require_flax class __lowercase : """simple docstring""" _snake_case = None _snake_case = () def UpperCAmelCase ( self ) -> List[Any]: snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 snake_case : List[str] = 2 snake_case : Dict = inputs["""input_ids"""].shape[-1] // 2 snake_case : Optional[Any] = inputs["""input_ids"""][:max_batch_size, :sequence_length] snake_case : Optional[Any] = jnp.ones_like(A ) snake_case : int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens snake_case : int = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` snake_case : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case , snake_case , snake_case : str = self._get_input_ids_and_config() snake_case : List[Any] = False snake_case : Dict = max_length snake_case : List[str] = 0 for model_class in self.all_generative_model_classes: snake_case : Tuple = model_class(A ) snake_case : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case : int = getattr(A , A ) snake_case : Tuple = pt_model_class(A ).eval() snake_case : int = load_flax_weights_in_pytorch_model(A , flax_model.params ) snake_case : str = flax_model.generate(A ).sequences snake_case : List[str] = pt_model.generate(torch.tensor(A , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: snake_case : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> List[str]: snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() snake_case : Dict = False snake_case : Optional[int] = max_length for model_class in self.all_generative_model_classes: snake_case : Tuple = model_class(A ) snake_case : List[str] = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Dict = jit(model.generate ) snake_case : Union[str, Any] = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case , snake_case , snake_case , snake_case : Tuple = self._get_input_ids_and_config() snake_case : Tuple = True snake_case : Dict = max_length for model_class in self.all_generative_model_classes: snake_case : Optional[int] = model_class(A ) snake_case : int = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Tuple = jit(model.generate ) snake_case : Optional[Any] = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> Dict: snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() snake_case : Dict = False snake_case : List[Any] = max_length snake_case : List[Any] = 2 for model_class in self.all_generative_model_classes: snake_case : Optional[int] = model_class(A ) snake_case : Optional[int] = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : str = jit(model.generate ) snake_case : List[Any] = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() snake_case : Tuple = False snake_case : Tuple = max_length snake_case : str = 2 snake_case : Tuple = 2 for model_class in self.all_generative_model_classes: snake_case : int = model_class(A ) snake_case : Tuple = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() snake_case : Tuple = True snake_case : str = max_length snake_case : Union[str, Any] = 0.8 snake_case : Tuple = 1_0 snake_case : str = 0.3 snake_case : List[Any] = 1 snake_case : int = 8 snake_case : Union[str, Any] = 9 for model_class in self.all_generative_model_classes: snake_case : Dict = model_class(A ) snake_case : Tuple = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Dict = jit(model.generate ) snake_case : int = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case , snake_case , snake_case , snake_case : str = self._get_input_ids_and_config() snake_case : Dict = max_length snake_case : List[str] = 1 snake_case : List[Any] = 8 snake_case : List[Any] = 9 for model_class in self.all_generative_model_classes: snake_case : List[str] = model_class(A ) snake_case : Optional[int] = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : str = jit(model.generate ) snake_case : str = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> int: snake_case , snake_case , snake_case , snake_case : List[Any] = self._get_input_ids_and_config() snake_case : List[Any] = max_length snake_case : Dict = 2 snake_case : Optional[Any] = 1 snake_case : Any = 8 snake_case : List[Any] = 9 for model_class in self.all_generative_model_classes: snake_case : Union[str, Any] = model_class(A ) snake_case : List[str] = model.generate(A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Optional[Any] = jit(model.generate ) snake_case : Optional[int] = jit_generate(A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> List[Any]: snake_case , snake_case , snake_case , snake_case : int = self._get_input_ids_and_config() # pad attention mask on the left snake_case : List[str] = attention_mask.at[(0, 0)].set(0 ) snake_case : str = False snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: snake_case : List[str] = model_class(A ) snake_case : Any = model.generate(A , attention_mask=A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Optional[int] = jit(model.generate ) snake_case : Optional[int] = jit_generate(A , attention_mask=A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> Tuple: snake_case , snake_case , snake_case , snake_case : List[str] = self._get_input_ids_and_config() # pad attention mask on the left snake_case : List[Any] = attention_mask.at[(0, 0)].set(0 ) snake_case : Optional[int] = True snake_case : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: snake_case : Tuple = model_class(A ) snake_case : Any = model.generate(A , attention_mask=A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : List[str] = jit(model.generate ) snake_case : str = jit_generate(A , attention_mask=A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase ( self ) -> str: snake_case , snake_case , snake_case , snake_case : Dict = self._get_input_ids_and_config() # pad attention mask on the left snake_case : Dict = attention_mask.at[(0, 0)].set(0 ) snake_case : Dict = 2 snake_case : Tuple = max_length for model_class in self.all_generative_model_classes: snake_case : List[str] = model_class(A ) snake_case : Optional[int] = model.generate(A , attention_mask=A ).sequences self.assertEqual(generation_outputs.shape[-1] , A ) snake_case : Any = jit(model.generate ) snake_case : Dict = jit_generate(A , attention_mask=A ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) snake_case : int = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) snake_case : Any = """Hello world""" snake_case : Optional[int] = tokenizer(A , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(A , """do_samples""" ): model.generate(A , do_samples=A ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(A , """foo""" ): snake_case : List[str] = {"""foo""": """bar"""} model.generate(A , **A )
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 2_5_5 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : str = size if size is not None else {"""shortest_edge""": 3_8_4} snake_case : Tuple = get_size_dict(A , default_to_square=A ) snake_case : Union[str, Any] = do_resize snake_case : Optional[int] = size # Default value set here for backwards compatibility where the value in config is None snake_case : str = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 snake_case : str = resample snake_case : Optional[int] = do_rescale snake_case : Tuple = rescale_factor snake_case : Tuple = do_normalize snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Tuple = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) snake_case : str = size["""shortest_edge"""] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct snake_case : str = int(shortest_edge / crop_pct ) snake_case : Dict = get_resize_output_image_size(A , size=A , default_to_square=A ) snake_case : Optional[Any] = resize(image=A , size=A , resample=A , data_format=A , **A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Union[str, Any]: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : List[str] = do_resize if do_resize is not None else self.do_resize snake_case : Any = crop_pct if crop_pct is not None else self.crop_pct snake_case : Dict = resample if resample is not None else self.resample snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Tuple = do_normalize if do_normalize is not None else self.do_normalize snake_case : Dict = image_mean if image_mean is not None else self.image_mean snake_case : int = image_std if image_std is not None else self.image_std snake_case : int = size if size is not None else self.size snake_case : Tuple = get_size_dict(A , default_to_square=A ) snake_case : Any = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(A ) for image in images] if do_resize: snake_case : List[Any] = [self.resize(image=A , size=A , crop_pct=A , resample=A ) for image in images] if do_rescale: snake_case : Dict = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : Optional[int] = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : str = [to_channel_dimension_format(A , A ) for image in images] snake_case : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = VideoToVideoSDPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _snake_case = PipelineTesterMixin.required_optional_params - {"""latents"""} _snake_case = False # No `output_type`. _snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCAmelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) snake_case : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=3_2 , attention_head_dim=4 , ) snake_case : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) snake_case : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) snake_case : str = CLIPTextModel(A ) snake_case : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase ( self , A , A=0 ) -> str: # 3 frames snake_case : List[str] = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): snake_case : Any = torch.manual_seed(A ) else: snake_case : Any = torch.Generator(device=A ).manual_seed(A ) snake_case : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCAmelCase ( self ) -> str: snake_case : int = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Tuple = self.get_dummy_components() snake_case : List[str] = VideoToVideoSDPipeline(**A ) snake_case : Any = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Tuple = self.get_dummy_inputs(A ) snake_case : int = """np""" snake_case : Dict = sd_pipe(**A ).frames snake_case : Optional[int] = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) snake_case : int = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCAmelCase ( self ) -> Optional[Any]: pass def UpperCAmelCase ( self ) -> List[Any]: return super().test_progress_bar() @slow @skip_mps class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Tuple = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames snake_case : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Dict = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=A ) snake_case : Optional[Any] = video.to("""cuda""" ) snake_case : int = """Spiderman is surfing""" snake_case : Optional[Any] = pipe(A , video=A , generator=A , num_inference_steps=3 , output_type="""pt""" ).frames snake_case : str = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_2_8, """min_length""": 1_2, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_4_2, """min_length""": 5_6, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 6_2, """min_length""": 1_1, """num_beams""": 6}, } } snake_case : Any = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_2_8, """task_specific_params.summarization.min_length""": 1_2, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_4_2, """task_specific_params.summarization_cnn.min_length""": 5_6, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 6_2, """task_specific_params.summarization_xsum.min_length""": 1_1, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(A ) , A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(A ) , x.transpose() ) ) snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase ( self ) -> str: snake_case : Optional[Any] = np.random.randn(3 , 4 ) snake_case : Dict = torch.tensor(A ) self.assertTrue(np.allclose(transpose(A ) , transpose(A ).numpy() ) ) snake_case : Dict = np.random.randn(3 , 4 , 5 ) snake_case : Any = torch.tensor(A ) self.assertTrue(np.allclose(transpose(A , axes=(1, 2, 0) ) , transpose(A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = np.random.randn(3 , 4 ) snake_case : Dict = tf.constant(A ) self.assertTrue(np.allclose(transpose(A ) , transpose(A ).numpy() ) ) snake_case : str = np.random.randn(3 , 4 , 5 ) snake_case : List[Any] = tf.constant(A ) self.assertTrue(np.allclose(transpose(A , axes=(1, 2, 0) ) , transpose(A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Any = np.random.randn(3 , 4 ) snake_case : Optional[int] = jnp.array(A ) self.assertTrue(np.allclose(transpose(A ) , np.asarray(transpose(A ) ) ) ) snake_case : Tuple = np.random.randn(3 , 4 , 5 ) snake_case : Optional[int] = jnp.array(A ) self.assertTrue(np.allclose(transpose(A , axes=(1, 2, 0) ) , np.asarray(transpose(A , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(A , (4, 3) ) , np.reshape(A , (4, 3) ) ) ) snake_case : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(A , (1_2, 5) ) , np.reshape(A , (1_2, 5) ) ) ) @require_torch def UpperCAmelCase ( self ) -> Dict: snake_case : int = np.random.randn(3 , 4 ) snake_case : Dict = torch.tensor(A ) self.assertTrue(np.allclose(reshape(A , (4, 3) ) , reshape(A , (4, 3) ).numpy() ) ) snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case : Any = torch.tensor(A ) self.assertTrue(np.allclose(reshape(A , (1_2, 5) ) , reshape(A , (1_2, 5) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = np.random.randn(3 , 4 ) snake_case : List[str] = tf.constant(A ) self.assertTrue(np.allclose(reshape(A , (4, 3) ) , reshape(A , (4, 3) ).numpy() ) ) snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) snake_case : str = tf.constant(A ) self.assertTrue(np.allclose(reshape(A , (1_2, 5) ) , reshape(A , (1_2, 5) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = np.random.randn(3 , 4 ) snake_case : Union[str, Any] = jnp.array(A ) self.assertTrue(np.allclose(reshape(A , (4, 3) ) , np.asarray(reshape(A , (4, 3) ) ) ) ) snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) snake_case : Optional[int] = jnp.array(A ) self.assertTrue(np.allclose(reshape(A , (1_2, 5) ) , np.asarray(reshape(A , (1_2, 5) ) ) ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(A ) , np.squeeze(A ) ) ) snake_case : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(A , axis=2 ) , np.squeeze(A , axis=2 ) ) ) @require_torch def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = np.random.randn(1 , 3 , 4 ) snake_case : Optional[Any] = torch.tensor(A ) self.assertTrue(np.allclose(squeeze(A ) , squeeze(A ).numpy() ) ) snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) snake_case : Tuple = torch.tensor(A ) self.assertTrue(np.allclose(squeeze(A , axis=2 ) , squeeze(A , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = np.random.randn(1 , 3 , 4 ) snake_case : List[Any] = tf.constant(A ) self.assertTrue(np.allclose(squeeze(A ) , squeeze(A ).numpy() ) ) snake_case : int = np.random.randn(1 , 4 , 1 , 5 ) snake_case : List[Any] = tf.constant(A ) self.assertTrue(np.allclose(squeeze(A , axis=2 ) , squeeze(A , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = np.random.randn(1 , 3 , 4 ) snake_case : Union[str, Any] = jnp.array(A ) self.assertTrue(np.allclose(squeeze(A ) , np.asarray(squeeze(A ) ) ) ) snake_case : List[Any] = np.random.randn(1 , 4 , 1 , 5 ) snake_case : Optional[int] = jnp.array(A ) self.assertTrue(np.allclose(squeeze(A , axis=2 ) , np.asarray(squeeze(A , axis=2 ) ) ) ) def UpperCAmelCase ( self ) -> int: snake_case : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(A , axis=1 ) , np.expand_dims(A , axis=1 ) ) ) @require_torch def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = np.random.randn(3 , 4 ) snake_case : List[Any] = torch.tensor(A ) self.assertTrue(np.allclose(expand_dims(A , axis=1 ) , expand_dims(A , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = np.random.randn(3 , 4 ) snake_case : Dict = tf.constant(A ) self.assertTrue(np.allclose(expand_dims(A , axis=1 ) , expand_dims(A , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Dict: snake_case : str = np.random.randn(3 , 4 ) snake_case : List[str] = jnp.array(A ) self.assertTrue(np.allclose(expand_dims(A , axis=1 ) , np.asarray(expand_dims(A , axis=1 ) ) ) )
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCamelCase : int = logging.get_logger(__name__) class __lowercase : """simple docstring""" def __init__( self , A , A ) -> str: snake_case : Dict = question_encoder snake_case : Optional[Any] = generator snake_case : Tuple = self.question_encoder def UpperCAmelCase ( self , A ) -> Optional[int]: if os.path.isfile(A ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(A , exist_ok=A ) snake_case : Tuple = os.path.join(A , """question_encoder_tokenizer""" ) snake_case : List[Any] = os.path.join(A , """generator_tokenizer""" ) self.question_encoder.save_pretrained(A ) self.generator.save_pretrained(A ) @classmethod def UpperCAmelCase ( cls , A , **A ) -> Any: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case : int = kwargs.pop("""config""" , A ) if config is None: snake_case : List[str] = RagConfig.from_pretrained(A ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained( A , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) snake_case : Optional[int] = AutoTokenizer.from_pretrained( A , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=A , generator=A ) def __call__( self , *A , **A ) -> str: return self.current_tokenizer(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> Dict: return self.generator.batch_decode(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> List[str]: return self.generator.decode(*A , **A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.question_encoder def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = self.generator def UpperCAmelCase ( self , A , A = None , A = None , A = None , A = "longest" , A = None , A = True , **A , ) -> BatchEncoding: warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , A , ) if max_length is None: snake_case : List[str] = self.current_tokenizer.model_max_length snake_case : List[Any] = self( A , add_special_tokens=A , return_tensors=A , max_length=A , padding=A , truncation=A , **A , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case : Optional[Any] = self.current_tokenizer.model_max_length snake_case : Dict = self( text_target=A , add_special_tokens=A , return_tensors=A , padding=A , max_length=A , truncation=A , **A , ) snake_case : int = labels["""input_ids"""] return model_inputs
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """efficientformer""" def __init__( self , A = [3, 2, 6, 4] , A = [4_8, 9_6, 2_2_4, 4_4_8] , A = [True, True, True, True] , A = 4_4_8 , A = 3_2 , A = 4 , A = 7 , A = 5 , A = 8 , A = 4 , A = 0.0 , A = 1_6 , A = 3 , A = 3 , A = 3 , A = 2 , A = 1 , A = 0.0 , A = 1 , A = True , A = True , A = 1e-5 , A = "gelu" , A = 0.02 , A = 1e-1_2 , A = 2_2_4 , A = 1e-0_5 , **A , ) -> None: super().__init__(**A ) snake_case : Optional[Any] = hidden_act snake_case : List[Any] = hidden_dropout_prob snake_case : List[Any] = hidden_sizes snake_case : Dict = num_hidden_layers snake_case : List[str] = num_attention_heads snake_case : Any = initializer_range snake_case : Tuple = layer_norm_eps snake_case : int = patch_size snake_case : Tuple = num_channels snake_case : List[Any] = depths snake_case : Dict = mlp_expansion_ratio snake_case : List[Any] = downsamples snake_case : Any = dim snake_case : str = key_dim snake_case : Union[str, Any] = attention_ratio snake_case : Any = resolution snake_case : Tuple = pool_size snake_case : Optional[int] = downsample_patch_size snake_case : Dict = downsample_stride snake_case : List[Any] = downsample_pad snake_case : Union[str, Any] = drop_path_rate snake_case : int = num_metaad_blocks snake_case : Optional[Any] = distillation snake_case : Union[str, Any] = use_layer_scale snake_case : Optional[int] = layer_scale_init_value snake_case : List[str] = image_size snake_case : int = batch_norm_eps
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A = 1_0_1 ) -> str: snake_case : Any = length def __len__( self ) -> List[str]: return self.length def __getitem__( self , A ) -> int: return i class __lowercase : """simple docstring""" def __call__( self , A ) -> Any: return {"input_ids": torch.tensor(A ), "labels": torch.tensor(A )} class __lowercase (nn.Module ): """simple docstring""" def __init__( self ) -> List[str]: super().__init__() # Add some (unused) params otherwise DDP will complain. snake_case : Any = nn.Linear(1_2_0 , 8_0 ) def UpperCAmelCase ( self , A , A=None ) -> Dict: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __lowercase (UpperCamelCase__ ): """simple docstring""" @require_torch_neuroncore def UpperCAmelCase ( self ) -> Any: snake_case : Dict = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case : int = self.get_auto_remove_tmp_dir() snake_case : Dict = f"""--output_dir {output_dir}""".split() snake_case : Dict = ["""torchrun"""] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __lowercase (UpperCamelCase__ ): """simple docstring""" @require_torch_multi_gpu def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case : List[str] = f"""--output_dir {output_dir}""".split() snake_case : Optional[int] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(A , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase : Union[str, Any] = HfArgumentParser((TrainingArguments,)) lowerCamelCase : str = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: lowerCamelCase : Dict = DummyDataset(dataset_length) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: snake_case : Dict = list(range(len(lowercase ) ) ) snake_case : Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCamelCase : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase : Tuple = 2 lowerCamelCase : List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase : Tuple = None
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ComputeEnvironment.AMAZON_SAGEMAKER _snake_case = True _snake_case = """ml.p3.2xlarge""" _snake_case = """accelerate_sagemaker_execution_role""" _snake_case = """hf-sm""" _snake_case = """us-east-1""" _snake_case = 1 _snake_case = """accelerate-sagemaker-1""" _snake_case = """1.6""" _snake_case = """4.4""" _snake_case = """train.py""" _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] _snake_case = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: # If no defaults are changed, `to_kwargs` returns an empty dict. snake_case : Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , A ) assert isinstance(converted_args["""do_train"""] , A ) assert isinstance(converted_args["""epochs"""] , A ) assert isinstance(converted_args["""learning_rate"""] , A ) assert isinstance(converted_args["""max_steps"""] , A ) with pytest.raises(A ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case : Union[str, Any] = str(bin(lowercase ) )[2:] # remove the leading "0b" snake_case : Union[str, Any] = str(bin(lowercase ) )[2:] # remove the leading "0b" snake_case : str = max(len(lowercase ) ,len(lowercase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) ,b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowercase (UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" _snake_case = 1 @register_to_config def __init__( self , A=2_0_0_0 , A=0.1 , A=2_0 , A=1e-3 ) -> Optional[Any]: snake_case : List[str] = None snake_case : List[str] = None snake_case : int = None def UpperCAmelCase ( self , A , A = None ) -> Tuple: snake_case : Dict = torch.linspace(1 , self.config.sampling_eps , A , device=A ) def UpperCAmelCase ( self , A , A , A , A=None ) -> Any: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score snake_case : List[str] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) snake_case : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) snake_case : Any = std.flatten() while len(std.shape ) < len(score.shape ): snake_case : Union[str, Any] = std.unsqueeze(-1 ) snake_case : int = -score / std # compute snake_case : List[str] = -1.0 / len(self.timesteps ) snake_case : Tuple = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) snake_case : List[str] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): snake_case : Optional[Any] = beta_t.unsqueeze(-1 ) snake_case : List[str] = -0.5 * beta_t * x snake_case : str = torch.sqrt(A ) snake_case : Optional[int] = drift - diffusion**2 * score snake_case : Dict = x + drift * dt # add noise snake_case : int = randn_tensor(x.shape , layout=x.layout , generator=A , device=x.device , dtype=x.dtype ) snake_case : List[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> int: return self.config.num_train_timesteps
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase : int = '<<<<<<< This should probably be modified because it mentions: ' lowerCamelCase : Tuple = '=======\n>>>>>>>\n' lowerCamelCase : Optional[int] = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCamelCase : Dict = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return ConvertCommand(args.tfds_path ,args.datasets_directory ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod def UpperCAmelCase ( A ) -> Tuple: snake_case : Union[str, Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=A , required=A , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=A , required=A , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=A ) def __init__( self , A , A , *A ) -> List[Any]: snake_case : List[Any] = get_logger("""datasets-cli/converting""" ) snake_case : Optional[int] = tfds_path snake_case : Optional[Any] = datasets_directory def UpperCAmelCase ( self ) -> str: if os.path.isdir(self._tfds_path ): snake_case : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): snake_case : List[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) snake_case : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) snake_case : List[Any] = [] snake_case : Dict = [] snake_case : int = {} if os.path.isdir(self._tfds_path ): snake_case : Optional[int] = os.listdir(A ) else: snake_case : Tuple = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) snake_case : str = os.path.join(A , A ) snake_case : Tuple = os.path.join(A , A ) if not os.path.isfile(A ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(A , encoding="""utf-8""" ) as f: snake_case : Any = f.readlines() snake_case : Tuple = [] snake_case : Union[str, Any] = False snake_case : Optional[int] = False snake_case : Tuple = [] for line in lines: snake_case : Tuple = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here snake_case : List[str] = """""" continue elif "from absl import logging" in out_line: snake_case : Union[str, Any] = """from datasets import logging\n""" elif "getLogger" in out_line: snake_case : List[str] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): snake_case : Dict = True snake_case : Union[str, Any] = list(filter(lambda A : e in out_line , A ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(A ) + """\n""" ) out_lines.append(A ) out_lines.append(A ) continue else: for pattern, replacement in TO_CONVERT: snake_case : List[Any] = re.sub(A , A , A ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case : Tuple = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , A ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) snake_case : Optional[Any] = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case : int = True out_lines.append(A ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case : Any = f_name.replace(""".py""" , """""" ) snake_case : List[str] = os.path.join(A , A ) snake_case : Union[str, Any] = os.path.join(A , A ) os.makedirs(A , exist_ok=A ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(A ) if needs_manual_update: with_manual_update.append(A ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.writelines(A ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: snake_case : List[str] = os.path.basename(A ) snake_case : str = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(A , A ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case = Features({"""image""": Image()} ) _snake_case = Features({"""labels""": ClassLabel} ) _snake_case = "image" _snake_case = "labels" def UpperCAmelCase ( self , A ) -> Optional[int]: if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , A ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) snake_case : Dict = copy.deepcopy(self ) snake_case : Optional[Any] = self.label_schema.copy() snake_case : Union[str, Any] = features[self.label_column] snake_case : List[str] = label_schema return task_template @property def UpperCAmelCase ( self ) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = SMALL_MODEL_IDENTIFIER snake_case : List[Any] = """pt""" snake_case : Any = """tf""" def UpperCAmelCase ( self , A ) -> Any: snake_case : Union[str, Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(A ) def UpperCAmelCase ( self , A ) -> Any: snake_case : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=A ) model_tf.save_pretrained(A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = """mock_framework""" # Framework provided - return whatever the user provides snake_case : Optional[int] = FeaturesManager.determine_framework(self.test_model , A ) self.assertEqual(A , A ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) snake_case : str = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) snake_case : Dict = FeaturesManager.determine_framework(A , A ) self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Dict: # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(A ) snake_case : int = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(A ) snake_case : Optional[Any] = FeaturesManager.determine_framework(A ) self.assertEqual(A , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(A ): snake_case : Any = FeaturesManager.determine_framework(A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ): snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # PyTorch not in environment -> use TensorFlow snake_case : Optional[Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_torch_available""" , A ): snake_case : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_tf ) # Both in environment -> use PyTorch snake_case : List[Any] = MagicMock(return_value=A ) snake_case : Any = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ), patch( """transformers.onnx.features.is_torch_available""" , A ): snake_case : List[str] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(A , self.framework_pt ) # Both not in environment -> raise error snake_case : Union[str, Any] = MagicMock(return_value=A ) snake_case : List[Any] = MagicMock(return_value=A ) with patch("""transformers.onnx.features.is_tf_available""" , A ), patch( """transformers.onnx.features.is_torch_available""" , A ): with self.assertRaises(A ): snake_case : Dict = FeaturesManager.determine_framework(self.test_model )
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=1024 ) -> Dict: snake_case , snake_case : Union[str, Any] = [], [] snake_case : List[str] = list(zip(lowercase ,lowercase ) ) snake_case , snake_case : str = sorted_examples[0] def is_too_big(lowercase ): return tok(lowercase ,return_tensors="""pt""" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): snake_case : str = new_src + """ """ + src snake_case : Optional[int] = new_tgt + """ """ + tgt if is_too_big(lowercase ) or is_too_big(lowercase ): # cant fit, finalize example finished_src.append(lowercase ) finished_tgt.append(lowercase ) snake_case , snake_case : Optional[Any] = src, tgt else: # can fit, keep adding snake_case , snake_case : str = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowercase ) finished_tgt.append(lowercase ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: snake_case : str = Path(lowercase ) save_path.mkdir(exist_ok=lowercase ) for split in ["train"]: snake_case , snake_case : Union[str, Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" snake_case : Optional[Any] = [x.rstrip() for x in Path(lowercase ).open().readlines()] snake_case : Union[str, Any] = [x.rstrip() for x in Path(lowercase ).open().readlines()] snake_case , snake_case : Dict = pack_examples(lowercase ,lowercase ,lowercase ,lowercase ) print(f"""packed {split} split from {len(lowercase )} examples -> {len(lowercase )}.""" ) Path(save_path / f"""{split}.source""" ).open("""w""" ).write("""\n""".join(lowercase ) ) Path(save_path / f"""{split}.target""" ).open("""w""" ).write("""\n""".join(lowercase ) ) for split in ["val", "test"]: snake_case , snake_case : List[Any] = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(lowercase ,save_path / f"""{split}.source""" ) shutil.copyfile(lowercase ,save_path / f"""{split}.target""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--tok_name""" ,type=lowercase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ) parser.add_argument("""--max_seq_len""" ,type=lowercase ,default=128 ) parser.add_argument("""--data_dir""" ,type=lowercase ) parser.add_argument("""--save_path""" ,type=lowercase ) snake_case : Union[str, Any] = parser.parse_args() snake_case : Any = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowercase ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """mobilenet_v1""" def __init__( self , A=3 , A=2_2_4 , A=1.0 , A=8 , A="relu6" , A=True , A=0.9_99 , A=0.02 , A=0.0_01 , **A , ) -> int: super().__init__(**A ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) snake_case : List[str] = num_channels snake_case : Any = image_size snake_case : Dict = depth_multiplier snake_case : Union[str, Any] = min_depth snake_case : Optional[int] = hidden_act snake_case : str = tf_padding snake_case : Optional[Any] = classifier_dropout_prob snake_case : Dict = initializer_range snake_case : Union[str, Any] = layer_norm_eps class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def UpperCAmelCase ( self ) -> float: return 1e-4
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : str = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/config.json', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/config.json', 'funnel-transformer/medium-base': 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json', 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/config.json', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json', 'funnel-transformer/xlarge-base': 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """funnel""" _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self , A=3_0_5_2_2 , A=[4, 4, 4] , A=None , A=2 , A=7_6_8 , A=1_2 , A=6_4 , A=3_0_7_2 , A="gelu_new" , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=None , A=1e-9 , A="mean" , A="relative_shift" , A=True , A=True , A=True , **A , ) -> str: snake_case : Dict = vocab_size snake_case : int = block_sizes snake_case : Tuple = [1] * len(A ) if block_repeats is None else block_repeats assert len(A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." snake_case : Dict = num_decoder_layers snake_case : Optional[Any] = d_model snake_case : Optional[int] = n_head snake_case : Dict = d_head snake_case : List[Any] = d_inner snake_case : List[str] = hidden_act snake_case : Union[str, Any] = hidden_dropout snake_case : Dict = attention_dropout snake_case : Any = activation_dropout snake_case : Any = initializer_range snake_case : int = initializer_std snake_case : str = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" snake_case : Optional[int] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" snake_case : Union[str, Any] = attention_type snake_case : Dict = separate_cls snake_case : Optional[int] = truncate_seq snake_case : Union[str, Any] = pool_q_only super().__init__(**A ) @property def UpperCAmelCase ( self ) -> int: return sum(self.block_sizes ) @num_hidden_layers.setter def UpperCAmelCase ( self , A ) -> List[Any]: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def UpperCAmelCase ( self ) -> List[Any]: return len(self.block_sizes ) @num_blocks.setter def UpperCAmelCase ( self , A ) -> Optional[int]: raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Dict = tau * frequency / samplerate snake_case : int = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : List[Any] = _sin / (2 * q_factor) snake_case : Tuple = (1 - _cos) / 2 snake_case : int = 1 - _cos snake_case : Union[str, Any] = 1 + alpha snake_case : List[Any] = -2 * _cos snake_case : int = 1 - alpha snake_case : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Tuple = tau * frequency / samplerate snake_case : Union[str, Any] = sin(lowercase ) snake_case : Tuple = cos(lowercase ) snake_case : List[str] = _sin / (2 * q_factor) snake_case : List[Any] = (1 + _cos) / 2 snake_case : Any = -1 - _cos snake_case : Union[str, Any] = 1 + alpha snake_case : int = -2 * _cos snake_case : str = 1 - alpha snake_case : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Union[str, Any] = tau * frequency / samplerate snake_case : Any = sin(lowercase ) snake_case : str = cos(lowercase ) snake_case : List[Any] = _sin / (2 * q_factor) snake_case : List[str] = _sin / 2 snake_case : Optional[Any] = 0 snake_case : List[str] = -ba snake_case : str = 1 + alpha snake_case : List[Any] = -2 * _cos snake_case : List[str] = 1 - alpha snake_case : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ) -> IIRFilter: snake_case : Optional[Any] = tau * frequency / samplerate snake_case : Any = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : Dict = _sin / (2 * q_factor) snake_case : Tuple = 1 - alpha snake_case : List[str] = -2 * _cos snake_case : List[Any] = 1 + alpha snake_case : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : int = tau * frequency / samplerate snake_case : Optional[Any] = sin(lowercase ) snake_case : str = cos(lowercase ) snake_case : Optional[int] = _sin / (2 * q_factor) snake_case : Dict = 10 ** (gain_db / 40) snake_case : str = 1 + alpha * big_a snake_case : Optional[Any] = -2 * _cos snake_case : Tuple = 1 - alpha * big_a snake_case : Dict = 1 + alpha / big_a snake_case : int = -2 * _cos snake_case : Any = 1 - alpha / big_a snake_case : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : Any = tau * frequency / samplerate snake_case : Optional[int] = sin(lowercase ) snake_case : Optional[Any] = cos(lowercase ) snake_case : Dict = _sin / (2 * q_factor) snake_case : List[str] = 10 ** (gain_db / 40) snake_case : Tuple = (big_a + 1) - (big_a - 1) * _cos snake_case : Any = (big_a + 1) + (big_a - 1) * _cos snake_case : List[Any] = (big_a - 1) - (big_a + 1) * _cos snake_case : List[Any] = (big_a - 1) + (big_a + 1) * _cos snake_case : int = 2 * sqrt(lowercase ) * alpha snake_case : List[Any] = big_a * (pmc + aaa) snake_case : Dict = 2 * big_a * mpc snake_case : List[Any] = big_a * (pmc - aaa) snake_case : int = ppmc + aaa snake_case : Dict = -2 * pmpc snake_case : str = ppmc - aaa snake_case : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 1 / sqrt(2 ) ,) -> IIRFilter: snake_case : Union[str, Any] = tau * frequency / samplerate snake_case : Tuple = sin(lowercase ) snake_case : Any = cos(lowercase ) snake_case : Tuple = _sin / (2 * q_factor) snake_case : int = 10 ** (gain_db / 40) snake_case : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos snake_case : Dict = (big_a + 1) + (big_a - 1) * _cos snake_case : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos snake_case : List[Any] = (big_a - 1) + (big_a + 1) * _cos snake_case : Dict = 2 * sqrt(lowercase ) * alpha snake_case : List[Any] = big_a * (ppmc + aaa) snake_case : List[Any] = -2 * big_a * pmpc snake_case : str = big_a * (ppmc - aaa) snake_case : List[str] = pmc + aaa snake_case : List[str] = 2 * mpc snake_case : Union[str, Any] = pmc - aaa snake_case : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: # noqa: E741 snake_case : str = len(lowercase ) snake_case : Optional[Any] = 0 snake_case : Union[str, Any] = [0] * n snake_case : List[Any] = [False] * n snake_case : Optional[Any] = [False] * n def dfs(lowercase ,lowercase ,lowercase ,lowercase ): if parent == root: out_edge_count += 1 snake_case : Tuple = True snake_case : Any = at for to in l[at]: if to == parent: pass elif not visited[to]: snake_case : Any = dfs(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : Dict = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: snake_case : List[str] = True # AP found via cycle if at == low[to]: snake_case : Dict = True else: snake_case : str = min(low[at] ,lowercase ) return out_edge_count for i in range(lowercase ): if not visited[i]: snake_case : Tuple = 0 snake_case : Any = dfs(lowercase ,lowercase ,-1 ,lowercase ) snake_case : str = out_edge_count > 1 for x in range(len(lowercase ) ): if is_art[x] is True: print(lowercase ) # Adjacency list of graph lowerCamelCase : int = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: snake_case : Union[str, Any] = len(lowercase ) for i in range(1 ,lowercase ): snake_case : Union[str, Any] = collection[i] snake_case : List[Any] = 0 snake_case : Optional[int] = i - 1 while low <= high: snake_case : Dict = (low + high) // 2 if val < collection[mid]: snake_case : str = mid - 1 else: snake_case : Any = mid + 1 for j in range(lowercase ,lowercase ,-1 ): snake_case : Optional[int] = collection[j - 1] snake_case : Any = val return collection if __name__ == "__main__": lowerCamelCase : str = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self , A ) -> float: return 0.0 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[int | float, int | float]: snake_case : Any = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) snake_case : Optional[int] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: snake_case : Union[str, Any] = 512 snake_case : str = [1] + [0] * (size - 1) snake_case : Optional[Any] = [filter_type.process(lowercase ) for item in inputs] snake_case : List[str] = [0] * (samplerate - size) # zero-padding outputs += filler snake_case : Union[str, Any] = np.abs(np.fft.fft(lowercase ) ) snake_case : List[str] = 20 * np.logaa(lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds snake_case : Optional[int] = get_bounds(lowercase ,lowercase ) plt.ylim(max([-80, bounds[0]] ) ,min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(lowercase ) plt.show() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: snake_case : Optional[int] = 512 snake_case : Any = [1] + [0] * (size - 1) snake_case : Optional[Any] = [filter_type.process(lowercase ) for item in inputs] snake_case : str = [0] * (samplerate - size) # zero-padding outputs += filler snake_case : Any = np.angle(np.fft.fft(lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 ,samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi ,2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(lowercase ,-2 * pi ) ) plt.show()
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import datasets from .evaluate import evaluate lowerCamelCase : Union[str, Any] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' lowerCamelCase : Optional[int] = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' lowerCamelCase : Dict = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def UpperCAmelCase ( self , A , A ) -> Any: snake_case : Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case : int = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case : int = evaluate(dataset=A , predictions=A ) return score
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[str]: snake_case : int = 1_0 def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = [1, 2, 3, 4] snake_case : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] snake_case : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] snake_case : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" snake_case , snake_case : Optional[Any] = process_story(A ) self.assertEqual(A , [] ) def UpperCAmelCase ( self ) -> str: snake_case : Dict = """""" snake_case , snake_case : Tuple = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def UpperCAmelCase ( self ) -> List[str]: snake_case : int = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) snake_case , snake_case : List[Any] = process_story(A ) snake_case : str = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(A , A ) snake_case : List[str] = ["""It was the best of times."""] self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Any: snake_case : Dict = torch.tensor([1, 2, 3, 4] ) snake_case : Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[Any] = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) snake_case : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 2_3 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) snake_case : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = 1_0_1 snake_case : int = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) snake_case : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) snake_case : List[Any] = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(lowercase ,lowercase ) -> bool: snake_case : Tuple = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case : Union[str, Any] = mean( int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) ) for _ in range(lowercase ) ) # The ratio of the area for circle to square is pi/4. snake_case : Dict = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = 0.0 ,lowercase = 1.0 ,) -> float: return mean( function_to_integrate(uniform(lowercase ,lowercase ) ) for _ in range(lowercase ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 0.0 ,lowercase = 1.0 ) -> None: def identity_function(lowercase ) -> float: return x snake_case : Union[str, Any] = area_under_curve_estimator( lowercase ,lowercase ,lowercase ,lowercase ) snake_case : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("""******************""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: def function_to_integrate(lowercase ) -> float: return sqrt(4.0 - x * x ) snake_case : Optional[Any] = area_under_curve_estimator( lowercase ,lowercase ,0.0 ,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A , A , ) -> Any: super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=A , speech_processor=A , vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , feature_extractor=A , ) def UpperCAmelCase ( self , A = "auto" ) -> Dict: if slice_size == "auto": snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> int: self.enable_attention_slicing(A ) @torch.no_grad() def __call__( self , A , A=1_6_0_0_0 , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Tuple: snake_case : List[Any] = self.speech_processor.feature_extractor( A , return_tensors="""pt""" , sampling_rate=A ).input_features.to(self.device ) snake_case : str = self.speech_model.generate(A , max_length=4_8_0_0_0_0 ) snake_case : int = self.speech_processor.tokenizer.batch_decode(A , skip_special_tokens=A , normalize=A )[ 0 ] if isinstance(A , A ): snake_case : Tuple = 1 elif isinstance(A , A ): snake_case : Union[str, Any] = len(A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A , A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(A )}.""" ) # get prompt text embeddings snake_case : Dict = self.tokenizer( A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) snake_case : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case : int = text_input_ids[:, : self.tokenizer.model_max_length] snake_case : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case , snake_case , snake_case : Dict = text_embeddings.shape snake_case : List[str] = text_embeddings.repeat(1 , A , 1 ) snake_case : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case : List[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case : List[str] if negative_prompt is None: snake_case : Dict = [""""""] * batch_size elif type(A ) is not type(A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=""" f""" {type(A )}.""" ) elif isinstance(A , A ): snake_case : Optional[int] = [negative_prompt] elif batch_size != len(A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: snake_case : Dict = negative_prompt snake_case : Union[str, Any] = text_input_ids.shape[-1] snake_case : Any = self.tokenizer( A , padding="""max_length""" , max_length=A , truncation=A , return_tensors="""pt""" , ) snake_case : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : int = uncond_embeddings.shape[1] snake_case : Tuple = uncond_embeddings.repeat(1 , A , 1 ) snake_case : List[str] = uncond_embeddings.view(batch_size * num_images_per_prompt , A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case : str = torch.randn(A , generator=A , device="""cpu""" , dtype=A ).to( self.device ) else: snake_case : Optional[int] = torch.randn(A , generator=A , device=self.device , dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) snake_case : Tuple = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case : Optional[int] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case : int = {} if accepts_eta: snake_case : Any = eta for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : List[Any] = self.scheduler.scale_model_input(A , A ) # predict the noise residual snake_case : List[Any] = self.unet(A , A , encoder_hidden_states=A ).sample # perform guidance if do_classifier_free_guidance: snake_case , snake_case : str = noise_pred.chunk(2 ) snake_case : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case : Optional[Any] = self.scheduler.step(A , A , A , **A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A , A , A ) snake_case : List[str] = 1 / 0.1_82_15 * latents snake_case : int = self.vae.decode(A ).sample snake_case : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : Union[str, Any] = self.numpy_to_pil(A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=A , nsfw_content_detected=A )
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
from __future__ import annotations from collections import namedtuple def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> tuple: snake_case : Tuple = namedtuple("""result""" ,"""name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" ,power / current ) elif current == 0: return result("""current""" ,power / voltage ) elif power == 0: return result("""power""" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : Optional[Any] = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCamelCase : List[str] = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model snake_case : List[Any] = list(s_dict.keys() ) for key in keys: snake_case : int = R""".*/layers_(\d+)""" snake_case : Optional[int] = key if re.match(lowercase ,lowercase ): snake_case : Optional[Any] = re.sub(R"""layers_(\d+)""" ,R"""block/\1/layer""" ,lowercase ) snake_case : int = R"""(encoder|decoder)\/""" if re.match(lowercase ,lowercase ): snake_case : Tuple = re.match(lowercase ,lowercase ).groups() if groups[0] == "encoder": snake_case : List[str] = re.sub(R"""/mlp/""" ,R"""/1/mlp/""" ,lowercase ) snake_case : Optional[int] = re.sub(R"""/pre_mlp_layer_norm/""" ,R"""/1/layer_norm/""" ,lowercase ) elif groups[0] == "decoder": snake_case : List[str] = re.sub(R"""/mlp/""" ,R"""/2/mlp/""" ,lowercase ) snake_case : List[Any] = re.sub(R"""/pre_mlp_layer_norm/""" ,R"""/2/layer_norm/""" ,lowercase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: snake_case : Optional[int] = new_key.replace(lowercase ,lowercase ) print(f"""{key} -> {new_key}""" ) snake_case : str = s_dict.pop(lowercase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case : List[str] = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: snake_case : Any = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: snake_case : Tuple = s_dict[key].shape[0] snake_case : str = s_dict[key] for idx in range(lowercase ): snake_case : List[str] = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" ,"nested fstring" )}""" ) s_dict.pop(lowercase ) return s_dict lowerCamelCase : str = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: # Convert a google style config to the hugging face fromat import regex as re with open(lowercase ,"""r""" ) as f: snake_case : List[str] = f.read() snake_case : List[Any] = re.findall(R"""(.*) = ([0-9.]*)""" ,lowercase ) snake_case : Optional[int] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": snake_case : int = float(lowercase ) if """.""" in value else int(lowercase ) snake_case : Tuple = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" ,lowercase )[0] snake_case : int = str(activation[1] ) snake_case : int = num_experts snake_case : Union[str, Any] = SwitchTransformersConfig(**lowercase ) return config def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=None ,lowercase="./" ,lowercase=8 ) -> List[str]: # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) snake_case : Tuple = checkpoints.load_tax_checkpoint(lowercase ) if gin_file is not None: snake_case : Union[str, Any] = convert_gin_to_config(lowercase ,lowercase ) else: snake_case : Dict = SwitchTransformersConfig.from_pretrained(lowercase ) snake_case : Tuple = SwitchTransformersForConditionalGeneration(lowercase ) snake_case : Optional[int] = flax_params["""target"""] snake_case : Dict = flatten_dict(lowercase ,sep="""/""" ) snake_case : int = rename_keys(lowercase ) snake_case : Dict = unflatten_dict(lowercase ,sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowercase ,lowercase ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') lowerCamelCase : str = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import requests lowerCamelCase : int = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: # fetching a list of articles in json format snake_case : Optional[int] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] ,1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("""foo.json""",)] ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Any = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A , config_name=A ) snake_case : Optional[Any] = GenerationConfig.from_pretrained(A , config_name=A ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = AutoConfig.from_pretrained("""gpt2""" ) snake_case : Optional[int] = GenerationConfig.from_model_config(A ) snake_case : Dict = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(A , A ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase ( self ) -> Dict: snake_case : List[Any] = GenerationConfig() snake_case : Union[str, Any] = { """max_new_tokens""": 1_0_2_4, """foo""": """bar""", } snake_case : int = copy.deepcopy(A ) snake_case : Optional[Any] = generation_config.update(**A ) # update_kwargs was not modified (no side effects) self.assertEqual(A , A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(A , {"""foo""": """bar"""} ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = GenerationConfig() snake_case : Optional[int] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(A ) snake_case : str = GenerationConfig.from_pretrained(A ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) snake_case : int = GenerationConfig.from_model_config(A ) assert not hasattr(A , """foo""" ) # no new kwargs should be initialized if from config def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , A ) self.assertEqual(default_config.num_beams , 1 ) snake_case : List[Any] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , A ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) snake_case : Any = GenerationConfig.from_pretrained(A , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , A ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowercase (unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> str: snake_case : int = TOKEN HfFolder.save_token(A ) @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) snake_case : str = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""test-generation-config""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Optional[int] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = GenerationConfig( do_sample=A , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( A , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=A , use_auth_token=self._token ) snake_case : Union[str, Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(A , getattr(A , A ) )
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[Any] = [] snake_case : Optional[int] = 1 while len(lowercase ) < 1E6: constant.append(str(lowercase ) ) i += 1 snake_case : Optional[Any] = """""".join(lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _snake_case = """CIDAS/clipseg-rd64-refined""" _snake_case = """image_segmenter""" _snake_case = CLIPSegForImageSegmentation _snake_case = ["""image""", """text"""] _snake_case = ["""image"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""vision"""] ) super().__init__(*A , **A ) def UpperCAmelCase ( self , A , A ) -> List[str]: return self.pre_processor(text=[label] , images=[image] , padding=A , return_tensors="""pt""" ) def UpperCAmelCase ( self , A ) -> List[str]: with torch.no_grad(): snake_case : Tuple = self.model(**A ).logits return logits def UpperCAmelCase ( self , A ) -> Optional[int]: snake_case : str = outputs.cpu().detach().numpy() snake_case : str = 0 snake_case : Optional[int] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : Optional[int] = TypeVar('T') class __lowercase (Generic[T] ): """simple docstring""" _snake_case = 42 # Cache store of keys _snake_case = 42 # References of the keys in cache _snake_case = 10 # Maximum capacity of cache def __init__( self , A ) -> None: snake_case : str = deque() snake_case : Tuple = set() if not n: snake_case : str = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case : str = n def UpperCAmelCase ( self , A ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case : str = self.dq_store.pop() self.key_reference.remove(A ) else: self.dq_store.remove(A ) self.dq_store.appendleft(A ) self.key_reference.add(A ) def UpperCAmelCase ( self ) -> None: for k in self.dq_store: print(A ) def __repr__( self ) -> str: return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = (UniPCMultistepScheduler,) _snake_case = (("""num_inference_steps""", 25),) def UpperCAmelCase ( self , **A ) -> Optional[Any]: snake_case : Union[str, Any] = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**A ) return config def UpperCAmelCase ( self , A=0 , **A ) -> int: snake_case : Dict = dict(self.forward_default_kwargs ) snake_case : Tuple = kwargs.pop("""num_inference_steps""" , A ) snake_case : List[Any] = self.dummy_sample snake_case : List[Any] = 0.1 * sample snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Union[str, Any] = self.get_scheduler_config(**A ) snake_case : Union[str, Any] = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals snake_case : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) snake_case : Optional[Any] = scheduler_class.from_pretrained(A ) new_scheduler.set_timesteps(A ) # copy over dummy past residuals snake_case : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case , snake_case : Union[str, Any] = sample, sample for t in range(A , time_step + scheduler.config.solver_order + 1 ): snake_case : Tuple = scheduler.step(A , A , A , **A ).prev_sample snake_case : Optional[int] = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , A=0 , **A ) -> Tuple: snake_case : Union[str, Any] = dict(self.forward_default_kwargs ) snake_case : List[Any] = kwargs.pop("""num_inference_steps""" , A ) snake_case : Optional[int] = self.dummy_sample snake_case : List[Any] = 0.1 * sample snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Any = self.get_scheduler_config() snake_case : str = scheduler_class(**A ) scheduler.set_timesteps(A ) # copy over dummy past residuals (must be after setting timesteps) snake_case : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A ) snake_case : List[Any] = scheduler_class.from_pretrained(A ) # copy over dummy past residuals new_scheduler.set_timesteps(A ) # copy over dummy past residual (must be after setting timesteps) snake_case : str = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case : str = scheduler.step(A , A , A , **A ).prev_sample snake_case : Tuple = new_scheduler.step(A , A , A , **A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , A=None , **A ) -> Optional[int]: if scheduler is None: snake_case : Tuple = self.scheduler_classes[0] snake_case : Dict = self.get_scheduler_config(**A ) snake_case : List[str] = scheduler_class(**A ) snake_case : str = self.scheduler_classes[0] snake_case : Optional[Any] = self.get_scheduler_config(**A ) snake_case : Any = scheduler_class(**A ) snake_case : Tuple = 1_0 snake_case : Tuple = self.dummy_model() snake_case : Any = self.dummy_sample_deter scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): snake_case : Tuple = model(A , A ) snake_case : Tuple = scheduler.step(A , A , A ).prev_sample return sample def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[Any] = dict(self.forward_default_kwargs ) snake_case : Optional[int] = kwargs.pop("""num_inference_steps""" , A ) for scheduler_class in self.scheduler_classes: snake_case : Optional[int] = self.get_scheduler_config() snake_case : Optional[Any] = scheduler_class(**A ) snake_case : str = self.dummy_sample snake_case : int = 0.1 * sample if num_inference_steps is not None and hasattr(A , """set_timesteps""" ): scheduler.set_timesteps(A ) elif num_inference_steps is not None and not hasattr(A , """set_timesteps""" ): snake_case : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] snake_case : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] snake_case : int = scheduler.timesteps[5] snake_case : Any = scheduler.timesteps[6] snake_case : Optional[Any] = scheduler.step(A , A , A , **A ).prev_sample snake_case : List[Any] = scheduler.step(A , A , A , **A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ) -> Dict: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case : Tuple = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case : Union[str, Any] = self.full_loop(scheduler=A ) snake_case : Any = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 snake_case : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case : Optional[Any] = self.full_loop(scheduler=A ) snake_case : int = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase ( self ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A ) def UpperCAmelCase ( self ) -> Any: self.check_over_configs(thresholding=A ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , solver_order=A , solver_type=A , ) def UpperCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A ) def UpperCAmelCase ( self ) -> List[Any]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A , solver_type=A , prediction_type=A , ) snake_case : Dict = self.full_loop( solver_order=A , solver_type=A , prediction_type=A , ) assert not torch.isnan(A ).any(), "Samples have nan numbers" def UpperCAmelCase ( self ) -> List[str]: self.check_over_configs(lower_order_final=A ) self.check_over_configs(lower_order_final=A ) def UpperCAmelCase ( self ) -> int: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=A , time_step=0 ) def UpperCAmelCase ( self ) -> Tuple: snake_case : int = self.full_loop() snake_case : Dict = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Any = self.full_loop(prediction_type="""v_prediction""" ) snake_case : Tuple = torch.mean(torch.abs(A ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = self.scheduler_classes[0] snake_case : List[str] = self.get_scheduler_config(thresholding=A , dynamic_thresholding_ratio=0 ) snake_case : List[Any] = scheduler_class(**A ) snake_case : int = 1_0 snake_case : Tuple = self.dummy_model() snake_case : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(A ) for i, t in enumerate(scheduler.timesteps ): snake_case : Union[str, Any] = model(A , A ) snake_case : int = scheduler.step(A , A , A ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase ( self , **A ) -> Optional[int]: for scheduler_class in self.scheduler_classes: snake_case : Optional[int] = self.get_scheduler_config(**A ) snake_case : Dict = scheduler_class(**A ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
import math class __lowercase : """simple docstring""" def __init__( self , A=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 snake_case : int = n snake_case : Optional[int] = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # adjacency matrix for weight snake_case : int = [ [math.inf for j in range(0 , A )] for i in range(0 , A ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : str = w def UpperCAmelCase ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): snake_case : Tuple = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase ( self , A , A ) -> Any: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase : Union[str, Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCamelCase : List[Any] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> int: for attribute in key.split(""".""" ): snake_case : Tuple = getattr(lowercase ,lowercase ) if weight_type is not None: snake_case : Tuple = getattr(lowercase ,lowercase ).shape else: snake_case : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : int = value elif weight_type == "weight_g": snake_case : str = value elif weight_type == "weight_v": snake_case : Any = value elif weight_type == "bias": snake_case : List[str] = value else: snake_case : Optional[Any] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : List[Any] = [] snake_case : Dict = fairseq_model.state_dict() snake_case : Any = hf_model.feature_extractor snake_case : Dict = hf_model.adapter for name, value in fairseq_dict.items(): snake_case : List[Any] = False if "conv_layers" in name: load_conv_layer( lowercase ,lowercase ,lowercase ,lowercase ,hf_model.config.feat_extract_norm == """group""" ,) snake_case : Optional[int] = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case : Optional[Any] = True if "*" in mapped_key: snake_case : List[Any] = name.split(lowercase )[0].split(""".""" )[-2] snake_case : List[str] = mapped_key.replace("""*""" ,lowercase ) if "weight_g" in name: snake_case : str = """weight_g""" elif "weight_v" in name: snake_case : str = """weight_v""" elif "bias" in name: snake_case : str = """bias""" elif "weight" in name: snake_case : List[str] = """weight""" else: snake_case : Optional[int] = None set_recursively(lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[Any]: snake_case : List[str] = full_name.split("""conv_layers.""" )[-1] snake_case : Any = name.split(""".""" ) snake_case : Any = int(items[0] ) snake_case : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Any: snake_case : Union[str, Any] = full_name.split("""adaptor.""" )[-1] snake_case : Dict = name.split(""".""" ) if items[1].isdigit(): snake_case : int = int(items[1] ) else: snake_case : Union[str, Any] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" snake_case : Optional[int] = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" snake_case : Any = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" snake_case : int = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" snake_case : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowercase ,lowercase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" snake_case : Optional[int] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" snake_case : Optional[int] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case , snake_case : Any = emb.weight.shape snake_case : Union[str, Any] = nn.Linear(lowercase ,lowercase ,bias=lowercase ) snake_case : Optional[Any] = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,lowercase ,) -> str: snake_case : List[str] = WavaVecaConfig.from_pretrained( lowercase ,add_adapter=lowercase ,adapter_stride=lowercase ,adapter_kernel_size=lowercase ,use_auth_token=lowercase ,output_hidden_size=lowercase ,) snake_case : int = MBartConfig.from_pretrained(lowercase ) # load model snake_case , snake_case , snake_case : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } ,) snake_case : Tuple = model[0].eval() # load feature extractor snake_case : List[str] = WavaVecaFeatureExtractor.from_pretrained(lowercase ,use_auth_token=lowercase ) # set weights for wav2vec2 encoder snake_case : Dict = WavaVecaModel(lowercase ) recursively_load_weights_wavaveca(model.encoder ,lowercase ) # load decoder weights snake_case : int = MBartForCausalLM(lowercase ) snake_case , snake_case : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=lowercase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) snake_case : List[str] = SpeechEncoderDecoderModel(encoder=lowercase ,decoder=lowercase ) snake_case : Union[str, Any] = False snake_case : Any = MBartaaTokenizer(lowercase ) tokenizer.save_pretrained(lowercase ) snake_case : List[str] = hf_wavavec.config.to_dict() snake_case : Union[str, Any] = tokenizer.pad_token_id snake_case : str = tokenizer.bos_token_id snake_case : Optional[Any] = tokenizer.eos_token_id snake_case : str = """mbart50""" snake_case : Dict = """wav2vec2""" snake_case : Union[str, Any] = tokenizer.eos_token_id snake_case : Tuple = 250004 snake_case : Union[str, Any] = tokenizer.eos_token_id snake_case : str = SpeechEncoderDecoderConfig.from_dict(lowercase ) hf_wavavec.save_pretrained(lowercase ) feature_extractor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config') lowerCamelCase : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax""", """transformers"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax""", """transformers"""] def __init__( self , *A , **A ) -> List[str]: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax""", """transformers"""] )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __lowercase (unittest.TestCase , UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : str = load_tool("""text-classification""" ) self.tool.setup() snake_case : Any = load_tool("""text-classification""" , remote=A ) def UpperCAmelCase ( self ) -> int: snake_case : str = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Any = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : int = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(A , """positive""" )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from __future__ import annotations from statistics import mean def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> list[int]: snake_case : str = [0] * no_of_processes snake_case : Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowercase ): snake_case : List[str] = burst_time[i] snake_case : list[int] = [] snake_case : Optional[int] = 0 snake_case : Dict = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case : List[str] = [] snake_case : str = -1 for i in range(lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowercase ) if len(lowercase ) > 0: snake_case : Tuple = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case : Union[str, Any] = i total_time += burst_time[target_process] completed += 1 snake_case : Any = 0 snake_case : Optional[Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> list[int]: snake_case : Dict = [0] * no_of_processes for i in range(lowercase ): snake_case : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowerCamelCase : List[Any] = 4 lowerCamelCase : List[str] = [2, 5, 3, 7] lowerCamelCase : Tuple = [0, 0, 0, 0] lowerCamelCase : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase : List[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" f"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(f"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(f"""Average turnaround time = {mean(turn_around_time):.5f}""")
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : int = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """table-transformer""" _snake_case = ["""past_key_values"""] _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=1_0_0 , A=6 , A=2_0_4_8 , A=8 , A=6 , A=2_0_4_8 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=2_5_6 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A , A ): snake_case : int = backbone_config.get("""model_type""" ) snake_case : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] snake_case : Tuple = config_class.from_dict(A ) # set timm attributes to None snake_case , snake_case , snake_case : Tuple = None, None, None snake_case : Any = use_timm_backbone snake_case : int = backbone_config snake_case : str = num_channels snake_case : List[Any] = num_queries snake_case : Union[str, Any] = d_model snake_case : List[str] = encoder_ffn_dim snake_case : Tuple = encoder_layers snake_case : Tuple = encoder_attention_heads snake_case : Union[str, Any] = decoder_ffn_dim snake_case : int = decoder_layers snake_case : List[str] = decoder_attention_heads snake_case : Dict = dropout snake_case : str = attention_dropout snake_case : Optional[int] = activation_dropout snake_case : int = activation_function snake_case : Tuple = init_std snake_case : Dict = init_xavier_std snake_case : Tuple = encoder_layerdrop snake_case : Optional[int] = decoder_layerdrop snake_case : Tuple = encoder_layers snake_case : Dict = auxiliary_loss snake_case : Tuple = position_embedding_type snake_case : Optional[Any] = backbone snake_case : Any = use_pretrained_backbone snake_case : List[str] = dilation # Hungarian matcher snake_case : str = class_cost snake_case : List[Any] = bbox_cost snake_case : Optional[int] = giou_cost # Loss coefficients snake_case : Union[str, Any] = mask_loss_coefficient snake_case : Optional[int] = dice_loss_coefficient snake_case : Dict = bbox_loss_coefficient snake_case : List[Any] = giou_loss_coefficient snake_case : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> int: return self.d_model class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-5 @property def UpperCAmelCase ( self ) -> int: return 1_2
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase : Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase : Union[str, Any] = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[str, float]: snake_case : List[Any] = len([g for position, g in enumerate(lowercase ) if g == main_target[position]] ) return (item, float(lowercase )) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[str, str]: snake_case : Union[str, Any] = random.randint(0 ,len(lowercase ) - 1 ) snake_case : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] snake_case : str = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: snake_case : Union[str, Any] = list(lowercase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: snake_case : Any = random.choice(lowercase ) return "".join(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,) -> list[str]: snake_case : Tuple = [] # Generate more children proportionally to the fitness score. snake_case : Optional[int] = int(parent_a[1] * 100 ) + 1 snake_case : Union[str, Any] = 10 if child_n >= 10 else child_n for _ in range(lowercase ): snake_case : str = population_score[random.randint(0 ,lowercase )][0] snake_case , snake_case : int = crossover(parent_a[0] ,lowercase ) # Append new string to the population list. pop.append(mutate(lowercase ,lowercase ) ) pop.append(mutate(lowercase ,lowercase ) ) return pop def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case : int = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case : int = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case : List[Any] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(lowercase ) # Generate random starting population. snake_case : Any = [] for _ in range(lowercase ): population.append("""""".join([random.choice(lowercase ) for i in range(len(lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case , snake_case : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case : Tuple = [evaluate(lowercase ,lowercase ) for item in population] # Check if there is a matching evolution. snake_case : int = sorted(lowercase ,key=lambda lowercase : x[1] ,reverse=lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case : Any = population[: int(N_POPULATION / 3 )] population.clear() population.extend(lowercase ) # Normalize population score to be between 0 and 1. snake_case : int = [ (item, score / len(lowercase )) for item, score in population_score ] # This is selection for i in range(lowercase ): population.extend(select(population_score[int(lowercase )] ,lowercase ,lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(lowercase ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase : Optional[int] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) lowerCamelCase : List[Any] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """speech_to_text""" _snake_case = ["""past_key_values"""] _snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=1_0_0_0_0 , A=1_2 , A=2_0_4_8 , A=4 , A=6 , A=2_0_4_8 , A=4 , A=0.0 , A=0.0 , A=True , A=True , A="relu" , A=2_5_6 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=2 , A=True , A=1 , A=0 , A=2 , A=6_0_0_0 , A=1_0_2_4 , A=2 , A=(5, 5) , A=1_0_2_4 , A=8_0 , A=1 , **A , ) -> str: snake_case : List[str] = vocab_size snake_case : Optional[Any] = d_model snake_case : str = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Any = encoder_attention_heads snake_case : List[Any] = decoder_ffn_dim snake_case : Any = decoder_layers snake_case : Tuple = decoder_attention_heads snake_case : Dict = dropout snake_case : Optional[int] = attention_dropout snake_case : Optional[int] = activation_dropout snake_case : str = activation_function snake_case : int = init_std snake_case : str = encoder_layerdrop snake_case : Optional[Any] = decoder_layerdrop snake_case : Any = use_cache snake_case : int = encoder_layers snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : str = max_source_positions snake_case : Optional[int] = max_target_positions snake_case : List[str] = num_conv_layers snake_case : List[str] = list(A ) snake_case : Dict = conv_channels snake_case : Optional[int] = input_feat_per_channel snake_case : Union[str, Any] = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , **A , )
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = [] snake_case : List[str] = [] for i in range(self.num_layers ): snake_case : int = self.in_channels if i == 0 else self.out_channels snake_case : str = FlaxResnetBlockaD( in_channels=A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : Tuple = resnets snake_case : Tuple = attentions if self.add_downsample: snake_case : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A=True ) -> List[Any]: snake_case : int = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case : Union[str, Any] = resnet(A , A , deterministic=A ) snake_case : Tuple = attn(A , A , deterministic=A ) output_states += (hidden_states,) if self.add_downsample: snake_case : int = self.downsamplers_a(A ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = True _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = [] for i in range(self.num_layers ): snake_case : List[Any] = self.in_channels if i == 0 else self.out_channels snake_case : Union[str, Any] = FlaxResnetBlockaD( in_channels=A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : List[Any] = resnets if self.add_downsample: snake_case : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A=True ) -> Any: snake_case : List[Any] = () for resnet in self.resnets: snake_case : Any = resnet(A , A , deterministic=A ) output_states += (hidden_states,) if self.add_downsample: snake_case : Dict = self.downsamplers_a(A ) output_states += (hidden_states,) return hidden_states, output_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Any: snake_case : int = [] snake_case : List[Any] = [] for i in range(self.num_layers ): snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : Tuple = self.prev_output_channel if i == 0 else self.out_channels snake_case : List[str] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : int = resnets snake_case : int = attentions if self.add_upsample: snake_case : Optional[int] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A , A=True ) -> int: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case : Dict = res_hidden_states_tuple[-1] snake_case : Optional[Any] = res_hidden_states_tuple[:-1] snake_case : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : Dict = resnet(A , A , deterministic=A ) snake_case : Union[str, Any] = attn(A , A , deterministic=A ) if self.add_upsample: snake_case : Dict = self.upsamplers_a(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = True _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[Any] = [] for i in range(self.num_layers ): snake_case : Optional[int] = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : Tuple = self.prev_output_channel if i == 0 else self.out_channels snake_case : Union[str, Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : int = resnets if self.add_upsample: snake_case : Any = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , A , A , A , A=True ) -> str: for resnet in self.resnets: # pop res hidden states snake_case : List[Any] = res_hidden_states_tuple[-1] snake_case : Optional[int] = res_hidden_states_tuple[:-1] snake_case : List[str] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : Union[str, Any] = resnet(A , A , deterministic=A ) if self.add_upsample: snake_case : Any = self.upsamplers_a(A ) return hidden_states class __lowercase (nn.Module ): """simple docstring""" _snake_case = 42 _snake_case = 0.0 _snake_case = 1 _snake_case = 1 _snake_case = False _snake_case = False _snake_case = jnp.floataa def UpperCAmelCase ( self ) -> Union[str, Any]: # there is always at least one resnet snake_case : Tuple = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case : Dict = [] for _ in range(self.num_layers ): snake_case : str = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(A ) snake_case : str = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(A ) snake_case : Optional[Any] = resnets snake_case : str = attentions def __call__( self , A , A , A , A=True ) -> Dict: snake_case : Union[str, Any] = self.resnets[0](A , A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case : Any = attn(A , A , deterministic=A ) snake_case : Dict = resnet(A , A , deterministic=A ) return hidden_states
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = False ) -> str: if not isinstance(lowercase ,lowercase ): snake_case : str = f"""Expected string as input, found {type(lowercase )}""" raise ValueError(lowercase ) if not isinstance(lowercase ,lowercase ): snake_case : Dict = f"""Expected boolean as use_pascal parameter, found {type(lowercase )}""" raise ValueError(lowercase ) snake_case : int = input_str.split("""_""" ) snake_case : Tuple = 0 if use_pascal else 1 snake_case : Union[str, Any] = words[start_index:] snake_case : List[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case : Tuple = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : """simple docstring""" @staticmethod def UpperCAmelCase ( *A , **A ) -> List[str]: pass @is_pipeline_test @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" _snake_case = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase ( self , A , A , A ) -> str: snake_case : List[str] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) snake_case : str = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def UpperCAmelCase ( self , A , A ) -> int: snake_case : Dict = vqa_pipeline(A , top_k=1 ) self.assertEqual( A , [ [{"""score""": ANY(A ), """answer""": ANY(A )}], [{"""score""": ANY(A ), """answer""": ANY(A )}], ] , ) @require_torch def UpperCAmelCase ( self ) -> str: snake_case : Union[str, Any] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) snake_case : List[str] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case : Union[str, Any] = """How many cats are there?""" snake_case : Union[str, Any] = vqa_pipeline(image=A , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( A , [{"""score""": ANY(A ), """answer""": ANY(A )}, {"""score""": ANY(A ), """answer""": ANY(A )}] ) snake_case : Tuple = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( A , [{"""score""": ANY(A ), """answer""": ANY(A )}, {"""score""": ANY(A ), """answer""": ANY(A )}] ) @slow @require_torch def UpperCAmelCase ( self ) -> int: snake_case : Dict = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) snake_case : Optional[Any] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" snake_case : Optional[int] = """How many cats are there?""" snake_case : Tuple = vqa_pipeline(image=A , question=A , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) snake_case : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) snake_case : Any = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(A , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def UpperCAmelCase ( self ) -> Any: pass
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=3_0 , A=2 , A=3 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , A=3 , A=None , A=2 , ) -> Union[str, Any]: snake_case : Tuple = parent snake_case : str = batch_size snake_case : Union[str, Any] = image_size snake_case : Union[str, Any] = patch_size snake_case : Dict = num_channels snake_case : Union[str, Any] = is_training snake_case : List[Any] = use_labels snake_case : int = hidden_size snake_case : Tuple = num_hidden_layers snake_case : List[str] = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : Optional[Any] = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : List[str] = initializer_range snake_case : Tuple = scope snake_case : List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case : Optional[Any] = (image_size // patch_size) ** 2 snake_case : int = num_patches + 2 def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> List[str]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , A , A , A ) -> List[str]: snake_case : Optional[int] = DeiTModel(config=A ) model.to(A ) model.eval() snake_case : Dict = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A ) -> Optional[int]: snake_case : List[str] = DeiTForMaskedImageModeling(config=A ) model.to(A ) model.eval() snake_case : Optional[int] = model(A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : Dict = 1 snake_case : int = DeiTForMaskedImageModeling(A ) model.to(A ) model.eval() snake_case : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Any = model(A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , A , A , A ) -> int: snake_case : Tuple = self.type_sequence_label_size snake_case : Optional[int] = DeiTForImageClassification(A ) model.to(A ) model.eval() snake_case : Optional[Any] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Union[str, Any] = 1 snake_case : List[str] = DeiTForImageClassification(A ) model.to(A ) model.eval() snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Optional[int] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Tuple = config_and_inputs snake_case : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = DeiTModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> List[str]: snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Any = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Dict = model_class(A ) snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Dict = [*signature.parameters.keys()] snake_case : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> str: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A ) def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCAmelCase ( self , A , A , A=False ) -> List[Any]: snake_case : Union[str, Any] = super()._prepare_for_class(A , A , return_labels=A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case : Optional[Any] = model_class(A ) model.to(A ) model.train() snake_case : List[Any] = self._prepare_for_class(A , A , return_labels=A ) snake_case : int = model(**A ).loss loss.backward() def UpperCAmelCase ( self ) -> Any: snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case : List[Any] = False snake_case : Any = True for model_class in self.all_model_classes: if model_class in get_values(A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case : Union[str, Any] = model_class(A ) model.gradient_checkpointing_enable() model.to(A ) model.train() snake_case : Tuple = self._prepare_for_class(A , A , return_labels=A ) snake_case : List[Any] = model(**A ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(A ), *get_values(A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): snake_case : Dict = problem_type["""title"""] snake_case : Dict = problem_type["""num_labels"""] snake_case : Dict = model_class(A ) model.to(A ) model.train() snake_case : Any = self._prepare_for_class(A , A , return_labels=A ) if problem_type["num_labels"] > 1: snake_case : Any = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) snake_case : List[str] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=A ) as warning_list: snake_case : Optional[int] = model(**A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def UpperCAmelCase ( self ) -> Dict: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Dict = DeiTModel.from_pretrained(A ) self.assertIsNotNone(A ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Union[str, Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( A ) snake_case : int = self.default_image_processor snake_case : Dict = prepare_img() snake_case : Optional[Any] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): snake_case : int = model(**A ) # verify the logits snake_case : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A ) snake_case : Any = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Dict = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) snake_case : Optional[Any] = self.default_image_processor snake_case : Tuple = prepare_img() snake_case : str = image_processor(images=A , return_tensors="""pt""" ) snake_case : str = inputs.pixel_values.to(A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case : List[Any] = model(A )
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase : str = random.Random() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=1.0 ,lowercase=None ,lowercase=None ) -> Any: if rng is None: snake_case : Optional[int] = global_rng snake_case : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_0_0 , A=2_0_0_0 , A=1_0 , A=1_6_0 , A=8 , A=0.0 , A=4_0_0_0 , A=False , A=True , ) -> List[str]: snake_case : Dict = parent snake_case : Any = batch_size snake_case : Union[str, Any] = min_seq_length snake_case : List[str] = max_seq_length snake_case : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : List[str] = padding_value snake_case : Optional[int] = sampling_rate snake_case : Dict = return_attention_mask snake_case : Any = do_normalize snake_case : Tuple = feature_size snake_case : int = chunk_length snake_case : Union[str, Any] = hop_length def UpperCAmelCase ( self ) -> Optional[int]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self , A=False , A=False ) -> Any: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: snake_case : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : List[str] = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase ( self ) -> int: snake_case : Any = WhisperFeatureExtractionTester(self ) def UpperCAmelCase ( self ) -> Dict: snake_case : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Tuple = feat_extract_first.save_pretrained(A )[0] check_json_file_has_correct_format(A ) snake_case : str = self.feature_extraction_class.from_pretrained(A ) snake_case : Any = feat_extract_first.to_dict() snake_case : List[str] = feat_extract_second.to_dict() snake_case : List[Any] = feat_extract_first.mel_filters snake_case : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Any: snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Optional[Any] = os.path.join(A , """feat_extract.json""" ) feat_extract_first.to_json_file(A ) snake_case : List[str] = self.feature_extraction_class.from_json_file(A ) snake_case : int = feat_extract_first.to_dict() snake_case : Tuple = feat_extract_second.to_dict() snake_case : str = feat_extract_first.mel_filters snake_case : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A , A ) ) self.assertEqual(A , A ) def UpperCAmelCase ( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case : Optional[Any] = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size snake_case : str = feature_extractor(A , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case : int = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features snake_case : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched snake_case : List[str] = feature_extractor(A , return_tensors="""np""" ).input_features snake_case : List[str] = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case : Any = np.asarray(A ) snake_case : List[str] = feature_extractor(A , return_tensors="""np""" ).input_features snake_case : Optional[Any] = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test truncation required snake_case : int = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case : Optional[Any] = [np.asarray(A ) for speech_input in speech_inputs] snake_case : Any = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case : Any = [np.asarray(A ) for speech_input in speech_inputs_truncated] snake_case : Dict = feature_extractor(A , return_tensors="""np""" ).input_features snake_case : List[Any] = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def UpperCAmelCase ( self ) -> str: import torch snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Optional[int] = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech snake_case : Any = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCAmelCase ( self ) -> Tuple: # fmt: off snake_case : Tuple = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on snake_case : int = self._load_datasamples(1 ) snake_case : Optional[Any] = WhisperFeatureExtractor() snake_case : List[str] = feature_extractor(A , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , A , atol=1e-4 ) ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : int = self._load_datasamples(1 )[0] snake_case : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A )[0] self.assertTrue(np.all(np.mean(A ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A ) - 1 ) < 1e-3 ) )
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = KandinskyInpaintPipeline _snake_case = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _snake_case = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _snake_case = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _snake_case = False @property def UpperCAmelCase ( self ) -> str: return 3_2 @property def UpperCAmelCase ( self ) -> List[str]: return 3_2 @property def UpperCAmelCase ( self ) -> str: return self.time_input_dim @property def UpperCAmelCase ( self ) -> Dict: return self.time_input_dim * 4 @property def UpperCAmelCase ( self ) -> str: return 1_0_0 @property def UpperCAmelCase ( self ) -> List[str]: snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) snake_case : List[str] = MultilingualCLIP(A ) snake_case : Optional[int] = text_encoder.eval() return text_encoder @property def UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case : Tuple = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case : Union[str, Any] = UNetaDConditionModel(**A ) return model @property def UpperCAmelCase ( self ) -> str: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) snake_case : str = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[str] = self.dummy_text_encoder snake_case : List[Any] = self.dummy_tokenizer snake_case : Any = self.dummy_unet snake_case : List[Any] = self.dummy_movq snake_case : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=A , ) snake_case : List[Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase ( self , A , A=0 ) -> Any: snake_case : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A ) ).to(A ) snake_case : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A ) # create init_image snake_case : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A ) ).to(A ) snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : List[Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((2_5_6, 2_5_6) ) # create mask snake_case : Optional[int] = np.ones((6_4, 6_4) , dtype=np.floataa ) snake_case : Dict = 0 if str(A ).startswith("""mps""" ): snake_case : List[Any] = torch.manual_seed(A ) else: snake_case : List[Any] = torch.Generator(device=A ).manual_seed(A ) snake_case : List[str] = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCAmelCase ( self ) -> int: snake_case : Any = """cpu""" snake_case : Optional[Any] = self.get_dummy_components() snake_case : List[str] = self.pipeline_class(**A ) snake_case : Optional[int] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : str = pipe(**self.get_dummy_inputs(A ) ) snake_case : Dict = output.images snake_case : Optional[int] = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) snake_case : Any = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def UpperCAmelCase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> Tuple: snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) snake_case : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) snake_case : List[str] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) snake_case : List[str] = 0 snake_case : int = """a hat""" snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A ) snake_case : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) snake_case : List[Any] = pipeline.to(A ) pipeline.set_progress_bar_config(disable=A ) snake_case : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case , snake_case : Dict = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() snake_case : Optional[Any] = pipeline( A , image=A , mask_image=A , image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="""np""" , ) snake_case : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A , A )
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : List[Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """xmod""" def __init__( self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1e-1_2 , A=1 , A=0 , A=2 , A="absolute" , A=True , A=None , A=False , A=2 , A=False , A=True , A=True , A=("en_XX",) , A=None , **A , ) -> str: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) snake_case : str = vocab_size snake_case : List[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[str] = hidden_act snake_case : str = intermediate_size snake_case : List[str] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : Optional[int] = max_position_embeddings snake_case : Dict = type_vocab_size snake_case : str = initializer_range snake_case : List[str] = layer_norm_eps snake_case : str = position_embedding_type snake_case : List[Any] = use_cache snake_case : Dict = classifier_dropout snake_case : Union[str, Any] = pre_norm snake_case : Union[str, Any] = adapter_reduction_factor snake_case : Optional[int] = adapter_layer_norm snake_case : str = adapter_reuse_layer_norm snake_case : Tuple = ln_before_adapter snake_case : List[Any] = list(A ) snake_case : Tuple = default_language class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCamelCase : List[Any] = 'scheduler_config.json' class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 1 _snake_case = 2 _snake_case = 3 _snake_case = 4 _snake_case = 5 _snake_case = 6 _snake_case = 7 _snake_case = 8 _snake_case = 9 _snake_case = 10 _snake_case = 11 _snake_case = 12 _snake_case = 13 _snake_case = 14 @dataclass class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 42 class __lowercase : """simple docstring""" _snake_case = SCHEDULER_CONFIG_NAME _snake_case = [] _snake_case = True @classmethod def UpperCAmelCase ( cls , A = None , A = None , A=False , **A , ) -> List[Any]: snake_case , snake_case , snake_case : Optional[int] = cls.load_config( pretrained_model_name_or_path=A , subfolder=A , return_unused_kwargs=A , return_commit_hash=A , **A , ) return cls.from_config(A , return_unused_kwargs=A , **A ) def UpperCAmelCase ( self , A , A = False , **A ) -> Union[str, Any]: self.save_config(save_directory=A , push_to_hub=A , **A ) @property def UpperCAmelCase ( self ) -> Optional[Any]: return self._get_compatibles() @classmethod def UpperCAmelCase ( cls ) -> Tuple: snake_case : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case : Optional[Any] = importlib.import_module(__name__.split(""".""" )[0] ) snake_case : int = [ getattr(A , A ) for c in compatible_classes_str if hasattr(A , A ) ] return compatible_classes
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = VQModel _snake_case = """sample""" @property def UpperCAmelCase ( self , A=(3_2, 3_2) ) -> Any: snake_case : Dict = 4 snake_case : str = 3 snake_case : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(A ) return {"sample": image} @property def UpperCAmelCase ( self ) -> Dict: return (3, 3_2, 3_2) @property def UpperCAmelCase ( self ) -> Any: return (3, 3_2, 3_2) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = { """block_out_channels""": [3_2, 6_4], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } snake_case : List[str] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> Optional[int]: pass def UpperCAmelCase ( self ) -> Dict: snake_case , snake_case : Optional[int] = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) snake_case : Optional[int] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase ( self ) -> List[str]: snake_case : Tuple = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(A ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) snake_case : List[str] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) snake_case : Union[str, Any] = image.to(A ) with torch.no_grad(): snake_case : Dict = model(A ).sample snake_case : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case : List[str] = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(A , A , atol=1e-3 ) )
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
from itertools import permutations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case : Dict = [7, 11, 13, 17] for i, test in enumerate(lowercase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE__ ( lowercase = 10 ) -> int: return sum( int("""""".join(map(lowercase ,lowercase ) ) ) for num in permutations(range(lowercase ) ) if is_substring_divisible(lowercase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """naver-clova-ix/donut-base-finetuned-docvqa""" _snake_case = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) _snake_case = """document_qa""" _snake_case = AutoProcessor _snake_case = VisionEncoderDecoderModel _snake_case = ["""image""", """text"""] _snake_case = ["""text"""] def __init__( self , *A , **A ) -> Dict: if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*A , **A ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: snake_case : int = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" snake_case : Any = task_prompt.replace("""{user_input}""" , A ) snake_case : List[Any] = self.pre_processor.tokenizer( A , add_special_tokens=A , return_tensors="""pt""" ).input_ids snake_case : Union[str, Any] = self.pre_processor(A , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase ( self , A ) -> Optional[Any]: return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A , ).sequences def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = self.pre_processor.batch_decode(A )[0] snake_case : int = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) snake_case : Tuple = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) snake_case : List[Any] = re.sub(r"""<.*?>""" , """""" , A , count=1 ).strip() # remove first task start token snake_case : Any = self.pre_processor.tokenajson(A ) return sequence["answer"]
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Union[str, Any]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case : Any = (boundary[1] - boundary[0]) / steps snake_case : Optional[Any] = boundary[0] snake_case : Dict = boundary[1] snake_case : List[str] = make_points(lowercase ,lowercase ,lowercase ) snake_case : Any = 0.0 y += (h / 2.0) * f(lowercase ) for i in x_i: # print(i) y += h * f(lowercase ) y += (h / 2.0) * f(lowercase ) return y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : Union[str, Any] = a + h while x < (b - h): yield x snake_case : str = x + h def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: # enter your function here snake_case : Any = (x - 0) * (x - 0) return y def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[Any] = 0.0 # Lower bound of integration snake_case : List[str] = 1.0 # Upper bound of integration snake_case : List[str] = 10.0 # define number of steps or resolution snake_case : List[Any] = [a, b] # define boundary of integration snake_case : Optional[Any] = method_a(lowercase ,lowercase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE__ ( lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowercase ): snake_case : Any = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowercase )[1] in (".py", ".ipynb"): yield os.path.join(lowercase ,lowercase ).lstrip("""./""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: return f"""{i * " "}*""" if i else "\n##" def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: snake_case : Union[str, Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowercase ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(lowercase )} {new_part.replace("_" ," " ).title()}""" ) return new_path def SCREAMING_SNAKE_CASE__ ( lowercase = "." ) -> None: snake_case : str = """""" for filepath in sorted(good_file_paths(lowercase ) ): snake_case , snake_case : Optional[Any] = os.path.split(lowercase ) if filepath != old_path: snake_case : Any = print_path(lowercase ,lowercase ) snake_case : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case : List[str] = f"""{filepath}/{filename}""".replace(""" """ ,"""%20""" ) snake_case : Optional[int] = os.path.splitext(filename.replace("""_""" ,""" """ ).title() )[0] print(f"""{md_prefix(lowercase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A = "▁" , A = True , A = "<unk>" , A = "</s>" , A = "<pad>" , ) -> str: snake_case : Optional[int] = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case : List[str] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case : Union[str, Any] = token_dict["""token"""] snake_case : Any = Tokenizer(Unigram() ) snake_case : List[str] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case : str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=A , add_prefix_space=A ), pre_tokenizers.Digits(individual_digits=A ), pre_tokenizers.Punctuation(), ] ) snake_case : Tuple = decoders.Metaspace(replacement=A , add_prefix_space=A ) snake_case : int = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case : Optional[Any] = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(A , A ) def UpperCAmelCase ( self , A , A = 8_0_0_0 , A = True , ) -> Optional[Any]: snake_case : Dict = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) if isinstance(A , A ): snake_case : List[str] = [files] self._tokenizer.train(A , trainer=A ) self.add_unk_id() def UpperCAmelCase ( self , A , A = 8_0_0_0 , A = True , ) -> List[str]: snake_case : Optional[int] = trainers.UnigramTrainer( vocab_size=A , special_tokens=self.special_tokens_list , show_progress=A , ) self._tokenizer.train_from_iterator(A , trainer=A ) self.add_unk_id() def UpperCAmelCase ( self ) -> int: snake_case : Any = json.loads(self._tokenizer.to_str() ) snake_case : List[Any] = self.special_tokens["""unk"""]["""id"""] snake_case : Union[str, Any] = Tokenizer.from_str(json.dumps(A ) )
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spiece.model'} lowerCamelCase : str = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowerCamelCase : List[str] = { 'AI-Sweden/gpt-sw3-126m': 2_0_4_8, 'AI-Sweden/gpt-sw3-350m': 2_0_4_8, 'AI-Sweden/gpt-sw3-1.6b': 2_0_4_8, 'AI-Sweden/gpt-sw3-6.7b': 2_0_4_8, 'AI-Sweden/gpt-sw3-20b': 2_0_4_8, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A=False , A=False , A=False , A=None , A=None , A=None , A=None , A = None , **A , ) -> None: snake_case : int = {} if sp_model_kwargs is None else sp_model_kwargs snake_case : int = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) snake_case : Any = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing snake_case : Tuple = """<|endoftext|>""" if eos_token is None else eos_token snake_case : List[Any] = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: snake_case : List[str] = unk_token if pad_token is None else pad_token snake_case : Tuple = eos_token if bos_token is None else bos_token else: snake_case : Optional[int] = """<pad>""" if pad_token is None else pad_token snake_case : str = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Dict = do_lower_case snake_case : List[str] = remove_space snake_case : Union[str, Any] = keep_accents snake_case : List[str] = vocab_file snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off snake_case : Dict = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing snake_case : Union[str, Any] = re.compile( f"""[{"".join(map(A , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> Any: snake_case : Any = self.__dict__.copy() snake_case : Dict = None return state def __setstate__( self , A ) -> List[str]: snake_case : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : str = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCAmelCase ( self ) -> int: return len(self.sp_model ) def UpperCAmelCase ( self , A ) -> str: snake_case : Union[str, Any] = self.non_printing_characters_re.sub("""""" , A ) # Normalize whitespaces snake_case : int = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization snake_case : str = unicodedata.normalize("""NFC""" , A ) return text def UpperCAmelCase ( self , A , **A ) -> List[str]: snake_case : Union[str, Any] = self.preprocess_text(A ) return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> int: return self.sp_model.PieceToId(A ) def UpperCAmelCase ( self , A ) -> str: return self.sp_model.IdToPiece(A ) @staticmethod def UpperCAmelCase ( A ) -> str: return out_string def UpperCAmelCase ( self , A ) -> str: snake_case : int = [] snake_case : str = """""" snake_case : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token snake_case : str = True snake_case : Dict = [] else: current_sub_tokens.append(A ) snake_case : Any = False out_string += self.sp_model.decode(A ) return out_string def UpperCAmelCase ( self ) -> Dict[str, int]: snake_case : int = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : List[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Any = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCAmelCase ( self , A , A = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: if isinstance(A , A ): snake_case : int = self.preprocess_text(A ) snake_case : str = self.sp_model.encode(A ) else: snake_case : Optional[int] = [self.preprocess_text(A ) for t in text] snake_case : Any = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": snake_case : Any = torch.tensor(A ) return token_ids def UpperCAmelCase ( self , A ) -> str: return self.sp_model.decode(A ) def UpperCAmelCase ( self , A ) -> List[int]: snake_case : List[Any] = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] snake_case : int = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(A ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=A )
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=1_8 , A=3_0 , A=4_0_0 , A=True , A=None , A=True , A=None , A=True , ) -> Any: snake_case : Tuple = size if size is not None else {"""shortest_edge""": 2_0} snake_case : List[str] = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} snake_case : Optional[Any] = parent snake_case : int = batch_size snake_case : str = num_channels snake_case : Optional[int] = image_size snake_case : Dict = min_resolution snake_case : Union[str, Any] = max_resolution snake_case : int = do_resize snake_case : Any = size snake_case : Dict = do_center_crop snake_case : Any = crop_size snake_case : List[str] = do_flip_channel_order def UpperCAmelCase ( self ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> str: snake_case : Any = MobileViTImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Dict: snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """center_crop""" ) ) self.assertTrue(hasattr(A , """do_flip_channel_order""" ) ) def UpperCAmelCase ( self ) -> Dict: snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCAmelCase ( self ) -> List[str]: pass def UpperCAmelCase ( self ) -> Any: # Initialize image_processing snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : int = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : Optional[Any] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase ( self ) -> Dict: # Initialize image_processing snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : Optional[int] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCamelCase : Tuple = getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = 8 ,lowercase = 1024 ,lowercase="val" ,lowercase=None ,lowercase=False ,lowercase="summarization" ,lowercase=None ,lowercase=1 ,lowercase = None ,lowercase="" ,**lowercase ,) -> Dict: snake_case : Union[str, Any] = str(lowercase ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" ,rank=lowercase ) snake_case : Union[str, Any] = Path(lowercase ) snake_case : Tuple = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(lowercase ) snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(lowercase ).cuda() if fpaa: snake_case : int = model.half() # determine if we need to increase num_beams use_task_specific_params(lowercase ,lowercase ) # update config with task specific params snake_case : Optional[Any] = generate_kwargs.pop("""num_beams""" ,model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: snake_case : Union[str, Any] = num_return_sequences snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: snake_case : Dict = tokenizer.model_max_length if prefix is None: snake_case : str = prefix or getattr(model.config ,"""prefix""" ,"""""" ) or """""" snake_case : Union[str, Any] = SeqaSeqDataset( lowercase ,lowercase ,lowercase ,max_target_length=1024 ,type_path=lowercase ,n_obs=lowercase ,prefix=lowercase ,**lowercase ,) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. snake_case : Dict = ds.make_sortish_sampler(lowercase ,distributed=lowercase ,add_extra_examples=lowercase ,shuffle=lowercase ) snake_case : Union[str, Any] = DataLoader(lowercase ,sampler=lowercase ,batch_size=lowercase ,collate_fn=ds.collate_fn ) snake_case : Optional[int] = [] for batch in tqdm(lowercase ): snake_case : int = model.generate( input_ids=batch["""input_ids"""].to(model.device ) ,attention_mask=batch["""attention_mask"""].to(model.device ) ,num_return_sequences=lowercase ,num_beams=lowercase ,**lowercase ,) snake_case : List[Any] = tokenizer.batch_decode(lowercase ,skip_special_tokens=lowercase ,clean_up_tokenization_spaces=lowercase ) snake_case : List[str] = batch["""ids"""] if num_return_sequences > 1: snake_case : Union[str, Any] = chunks(lowercase ,lowercase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowercase ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(lowercase ,lowercase ) return results, sampler.num_replicas def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Optional[int] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" ,type=lowercase ,help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" ,type=lowercase ,help="""like facebook/bart-large-cnn,t5-base, etc.""" ,default="""sshleifer/distilbart-xsum-12-3""" ,) parser.add_argument("""--save_dir""" ,type=lowercase ,help="""where to save""" ,default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" ,type=lowercase ,default=lowercase ) parser.add_argument( """--type_path""" ,type=lowercase ,default="""test""" ,help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" ,type=lowercase ,default="""summarization""" ,help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" ,type=lowercase ,default=8 ,required=lowercase ,help="""batch size""" ) parser.add_argument( """--local_rank""" ,type=lowercase ,default=-1 ,required=lowercase ,help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" ,type=lowercase ,default=lowercase ,required=lowercase ,help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" ,type=lowercase ,default=1 ,required=lowercase ,help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" ,type=lowercase ,default=600 ,required=lowercase ,help="""How long should master process wait for other processes to finish.""" ,) parser.add_argument("""--src_lang""" ,type=lowercase ,default=lowercase ,required=lowercase ) parser.add_argument("""--tgt_lang""" ,type=lowercase ,default=lowercase ,required=lowercase ) parser.add_argument( """--prefix""" ,type=lowercase ,required=lowercase ,default=lowercase ,help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" ,action="""store_true""" ) parser.add_argument("""--debug""" ,action="""store_true""" ) snake_case : Optional[Any] = time.time() snake_case , snake_case : Optional[Any] = parser.parse_known_args() snake_case : int = parse_numeric_n_bool_cl_kwargs(lowercase ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) snake_case : Tuple = Path(args.save_dir + """_tmp""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) # this handles locking. snake_case : Any = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. snake_case : List[Any] = {} if args.src_lang is not None: snake_case : Dict = args.src_lang if args.tgt_lang is not None: snake_case : Any = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowercase ) snake_case , snake_case : Tuple = eval_data_dir( args.data_dir ,lowercase ,args.model_name ,type_path=args.type_path ,bs=args.bs ,fpaa=args.fpaa ,task=args.task ,local_rank=args.local_rank ,n_obs=args.n_obs ,max_source_length=args.max_source_length ,num_return_sequences=args.num_return_sequences ,prefix=args.prefix ,dataset_kwargs=lowercase ,**lowercase ,) if args.local_rank <= 0: snake_case : List[Any] = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowercase ) snake_case : int = gather_results_from_each_node(lowercase ,lowercase ,args.sync_timeout ) snake_case : Dict = combine_partial_results(lowercase ) if args.num_return_sequences > 1: snake_case : Union[str, Any] = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(lowercase ,lowercase ) return snake_case : Tuple = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(lowercase ) as f: snake_case : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowercase )] # Calculate metrics, save metrics, and save _generations.txt snake_case : List[str] = """translation""" in args.task snake_case : Tuple = calculate_bleu if calc_bleu else calculate_rouge snake_case : int = """bleu""" if calc_bleu else """rouge""" snake_case : Dict = score_fn(lowercase ,lowercase ) snake_case : int = len(lowercase ) snake_case : Union[str, Any] = time.time() - start_time snake_case : Union[str, Any] = round(runtime / metrics["""n_obs"""] ,4 ) snake_case : List[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics snake_case : List[Any] = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(lowercase ,lowercase ,indent=lowercase ) print(lowercase ) write_txt_file(lowercase ,save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(lowercase ,save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List: snake_case : Optional[int] = [] for partial_result in partial_results: records.extend(lowercase ) snake_case : Any = sorted(lowercase ,key=lambda lowercase : x["id"] ) snake_case : Union[str, Any] = [x["""pred"""] for x in records] return preds def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files snake_case : List[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) snake_case : Union[str, Any] = None while (time.time() - start_wait) < timeout: snake_case : str = list(save_dir.glob("""rank_*.json""" ) ) if len(lowercase ) < num_replicas: continue try: # make sure all json files are fully saved snake_case : List[Any] = lmap(lowercase ,lowercase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from __future__ import annotations lowerCamelCase : List[Any] = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCamelCase : int = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : List[str] = [] snake_case : Dict = len(lowercase ) for i in range(lowercase ): snake_case : float = -1 for j in range(i + 1 ,lowercase ): if arr[i] < arr[j]: snake_case : List[Any] = arr[j] break result.append(lowercase ) return result def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : Union[str, Any] = [] for i, outer in enumerate(lowercase ): snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: snake_case : Tuple = inner break result.append(lowercase ) return result def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[float]: snake_case : Optional[Any] = len(lowercase ) snake_case : list[float] = [] snake_case : list[float] = [-1] * arr_size for index in reversed(range(lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: snake_case : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase : List[str] = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
import requests def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: snake_case : Any = {"""Content-Type""": """application/json"""} snake_case : Optional[int] = requests.post(SCREAMING_SNAKE_CASE_ ,json={"""text""": message_body} ,headers=SCREAMING_SNAKE_CASE_ ) if response.status_code != 200: snake_case : List[str] = ( """Request to slack returned an error """ f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if number > 0: raise ValueError("""input must be a negative integer""" ) snake_case : List[str] = len(bin(__A )[3:] ) snake_case : Optional[Any] = bin(abs(__A ) - (1 << binary_number_length) )[3:] snake_case : int = ( ( """1""" + """0""" * (binary_number_length - len(__A )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: snake_case : Tuple = tempfile.mkdtemp() snake_case : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) snake_case : int = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } snake_case : str = os.path.join(self.tmpdirname , UpperCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase ( self , **A ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self , **A ) -> str: return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self , **A ) -> Dict: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case : Any = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.get_tokenizer() snake_case : Optional[int] = self.get_rust_tokenizer() snake_case : int = self.get_image_processor() snake_case : int = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case : int = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_ ) snake_case : List[Any] = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> int: snake_case : str = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case : Any = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) snake_case : str = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: snake_case : str = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : str = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) snake_case : str = self.prepare_image_inputs() snake_case : List[Any] = image_processor(UpperCAmelCase_ , return_tensors="""np""" ) snake_case : str = processor(images=UpperCAmelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[Any] = self.get_image_processor() snake_case : Optional[int] = self.get_tokenizer() snake_case : List[Any] = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) snake_case : Dict = """lower newer""" snake_case : Any = processor(text=UpperCAmelCase_ ) snake_case : Dict = tokenizer(UpperCAmelCase_ , padding="""max_length""" , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[str] = self.get_image_processor() snake_case : str = self.get_tokenizer() snake_case : Union[str, Any] = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) snake_case : str = """lower newer""" snake_case : Tuple = self.prepare_image_inputs() snake_case : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : Optional[int] = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) snake_case : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case : Tuple = processor.batch_decode(UpperCAmelCase_ ) snake_case : List[Any] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[Any] = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : List[str] = AlignProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) snake_case : Tuple = """lower newer""" snake_case : str = self.prepare_image_inputs() snake_case : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
class __lowercase : """simple docstring""" def __init__( self , A , A , A ) -> Union[str, Any]: snake_case : Any = None snake_case : List[str] = None snake_case : str = graph self._normalize_graph(A_ , A_ ) snake_case : Any = len(A_ ) snake_case : Optional[int] = None def UpperCAmelCase ( self , A , A ) -> str: if sources is int: snake_case : List[str] = [sources] if sinks is int: snake_case : List[Any] = [sinks] if len(A_ ) == 0 or len(A_ ) == 0: return snake_case : Optional[int] = sources[0] snake_case : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: snake_case : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) snake_case : Tuple = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: snake_case : Any = max_input_flow snake_case : Any = 0 snake_case : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: snake_case : Dict = max_input_flow snake_case : Tuple = size - 1 def UpperCAmelCase ( self ) -> Dict: if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : Union[str, Any] = algorithm(self ) class __lowercase : """simple docstring""" def __init__( self , A ) -> List[Any]: snake_case : List[Any] = flow_network snake_case : Optional[int] = flow_network.verticesCount snake_case : Optional[Any] = flow_network.sourceIndex snake_case : Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that snake_case : List[str] = flow_network.graph snake_case : Tuple = False def UpperCAmelCase ( self ) -> Dict: if not self.executed: self._algorithm() snake_case : str = True def UpperCAmelCase ( self ) -> Dict: pass class __lowercase (_SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , A ) -> List[Any]: super().__init__(A_ ) # use this to save your result snake_case : str = -1 def UpperCAmelCase ( self ) -> Optional[int]: if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class __lowercase (_SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , A ) -> List[str]: super().__init__(A_ ) snake_case : str = [[0] * self.verticies_count for i in range(self.verticies_count )] snake_case : int = [0] * self.verticies_count snake_case : Optional[int] = [0] * self.verticies_count def UpperCAmelCase ( self ) -> List[str]: snake_case : int = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule snake_case : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list snake_case : Any = 0 while i < len(A_ ): snake_case : Union[str, Any] = vertices_list[i] snake_case : int = self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) snake_case : Any = 0 else: i += 1 snake_case : Tuple = sum(self.preflow[self.source_index] ) def UpperCAmelCase ( self , A ) -> List[Any]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def UpperCAmelCase ( self , A , A ) -> Dict: snake_case : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): snake_case : str = self.heights[to_index] if min_height is not None: snake_case : str = min_height + 1 if __name__ == "__main__": lowerCamelCase : str = [0] lowerCamelCase : List[str] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] lowerCamelCase : Optional[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network lowerCamelCase : Any = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate lowerCamelCase : str = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCamelCase : List[str] = logging.getLogger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A=None ) -> Optional[int]: super().__init__( UpperCamelCase_ , question_encoder_tokenizer=UpperCamelCase_ , generator_tokenizer=UpperCamelCase_ , index=UpperCamelCase_ , init_retrieval=UpperCamelCase_ , ) snake_case : Optional[int] = None def UpperCAmelCase ( self , A ) -> Any: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually snake_case : int = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case : Union[str, Any] = str(distributed_port + 1 ) snake_case : Optional[int] = dist.new_group(ranks=UpperCamelCase_ , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase ( self ) -> Dict: return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase ( self , A , A , A=torch.floataa ) -> Tuple: snake_case : Union[str, Any] = torch.empty(UpperCamelCase_ , dtype=UpperCamelCase_ ) dist.scatter(UpperCamelCase_ , src=0 , scatter_list=UpperCamelCase_ , group=self.process_group ) return target_tensor def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case : List[str] = next((addr for addr in addrs if addr.startswith("""e""" )) , UpperCamelCase_ ) return ifname def UpperCAmelCase ( self , A , A ) -> Tuple[np.ndarray, List[dict]]: if not dist.is_initialized(): snake_case : Optional[Any] = self._main_retrieve(UpperCamelCase_ , UpperCamelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase_ ) # distributed training snake_case : int = dist.get_world_size(group=self.process_group ) # gather logic snake_case : Any = None if self._is_main(): snake_case : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCamelCase_ )] dist.gather(torch.tensor(UpperCamelCase_ ) , dst=0 , gather_list=UpperCamelCase_ , group=self.process_group ) # scatter logic snake_case : Optional[Any] = question_hidden_states.shape[0] snake_case : Optional[Any] = [] snake_case : int = [] if self._is_main(): assert len(UpperCamelCase_ ) == world_size snake_case : Any = self._main_retrieve(torch.cat(UpperCamelCase_ ).numpy() , UpperCamelCase_ ) snake_case : int = torch.tensor(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) snake_case : str = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ ) snake_case : int = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ ) snake_case : List[Any] = self._scattered(UpperCamelCase_ , [n_queries, n_docs] , target_type=torch.intaa ) snake_case : List[Any] = self._scattered(UpperCamelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCamelCase_ )
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase = 3 ,lowercase = 7 ,lowercase = 1000000 ) -> Union[str, Any]: snake_case : List[str] = 0 snake_case : List[str] = 1 for current_denominator in range(1 ,limit + 1 ): snake_case : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case : str = current_numerator snake_case : Tuple = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[float, float]: # Check if the input is valid if not len(lowerCamelCase_ ) == len(lowerCamelCase_ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can\'t be zero.""" ) # Extract the coefficients snake_case : str = equationa snake_case : List[Any] = equationa # Calculate the determinants of the matrices snake_case : Optional[int] = aa * ba - aa * ba snake_case : Union[str, Any] = ca * ba - ca * ba snake_case : Union[str, Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case : Tuple = determinant_x / determinant snake_case : Optional[int] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
class __lowercase : """simple docstring""" def __init__( self , A ) -> Union[str, Any]: snake_case : Dict = n snake_case : Dict = [None] * self.n snake_case : Tuple = 0 # index of the first element snake_case : List[Any] = 0 snake_case : List[Any] = 0 def __len__( self ) -> int: return self.size def UpperCAmelCase ( self ) -> bool: return self.size == 0 def UpperCAmelCase ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def UpperCAmelCase ( self , A ) -> Any: if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) snake_case : Tuple = data snake_case : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def UpperCAmelCase ( self ) -> Any: if self.size == 0: raise Exception("""UNDERFLOW""" ) snake_case : Dict = self.array[self.front] snake_case : Tuple = None snake_case : int = (self.front + 1) % self.n self.size -= 1 return temp
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) snake_case : Optional[int] = load_dataset("""ashraq/esc50""" ) snake_case : int = dataset['''train''']['''audio'''][-1]['''array'''] snake_case : Union[str, Any] = audio_classifier(A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A ) , [{"""score""": 0.5_01, """label""": """Sound of a dog"""}, {"""score""": 0.4_99, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase ( self ) -> Any: pass @slow @require_torch def UpperCAmelCase ( self ) -> Any: snake_case : str = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog snake_case : Tuple = load_dataset("""ashraq/esc50""" ) snake_case : int = dataset['''train''']['''audio'''][-1]['''array'''] snake_case : Optional[Any] = audio_classifier(A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A ) , [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ] , ) snake_case : Union[str, Any] = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(A ) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) snake_case : Union[str, Any] = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(A ) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def UpperCAmelCase ( self ) -> Any: pass
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> int: snake_case : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """depth_multiplier""" ) ) class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=3 , A=3_2 , A=0.25 , A=8 , A=8 , A=6 , A=3_2 , A=True , A=True , A=True , A="relu6" , A=1_2_8_0 , A=0.1 , A=0.02 , A=True , A=True , A=1_0 , A=None , ) -> List[Any]: snake_case : Optional[int] = parent snake_case : Any = batch_size snake_case : Any = num_channels snake_case : Dict = image_size snake_case : Dict = depth_multiplier snake_case : List[str] = depth_divisible_by snake_case : int = min_depth snake_case : Union[str, Any] = expand_ratio snake_case : Union[str, Any] = tf_padding snake_case : str = output_stride snake_case : Dict = first_layer_is_expansion snake_case : List[Any] = finegrained_output snake_case : Tuple = hidden_act snake_case : str = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) snake_case : Tuple = classifier_dropout_prob snake_case : Tuple = use_labels snake_case : Tuple = is_training snake_case : Any = num_labels snake_case : int = initializer_range snake_case : Any = scope def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None snake_case : List[Any] = None if self.use_labels: snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A ) -> List[str]: snake_case : Any = MobileNetVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case : Any = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCAmelCase ( self , A , A , A , A ) -> Dict: snake_case : Union[str, Any] = self.num_labels snake_case : str = MobileNetVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A ) -> List[Any]: snake_case : Dict = self.num_labels snake_case : int = MobileNetVaForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() snake_case : Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase ( self ) -> Any: snake_case : int = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification, """image-segmentation""": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[Any] = MobileNetVaModelTester(self ) snake_case : List[str] = MobileNetVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def UpperCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Optional[Any]: snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Tuple = model_class(_lowerCAmelCase ) snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[Any] = [*signature.parameters.keys()] snake_case : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> str: def check_hidden_states_output(A , A , A ): snake_case : Optional[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case : Tuple = outputs.hidden_states snake_case : List[Any] = 1_6 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[str] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[int] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def UpperCAmelCase ( self ) -> List[Any]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[Any] = MobileNetVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase ( self ) -> Optional[Any]: return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : int = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(_lowerCAmelCase ) snake_case : Optional[int] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case : int = model(**_lowerCAmelCase ) # verify the logits snake_case : Optional[int] = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) snake_case : int = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> List[str]: snake_case : str = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case : List[str] = model.to(_lowerCAmelCase ) snake_case : Dict = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) snake_case : Any = prepare_img() snake_case : int = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): snake_case : str = model(**_lowerCAmelCase ) snake_case : List[Any] = outputs.logits # verify the logits snake_case : List[Any] = torch.Size((1, 2_1, 6_5, 6_5) ) self.assertEqual(logits.shape , _lowerCAmelCase ) snake_case : Optional[Any] = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
from __future__ import annotations lowerCamelCase : Optional[Any] = 8.988e9 # units = N * m^s * C^-2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> dict[str, float]: snake_case : Optional[int] = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: snake_case : Any = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: snake_case : List[str] = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: snake_case : str = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: snake_case : Union[str, Any] = (COULOMBS_CONSTANT * charge_product / abs(lowerCamelCase__ )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } lowerCamelCase : Optional[Any] = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } lowerCamelCase : Optional[Any] = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: snake_case : Tuple = set() snake_case : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Any = char snake_case : str = set(_lowerCAmelCase ) return pairs class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> Dict: super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , **__A , ) snake_case : str = vocab_file snake_case : str = merges_file snake_case : List[str] = {} snake_case : Any = 0 snake_case : Optional[int] = 1 snake_case : List[Any] = 2 snake_case : Optional[int] = 3 self.add_from_file(__A ) snake_case : Union[str, Any] = {v: k for k, v in self.encoder.items()} with open(__A , encoding="""utf-8""" ) as merges_handle: snake_case : Optional[int] = merges_handle.read().split("""\n""" )[:-1] snake_case : Dict = [tuple(merge.split()[:-1] ) for merge in merges] snake_case : Dict = dict(zip(__A , range(len(__A ) ) ) ) snake_case : Optional[int] = {} def UpperCAmelCase ( self , A , A = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : Dict = [self.cls_token_id] snake_case : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , A , A = None , A = False ) -> str: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def UpperCAmelCase ( self , A , A = None ) -> Union[str, Any]: snake_case : List[Any] = [self.sep_token_id] snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ) -> List[str]: return len(self.encoder ) def UpperCAmelCase ( self ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , A ) -> List[Any]: if token in self.cache: return self.cache[token] snake_case : Union[str, Any] = tuple(__A ) snake_case : str = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case : Tuple = get_pairs(__A ) if not pairs: return token while True: snake_case : int = min(__A , key=lambda A : self.bpe_ranks.get(__A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case : Optional[Any] = bigram snake_case : List[Any] = [] snake_case : List[str] = 0 while i < len(__A ): try: snake_case : List[Any] = word.index(__A , __A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : List[Any] = j if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Any = tuple(__A ) snake_case : Any = new_word if len(__A ) == 1: break else: snake_case : Dict = get_pairs(__A ) snake_case : Tuple = "@@ ".join(__A ) snake_case : Tuple = word[:-4] snake_case : Optional[int] = word return word def UpperCAmelCase ( self , A ) -> Tuple: snake_case : int = [] snake_case : Any = re.findall(r"""\S+\n?""" , __A ) for token in words: split_tokens.extend(list(self.bpe(__A ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase ( self , A ) -> Any: return self.encoder.get(__A , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , A ) -> Optional[int]: return self.decoder.get(__A , self.unk_token ) def UpperCAmelCase ( self , A ) -> Optional[Any]: snake_case : Dict = " ".join(__A ).replace("""@@ """ , """""" ).strip() return out_string def UpperCAmelCase ( self , A , A = None ) -> Tuple: if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : List[str] = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Union[str, Any] = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) if os.path.abspath(self.merges_file ) != os.path.abspath(__A ): copyfile(self.merges_file , __A ) return out_vocab_file, out_merge_file def UpperCAmelCase ( self , A ) -> Union[str, Any]: if isinstance(__A , __A ): try: with open(__A , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return snake_case : Optional[int] = f.readlines() for lineTmp in lines: snake_case : List[str] = lineTmp.strip() snake_case : int = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) snake_case : Tuple = line[:idx] snake_case : Tuple = len(self.encoder )
711
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 snake_case : List[Any] = 1 snake_case : int = 1 while repunit: snake_case : str = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def SCREAMING_SNAKE_CASE__ ( lowercase = 1000000 ) -> int: snake_case : Dict = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__lowerCAmelCase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
712
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowercase (_snake_case ): """simple docstring""" def __init__( self , A , A = None , A = None , A = None , A = False , A = False , A = None , A = None , **A , ) -> str: super().__init__( A , split=A , features=A , cache_dir=A , keep_in_memory=A , streaming=A , num_proc=A , **A , ) snake_case : Optional[int] = field snake_case : Optional[int] = path_or_paths if isinstance(A , A ) else {self.split: path_or_paths} snake_case : int = Json( cache_dir=A , data_files=A , features=A , field=A , **A , ) def UpperCAmelCase ( self ) -> int: if self.streaming: snake_case : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case : Dict = None snake_case : List[str] = None snake_case : Tuple = None snake_case : Any = None self.builder.download_and_prepare( download_config=A , download_mode=A , verification_mode=A , base_path=A , num_proc=self.num_proc , ) snake_case : Tuple = self.builder.as_dataset( split=self.split , verification_mode=A , in_memory=self.keep_in_memory ) return dataset class __lowercase : """simple docstring""" def __init__( self , A , A , A = None , A = None , **A , ) -> Optional[int]: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) snake_case : Union[str, Any] = dataset snake_case : Optional[Any] = path_or_buf snake_case : str = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case : List[Any] = num_proc snake_case : int = """utf-8""" snake_case : Dict = to_json_kwargs def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , A ) snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""" ) snake_case : Dict = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) snake_case : Union[str, Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) snake_case : List[Any] = self.to_json_kwargs.pop("""compression""" , A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=A ) as buffer: snake_case : Any = self._write(file_obj=A , orient=A , lines=A , index=A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) snake_case : Optional[Any] = self._write( file_obj=self.path_or_buf , orient=A , lines=A , index=A , **self.to_json_kwargs ) return written def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case , snake_case , snake_case , snake_case , snake_case : Optional[int] = args snake_case : Optional[Any] = query_table( table=self.dataset.data , key=slice(A , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case : Any = batch.to_pandas().to_json( path_or_buf=A , orient=A , lines=A , index=A , **A ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase ( self , A , A , A , A , **A , ) -> Tuple: snake_case : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): snake_case : Any = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(A ) else: snake_case , snake_case : Optional[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , A , A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(A ) return written
713
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , **A ) -> Dict: super().__init__(**_UpperCAmelCase ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , """vision""" ) self.check_model_type(_UpperCAmelCase ) def __call__( self , A , A = None , **A , ) -> Tuple: if "text_queries" in kwargs: snake_case : Tuple = kwargs.pop("""text_queries""" ) if isinstance(_UpperCAmelCase , (str, Image.Image) ): snake_case : Dict = {"""image""": image, """candidate_labels""": candidate_labels} else: snake_case : Tuple = image snake_case : Dict = super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) return results def UpperCAmelCase ( self , **A ) -> Union[str, Any]: snake_case : Optional[int] = {} if "threshold" in kwargs: snake_case : List[str] = kwargs["""threshold"""] if "top_k" in kwargs: snake_case : List[Any] = kwargs["""top_k"""] return {}, {}, postprocess_params def UpperCAmelCase ( self , A ) -> List[str]: snake_case : Optional[int] = load_image(inputs["""image"""] ) snake_case : str = inputs["""candidate_labels"""] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case : List[str] = candidate_labels.split(""",""" ) snake_case : List[str] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_UpperCAmelCase ): snake_case : Dict = self.tokenizer(_UpperCAmelCase , return_tensors=self.framework ) snake_case : Any = self.image_processor(_UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(_UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCAmelCase ( self , A ) -> Union[str, Any]: snake_case : Union[str, Any] = model_inputs.pop("""target_size""" ) snake_case : Optional[int] = model_inputs.pop("""candidate_label""" ) snake_case : List[Any] = model_inputs.pop("""is_last""" ) snake_case : Dict = self.model(**_UpperCAmelCase ) snake_case : int = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def UpperCAmelCase ( self , A , A=0.1 , A=None ) -> Union[str, Any]: snake_case : int = [] for model_output in model_outputs: snake_case : Union[str, Any] = model_output["""candidate_label"""] snake_case : Dict = BaseModelOutput(_UpperCAmelCase ) snake_case : Any = self.image_processor.post_process_object_detection( outputs=_UpperCAmelCase , threshold=_UpperCAmelCase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): snake_case : Tuple = outputs["""scores"""][index].item() snake_case : Optional[Any] = self._get_bounding_box(outputs["""boxes"""][index][0] ) snake_case : Union[str, Any] = {"""score""": score, """label""": label, """box""": box} results.append(_UpperCAmelCase ) snake_case : Any = sorted(_UpperCAmelCase , key=lambda A : x["score"] , reverse=_UpperCAmelCase ) if top_k: snake_case : Union[str, Any] = results[:top_k] return results def UpperCAmelCase ( self , A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) snake_case , snake_case , snake_case , snake_case : Tuple = box.int().tolist() snake_case : List[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
714
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __lowercase : """simple docstring""" _snake_case = None _snake_case = False _snake_case = False _snake_case = False _snake_case = None _snake_case = None _snake_case = False _snake_case = False _snake_case = False _snake_case = True _snake_case = None _snake_case = 1 _snake_case = None _snake_case = False _snake_case = None _snake_case = None def UpperCAmelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(_UpperCamelCase ) for k, v in self.__dict__.items()} )
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase (a__ ): """simple docstring""" _snake_case = """trocr""" _snake_case = ["""past_key_values"""] _snake_case = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=1_6 , A=4_0_9_6 , A="gelu" , A=5_1_2 , A=0.1 , A=0.0 , A=0.0 , A=2 , A=0.02 , A=0.0 , A=True , A=False , A=True , A=True , A=1 , A=0 , A=2 , **A , ) -> List[Any]: snake_case : Union[str, Any] = vocab_size snake_case : Tuple = d_model snake_case : List[str] = decoder_layers snake_case : int = decoder_attention_heads snake_case : Optional[int] = decoder_ffn_dim snake_case : Optional[Any] = activation_function snake_case : List[Any] = max_position_embeddings snake_case : Tuple = dropout snake_case : Tuple = attention_dropout snake_case : str = activation_dropout snake_case : int = init_std snake_case : Dict = decoder_layerdrop snake_case : List[str] = use_cache snake_case : int = scale_embedding snake_case : Optional[Any] = use_learned_position_embeddings snake_case : List[Any] = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
716
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) # TODO Update this lowerCamelCase : Dict = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class __lowercase (_A ): """simple docstring""" _snake_case = """esm""" def __init__( self , A=None , A=None , A=None , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A=0.1 , A=0.1 , A=1_0_2_6 , A=0.02 , A=1e-1_2 , A="absolute" , A=True , A=None , A=False , A=False , A=None , A=None , **A , ) -> Any: super().__init__(pad_token_id=__lowerCamelCase , mask_token_id=__lowerCamelCase , **__lowerCamelCase ) snake_case : str = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Tuple = intermediate_size snake_case : List[Any] = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Any = initializer_range snake_case : Tuple = layer_norm_eps snake_case : Tuple = position_embedding_type snake_case : Dict = use_cache snake_case : Optional[Any] = emb_layer_norm_before snake_case : Tuple = token_dropout snake_case : Optional[int] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) snake_case : Dict = EsmFoldConfig() elif isinstance(__lowerCamelCase , __lowerCamelCase ): snake_case : List[str] = EsmFoldConfig(**__lowerCamelCase ) snake_case : str = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) snake_case : str = get_default_vocab_list() else: snake_case : List[str] = vocab_list else: snake_case : Tuple = None snake_case : Union[str, Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = super().to_dict() if isinstance(self.esmfold_config , __lowerCamelCase ): snake_case : int = self.esmfold_config.to_dict() return output @dataclass class __lowercase : """simple docstring""" _snake_case = None _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = 0 _snake_case = True _snake_case = False _snake_case = 128 _snake_case = None def UpperCAmelCase ( self ) -> Optional[Any]: if self.trunk is None: snake_case : Dict = TrunkConfig() elif isinstance(self.trunk , __lowerCamelCase ): snake_case : str = TrunkConfig(**self.trunk ) def UpperCAmelCase ( self ) -> str: snake_case : int = asdict(self ) snake_case : Dict = self.trunk.to_dict() return output @dataclass class __lowercase : """simple docstring""" _snake_case = 48 _snake_case = 1_024 _snake_case = 128 _snake_case = 32 _snake_case = 32 _snake_case = 32 _snake_case = 0 _snake_case = 0 _snake_case = False _snake_case = 4 _snake_case = 128 _snake_case = None def UpperCAmelCase ( self ) -> Union[str, Any]: if self.structure_module is None: snake_case : Optional[int] = StructureModuleConfig() elif isinstance(self.structure_module , __lowerCamelCase ): snake_case : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) snake_case : List[str] = self.sequence_state_dim // self.sequence_head_width snake_case : Optional[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def UpperCAmelCase ( self ) -> int: snake_case : Any = asdict(self ) snake_case : int = self.structure_module.to_dict() return output @dataclass class __lowercase : """simple docstring""" _snake_case = 384 _snake_case = 128 _snake_case = 16 _snake_case = 128 _snake_case = 12 _snake_case = 4 _snake_case = 8 _snake_case = 0.1 _snake_case = 8 _snake_case = 1 _snake_case = 2 _snake_case = 7 _snake_case = 10 _snake_case = 1E-8 _snake_case = 1E5 def UpperCAmelCase ( self ) -> str: return asdict(self ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
from collections import namedtuple lowerCamelCase : List[str] = namedtuple('from_to', 'from_ to') lowerCamelCase : Any = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 2_6_4.1_7_2), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 3_5.3_1_4_7), "cup": from_to(0.0_0023_6588, 4_2_2_6.7_5), } def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
718
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , A , A ) -> Optional[int]: super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self , A = 1 , A = 1_0_0 , A = None , A = None , A = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: snake_case : List[str] = self.unet.config.sample_size / self.unet.config.sample_rate snake_case : Optional[int] = audio_length_in_s * self.unet.config.sample_rate snake_case : Optional[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" f""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) snake_case : Optional[Any] = int(__UpperCamelCase ) if sample_size % down_scale_factor != 0: snake_case : Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" f""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" """ process.""" ) snake_case : Any = int(__UpperCamelCase ) snake_case : Dict = next(iter(self.unet.parameters() ) ).dtype snake_case : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case : Optional[Any] = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) # set step values self.scheduler.set_timesteps(__UpperCamelCase , device=audio.device ) snake_case : List[Any] = self.scheduler.timesteps.to(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case : Any = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # 2. compute previous image: x_t -> t_t-1 snake_case : int = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample snake_case : Any = audio.clamp(-1 , 1 ).float().cpu().numpy() snake_case : Optional[int] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__UpperCamelCase )
719
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
0
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: if not isinstance(lowercase ,lowercase ): snake_case : Dict = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowercase ) if number < 0: return False snake_case : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
720
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCamelCase : str = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) lowerCamelCase : int = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCamelCase : Dict = BeautifulSoup(res.text, 'html.parser') lowerCamelCase : Tuple = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get("href")}""")
721
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
0
import math def SCREAMING_SNAKE_CASE__ ( lowercase = 100 ) -> Tuple: snake_case : Any = sum(i * i for i in range(1 ,n + 1 ) ) snake_case : Optional[Any] = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
700
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase = parser.parse_args() if args.model_type == "roberta": lowerCamelCase = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCamelCase = 'roberta' elif args.model_type == "gpt2": lowerCamelCase = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCamelCase = 'transformer' lowerCamelCase = model.state_dict() lowerCamelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCamelCase = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCamelCase = f"""{prefix}.embeddings.{w}.weight""" lowerCamelCase = state_dict[param_name] for w in ["weight", "bias"]: lowerCamelCase = f"""{prefix}.embeddings.LayerNorm.{w}""" lowerCamelCase = state_dict[param_name] # Transformer Blocks # lowerCamelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCamelCase = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] lowerCamelCase = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCamelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCamelCase = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase = state_dict[f"""lm_head.dense.{w}"""] lowerCamelCase = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCamelCase = state_dict[f"""{prefix}.ln_f.{w}"""] lowerCamelCase = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
701
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Tuple: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" ,lowercase ,) if isinstance(lowercase ,torch.Tensor ): return image elif isinstance(lowercase ,PIL.Image.Image ): snake_case : Dict = [image] if isinstance(image[0] ,PIL.Image.Image ): snake_case , snake_case : List[Any] = image[0].size snake_case , snake_case : Any = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 snake_case : Dict = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] snake_case : str = np.concatenate(lowercase ,axis=0 ) snake_case : Optional[Any] = np.array(lowercase ).astype(np.floataa ) / 255.0 snake_case : Any = image.transpose(0 ,3 ,1 ,2 ) snake_case : Tuple = 2.0 * image - 1.0 snake_case : Optional[Any] = torch.from_numpy(lowercase ) elif isinstance(image[0] ,torch.Tensor ): snake_case : str = torch.cat(lowercase ,dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Dict: if isinstance(lowercase ,torch.Tensor ): return mask elif isinstance(lowercase ,PIL.Image.Image ): snake_case : Optional[int] = [mask] if isinstance(mask[0] ,PIL.Image.Image ): snake_case , snake_case : Dict = mask[0].size snake_case , snake_case : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 snake_case : Union[str, Any] = [np.array(m.convert("""L""" ).resize((w, h) ,resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] snake_case : str = np.concatenate(lowercase ,axis=0 ) snake_case : Optional[Any] = mask.astype(np.floataa ) / 255.0 snake_case : Tuple = 0 snake_case : Optional[Any] = 1 snake_case : int = torch.from_numpy(lowercase ) elif isinstance(mask[0] ,torch.Tensor ): snake_case : List[str] = torch.cat(lowercase ,dim=0 ) return mask class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = 42 _snake_case = 42 def __init__( self , A , A ) -> Union[str, Any]: super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A , A , A = 2_5_0 , A = 0.0 , A = 1_0 , A = 1_0 , A = None , A = "pil" , A = True , ) -> Union[ImagePipelineOutput, Tuple]: snake_case : Union[str, Any] = image snake_case : str = _preprocess_image(A ) snake_case : List[str] = original_image.to(device=self.device , dtype=self.unet.dtype ) snake_case : Dict = _preprocess_mask(A ) snake_case : List[str] = mask_image.to(device=self.device , dtype=self.unet.dtype ) snake_case : str = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case : Any = original_image.shape snake_case : List[str] = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A , A , A , self.device ) snake_case : Optional[int] = eta snake_case : Union[str, Any] = self.scheduler.timesteps[0] + 1 snake_case : int = generator[0] if isinstance(A , A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual snake_case : List[Any] = self.unet(A , A ).sample # compute previous image: x_t -> x_t-1 snake_case : Tuple = self.scheduler.step(A , A , A , A , A , A ).prev_sample else: # compute the reverse: x_t-1 -> x_t snake_case : Dict = self.scheduler.undo_step(A , A , A ) snake_case : Union[str, Any] = t snake_case : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Any = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __lowercase (UpperCamelCase_ ): """simple docstring""" _snake_case = 42 class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A=3 , A=3 , A=("DownEncoderBlock2D",) , A=(6_4,) , A=2 , A=3_2 , A="silu" , A=True , ) -> List[str]: super().__init__() snake_case : Optional[Any] = layers_per_block snake_case : Optional[Any] = torch.nn.Convad( __A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) snake_case : int = None snake_case : Tuple = nn.ModuleList([] ) # down snake_case : str = block_out_channels[0] for i, down_block_type in enumerate(__A ): snake_case : List[Any] = output_channel snake_case : Union[str, Any] = block_out_channels[i] snake_case : int = i == len(__A ) - 1 snake_case : str = get_down_block( __A , num_layers=self.layers_per_block , in_channels=__A , out_channels=__A , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , ) self.down_blocks.append(__A ) # mid snake_case : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # out snake_case : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__A , eps=1e-6 ) snake_case : List[str] = nn.SiLU() snake_case : Tuple = 2 * out_channels if double_z else out_channels snake_case : Tuple = nn.Convad(block_out_channels[-1] , __A , 3 , padding=1 ) snake_case : Any = False def UpperCAmelCase ( self , A ) -> Any: snake_case : int = x snake_case : List[Any] = self.conv_in(__A ) if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*__A ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: snake_case : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , use_reentrant=__A ) # middle snake_case : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , use_reentrant=__A ) else: for down_block in self.down_blocks: snake_case : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A ) # middle snake_case : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __A ) else: # down for down_block in self.down_blocks: snake_case : int = down_block(__A ) # middle snake_case : Optional[Any] = self.mid_block(__A ) # post-process snake_case : Any = self.conv_norm_out(__A ) snake_case : Union[str, Any] = self.conv_act(__A ) snake_case : Union[str, Any] = self.conv_out(__A ) return sample class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A=3 , A=3 , A=("UpDecoderBlock2D",) , A=(6_4,) , A=2 , A=3_2 , A="silu" , A="group" , ) -> int: super().__init__() snake_case : List[str] = layers_per_block snake_case : str = nn.Convad( __A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) snake_case : str = None snake_case : int = nn.ModuleList([] ) snake_case : str = in_channels if norm_type == "spatial" else None # mid snake_case : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , ) # up snake_case : Union[str, Any] = list(reversed(__A ) ) snake_case : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(__A ): snake_case : str = output_channel snake_case : int = reversed_block_out_channels[i] snake_case : List[Any] = i == len(__A ) - 1 snake_case : Tuple = get_up_block( __A , num_layers=self.layers_per_block + 1 , in_channels=__A , out_channels=__A , prev_output_channel=__A , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , resnet_time_scale_shift=__A , ) self.up_blocks.append(__A ) snake_case : Optional[Any] = output_channel # out if norm_type == "spatial": snake_case : str = SpatialNorm(block_out_channels[0] , __A ) else: snake_case : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__A , eps=1e-6 ) snake_case : List[Any] = nn.SiLU() snake_case : List[Any] = nn.Convad(block_out_channels[0] , __A , 3 , padding=1 ) snake_case : Optional[int] = False def UpperCAmelCase ( self , A , A=None ) -> Union[str, Any]: snake_case : List[str] = z snake_case : str = self.conv_in(__A ) snake_case : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*__A ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle snake_case : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A , use_reentrant=__A ) snake_case : int = sample.to(__A ) # up for up_block in self.up_blocks: snake_case : int = torch.utils.checkpoint.checkpoint( create_custom_forward(__A ) , __A , __A , use_reentrant=__A ) else: # middle snake_case : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __A , __A ) snake_case : List[Any] = sample.to(__A ) # up for up_block in self.up_blocks: snake_case : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A , __A ) else: # middle snake_case : Tuple = self.mid_block(__A , __A ) snake_case : Optional[int] = sample.to(__A ) # up for up_block in self.up_blocks: snake_case : Optional[int] = up_block(__A , __A ) # post-process if latent_embeds is None: snake_case : Tuple = self.conv_norm_out(__A ) else: snake_case : Optional[Any] = self.conv_norm_out(__A , __A ) snake_case : Union[str, Any] = self.conv_act(__A ) snake_case : Any = self.conv_out(__A ) return sample class __lowercase (nn.Module ): """simple docstring""" def __init__( self , A , A , A , A=None , A="random" , A=False , A=True ) -> Optional[Any]: super().__init__() snake_case : Dict = n_e snake_case : Optional[Any] = vq_embed_dim snake_case : List[Any] = beta snake_case : str = legacy snake_case : Union[str, Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) snake_case : List[str] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) snake_case : Any = self.used.shape[0] snake_case : str = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": snake_case : Union[str, Any] = self.re_embed snake_case : Any = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: snake_case : str = n_e snake_case : Tuple = sane_index_shape def UpperCAmelCase ( self , A ) -> str: snake_case : Optional[Any] = inds.shape assert len(__A ) > 1 snake_case : int = inds.reshape(ishape[0] , -1 ) snake_case : Optional[int] = self.used.to(__A ) snake_case : List[str] = (inds[:, :, None] == used[None, None, ...]).long() snake_case : List[str] = match.argmax(-1 ) snake_case : Union[str, Any] = match.sum(2 ) < 1 if self.unknown_index == "random": snake_case : Union[str, Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: snake_case : Optional[Any] = self.unknown_index return new.reshape(__A ) def UpperCAmelCase ( self , A ) -> Optional[int]: snake_case : str = inds.shape assert len(__A ) > 1 snake_case : Optional[int] = inds.reshape(ishape[0] , -1 ) snake_case : List[str] = self.used.to(__A ) if self.re_embed > self.used.shape[0]: # extra token snake_case : List[str] = 0 # simply set to zero snake_case : int = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __A ) return back.reshape(__A ) def UpperCAmelCase ( self , A ) -> int: # reshape z -> (batch, height, width, channel) and flatten snake_case : int = z.permute(0 , 2 , 3 , 1 ).contiguous() snake_case : Tuple = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z snake_case : List[str] = torch.argmin(torch.cdist(__A , self.embedding.weight ) , dim=1 ) snake_case : Optional[Any] = self.embedding(__A ).view(z.shape ) snake_case : List[str] = None snake_case : Union[str, Any] = None # compute loss for embedding if not self.legacy: snake_case : List[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: snake_case : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients snake_case : Optional[int] = z + (z_q - z).detach() # reshape back to match original input shape snake_case : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: snake_case : str = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis snake_case : Tuple = self.remap_to_used(__A ) snake_case : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: snake_case : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: snake_case : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis snake_case : Dict = self.unmap_to_all(__A ) snake_case : Dict = indices.reshape(-1 ) # flatten again # get quantized latent vectors snake_case : Dict = self.embedding(__A ) if shape is not None: snake_case : str = z_q.view(__A ) # reshape back to match original input shape snake_case : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __lowercase (UpperCamelCase_ ): """simple docstring""" def __init__( self , A , A=False ) -> Dict: snake_case : Dict = parameters snake_case : Optional[Any] = torch.chunk(__A , 2 , dim=1 ) snake_case : Any = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) snake_case : Optional[int] = deterministic snake_case : Optional[Any] = torch.exp(0.5 * self.logvar ) snake_case : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: snake_case : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCAmelCase ( self , A = None ) -> Tuple: # make sure sample is on the same device as the parameters and has same dtype snake_case : List[Any] = randn_tensor( self.mean.shape , generator=__A , device=self.parameters.device , dtype=self.parameters.dtype ) snake_case : List[Any] = self.mean + self.std * sample return x def UpperCAmelCase ( self , A=None ) -> int: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase ( self , A , A=[1, 2, 3] ) -> str: if self.deterministic: return torch.Tensor([0.0] ) snake_case : Tuple = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__A ) def UpperCAmelCase ( self ) -> Union[str, Any]: return self.mean
703
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
0
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" ,[ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(_lowerCamelCase ,i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 ,4 ), range(4 ,7 ), range(7 ,10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 ,1 ), range(1 ,2 ), range(2 ,3 )]), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : str = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" ,[ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[int]: snake_case : str = _split_gen_kwargs(_lowerCamelCase ,_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" ,[ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] ,) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: snake_case : Dict = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
704
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowercase (__SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _snake_case = TextToVideoSDPipeline _snake_case = TEXT_TO_IMAGE_PARAMS _snake_case = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _snake_case = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=3_2 , attention_head_dim=4 , ) snake_case : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) snake_case : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) snake_case : List[Any] = CLIPTextModel(_a ) snake_case : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase ( self , A , A=0 ) -> str: if str(_a ).startswith("""mps""" ): snake_case : Dict = torch.manual_seed(_a ) else: snake_case : str = torch.Generator(device=_a ).manual_seed(_a ) snake_case : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCAmelCase ( self ) -> int: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Optional[Any] = TextToVideoSDPipeline(**_a ) snake_case : str = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) snake_case : Optional[Any] = self.get_dummy_inputs(_a ) snake_case : int = """np""" snake_case : List[str] = sd_pipe(**_a ).frames snake_case : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) snake_case : List[Any] = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ) -> Dict: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase ( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a , expected_max_diff=1e-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> str: return super().test_progress_bar() @slow @skip_mps class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: snake_case : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case : List[Any] = pipe.to("""cuda""" ) snake_case : Optional[Any] = """Spiderman is surfing""" snake_case : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : List[str] = pipe(_a , generator=_a , num_inference_steps=2_5 , output_type="""pt""" ).frames snake_case : str = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : Any = pipe.to("""cuda""" ) snake_case : Any = """Spiderman is surfing""" snake_case : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : List[str] = pipe(_a , generator=_a , num_inference_steps=2 , output_type="""pt""" ).frames snake_case : List[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
705
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
0
lowerCamelCase : Dict = range(2, 2_0 + 1) lowerCamelCase : Dict = [1_0**k for k in range(ks[-1] + 1)] lowerCamelCase : int = {} def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Dict: snake_case : Union[str, Any] = sum(a_i[j] for j in range(snake_case__ ,len(snake_case__ ) ) ) snake_case : Optional[int] = sum(a_i[j] * base[j] for j in range(min(len(snake_case__ ) ,snake_case__ ) ) ) snake_case : int = 0, 0 snake_case : List[str] = n - i snake_case : List[str] = memo.get(snake_case__ ) if sub_memo is not None: snake_case : Optional[Any] = sub_memo.get(snake_case__ ) if jumps is not None and len(snake_case__ ) > 0: # find and make the largest jump without going over snake_case : Optional[int] = -1 for _k in range(len(snake_case__ ) - 1 ,-1 ,-1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case : Any = _k break if max_jump >= 0: snake_case : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c snake_case : List[str] = diff + c for j in range(min(snake_case__ ,len(snake_case__ ) ) ): snake_case : Union[str, Any] = divmod(snake_case__ ,10 ) if new_c > 0: add(snake_case__ ,snake_case__ ,snake_case__ ) else: snake_case : Any = [] else: snake_case : Dict = {c: []} snake_case : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case : Optional[int] = next_term(snake_case__ ,k - 1 ,i + dn ,snake_case__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case : List[Any] = compute(snake_case__ ,snake_case__ ,i + dn ,snake_case__ ) diff += _diff dn += terms_jumped snake_case : Dict = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case : Tuple = 0 while j < len(snake_case__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(snake_case__ ,(diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Tuple: if i >= n: return 0, i if k > len(snake_case__ ): a_i.extend([0 for _ in range(k - len(snake_case__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case : Tuple = i snake_case : Optional[Any] = 0, 0, 0 for j in range(len(snake_case__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case : Optional[Any] = ds_c + ds_b diff += addend snake_case : int = 0 for j in range(snake_case__ ): snake_case : Optional[int] = a_i[j] + addend snake_case : str = divmod(snake_case__ ,10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(snake_case__ ,snake_case__ ,snake_case__ ) return diff, i - start_i def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: for j in range(snake_case__ ,len(snake_case__ ) ): snake_case : Any = digits[j] + addend if s >= 10: snake_case : List[Any] = divmod(snake_case__ ,10 ) snake_case : List[str] = addend // 10 + quotient else: snake_case : str = s snake_case : Dict = addend // 10 if addend == 0: break while addend > 0: snake_case : Any = divmod(snake_case__ ,10 ) digits.append(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( lowercase = 10**15 ) -> Dict: snake_case : Any = [1] snake_case : Tuple = 1 snake_case : int = 0 while True: snake_case : str = next_term(snake_case__ ,20 ,i + dn ,snake_case__ ) dn += terms_jumped if dn == n - i: break snake_case : Any = 0 for j in range(len(snake_case__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
706
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCamelCase : int = logging.get_logger('transformers.models.speecht5') lowerCamelCase : Optional[int] = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } lowerCamelCase : str = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } lowerCamelCase : int = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } lowerCamelCase : str = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } lowerCamelCase : List[str] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } lowerCamelCase : str = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } lowerCamelCase : Any = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } lowerCamelCase : List[str] = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } lowerCamelCase : Tuple = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCamelCase : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : Optional[int] = [] lowerCamelCase : List[str] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] lowerCamelCase : Optional[Any] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] lowerCamelCase : str = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] lowerCamelCase : Optional[int] = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: for attribute in key.split(""".""" ): snake_case : List[Any] = getattr(__snake_case ,__snake_case ) if weight_type is not None: snake_case : Tuple = getattr(__snake_case ,__snake_case ).shape else: snake_case : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case : Optional[Any] = value elif weight_type == "weight_g": snake_case : str = value elif weight_type == "weight_v": snake_case : Optional[int] = value elif weight_type == "bias": snake_case : List[str] = value elif weight_type == "running_mean": snake_case : Dict = value elif weight_type == "running_var": snake_case : List[str] = value elif weight_type == "num_batches_tracked": snake_case : Any = value else: snake_case : List[str] = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case , snake_case : Union[str, Any] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[str]: snake_case : List[str] = [] if task == "s2t": snake_case : int = hf_model.speechta.encoder.prenet.feature_encoder snake_case : int = MAPPING_S2T snake_case : Optional[Any] = IGNORE_KEYS_S2T elif task == "t2s": snake_case : List[str] = None snake_case : str = MAPPING_T2S snake_case : Dict = IGNORE_KEYS_T2S elif task == "s2s": snake_case : Tuple = hf_model.speechta.encoder.prenet.feature_encoder snake_case : Tuple = MAPPING_S2S snake_case : str = IGNORE_KEYS_S2S else: raise ValueError(f"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(__snake_case ,__snake_case ): logger.info(f"""{name} was ignored""" ) continue snake_case : Optional[int] = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == """group""" ,) snake_case : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: snake_case , snake_case : int = key.split(""".*.""" ) if prefix in name and suffix in name: snake_case : Tuple = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: snake_case : Optional[Any] = True if "*" in mapped_key: snake_case : Any = name.split(__snake_case )[0].split(""".""" )[-2] snake_case : Union[str, Any] = mapped_key.replace("""*""" ,__snake_case ) if "weight_g" in name: snake_case : Union[str, Any] = """weight_g""" elif "weight_v" in name: snake_case : int = """weight_v""" elif "bias" in name: snake_case : str = """bias""" elif "weight" in name: snake_case : Dict = """weight""" elif "running_mean" in name: snake_case : Any = """running_mean""" elif "running_var" in name: snake_case : Any = """running_var""" elif "num_batches_tracked" in name: snake_case : Optional[Any] = """num_batches_tracked""" else: snake_case : Union[str, Any] = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> Tuple: snake_case : Optional[int] = full_name.split("""conv_layers.""" )[-1] snake_case : List[Any] = name.split(""".""" ) snake_case : Optional[Any] = int(items[0] ) snake_case : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) snake_case : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=None ,lowercase=None ,lowercase=None ,) -> str: if config_path is not None: snake_case : List[str] = SpeechTaConfig.from_pretrained(__snake_case ) else: snake_case : Union[str, Any] = SpeechTaConfig() if task == "s2t": snake_case : Optional[int] = config.max_text_positions snake_case : List[str] = SpeechTaForSpeechToText(__snake_case ) elif task == "t2s": snake_case : Optional[int] = 1876 snake_case : Union[str, Any] = 600 snake_case : str = config.max_speech_positions snake_case : Optional[Any] = SpeechTaForTextToSpeech(__snake_case ) elif task == "s2s": snake_case : List[Any] = 1876 snake_case : Tuple = config.max_speech_positions snake_case : List[str] = SpeechTaForSpeechToSpeech(__snake_case ) else: raise ValueError(f"""Unknown task name: {task}""" ) if vocab_path: snake_case : str = SpeechTaTokenizer(__snake_case ,model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it snake_case : Dict = AddedToken("""<mask>""" ,lstrip=__snake_case ,rstrip=__snake_case ) snake_case : int = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) snake_case : str = SpeechTaFeatureExtractor() snake_case : Any = SpeechTaProcessor(tokenizer=__snake_case ,feature_extractor=__snake_case ) processor.save_pretrained(__snake_case ) snake_case : List[str] = torch.load(__snake_case ) recursively_load_weights(fairseq_checkpoint["""model"""] ,__snake_case ,__snake_case ) model.save_pretrained(__snake_case ) if repo_id: print("""Pushing to the hub...""" ) processor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--task', default='s2t', type=str, help='Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--vocab_path', default=None, type=str, help='Path to SentencePiece model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
707
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ,lowercase=False ,lowercase=False ) -> Dict: snake_case : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: for i in range(config.num_hidden_layers ): snake_case : Union[str, Any] = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : List[Any] = in_proj_weight[ : config.hidden_size, : ] snake_case : List[str] = in_proj_bias[: config.hidden_size] snake_case : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case : Any = in_proj_weight[ -config.hidden_size :, : ] snake_case : Dict = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ ,UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : Optional[Any] = dct.pop(UpperCAmelCase__ ) snake_case : Optional[Any] = val @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : int = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=UpperCAmelCase__ ) snake_case : str = False snake_case : str = False snake_case : str = False snake_case : Optional[int] = False if "vqa" in checkpoint_url: snake_case : int = True snake_case : Optional[Any] = 3129 snake_case : int = """huggingface/label-files""" snake_case : Dict = """vqa2-id2label.json""" snake_case : Dict = json.load(open(hf_hub_download(UpperCAmelCase__ ,UpperCAmelCase__ ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : Optional[int] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} snake_case : Optional[Any] = idalabel snake_case : Optional[int] = {v: k for k, v in idalabel.items()} snake_case : List[Any] = ViltForQuestionAnswering(UpperCAmelCase__ ) elif "nlvr" in checkpoint_url: snake_case : Any = True snake_case : Tuple = 2 snake_case : Optional[int] = {0: """False""", 1: """True"""} snake_case : Union[str, Any] = {v: k for k, v in config.idalabel.items()} snake_case : List[str] = 3 snake_case : Tuple = ViltForImagesAndTextClassification(UpperCAmelCase__ ) elif "irtr" in checkpoint_url: snake_case : Optional[int] = True snake_case : Optional[int] = ViltForImageAndTextRetrieval(UpperCAmelCase__ ) elif "mlm_itm" in checkpoint_url: snake_case : Optional[int] = True snake_case : Tuple = ViltForMaskedLM(UpperCAmelCase__ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys snake_case : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase__ ,map_location="""cpu""" )["""state_dict"""] snake_case : int = create_rename_keys(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ ,UpperCAmelCase__ ) if mlm_model or irtr_model: snake_case : Union[str, Any] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ ,UpperCAmelCase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case : Tuple = model.load_state_dict(UpperCAmelCase__ ,strict=UpperCAmelCase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCAmelCase__ ) # Define processor snake_case : Optional[Any] = ViltImageProcessor(size=384 ) snake_case : Optional[int] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case : Any = ViltProcessor(UpperCAmelCase__ ,UpperCAmelCase__ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" ,stream=UpperCAmelCase__ ).raw ) snake_case : Optional[int] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" ,stream=UpperCAmelCase__ ).raw ) snake_case : Optional[int] = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) snake_case : int = processor(UpperCAmelCase__ ,UpperCAmelCase__ ,return_tensors="""pt""" ) snake_case : Dict = processor(UpperCAmelCase__ ,UpperCAmelCase__ ,return_tensors="""pt""" ) snake_case : Any = model( input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,) else: snake_case : Any = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,stream=UpperCAmelCase__ ).raw ) if mlm_model: snake_case : str = """a bunch of [MASK] laying on a [MASK].""" else: snake_case : List[str] = """How many cats are there?""" snake_case : Union[str, Any] = processor(UpperCAmelCase__ ,UpperCAmelCase__ ,return_tensors="""pt""" ) snake_case : Dict = model(**UpperCAmelCase__ ) # Verify outputs if mlm_model: snake_case : List[str] = torch.Size([1, 11, 30522] ) snake_case : List[Any] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,UpperCAmelCase__ ,atol=1E-4 ) # verify masked token prediction equals "cats" snake_case : Any = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case : Any = torch.Size([1, 3129] ) snake_case : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase__ ,atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,UpperCAmelCase__ ,atol=1E-4 ) # verify vqa prediction equals "2" snake_case : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case : List[Any] = torch.Size([1, 2] ) snake_case : List[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase__ ,atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCamelCase : int = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
708
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase (a__ ): """simple docstring""" @slow @require_torch def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) snake_case : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) snake_case : str = bertabert.config.encoder.vocab_size snake_case : Optional[int] = tokenizer.sep_token_id snake_case : Any = tokenizer.cls_token_id snake_case : str = 1_2_8 snake_case : str = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) snake_case : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) snake_case : List[str] = train_dataset.select(range(3_2 ) ) snake_case : List[Any] = val_dataset.select(range(1_6 ) ) snake_case : List[str] = 4 def _map_to_encoder_decoder_inputs(A ): # Tokenizer will automatically set [BOS] <text> [EOS] snake_case : List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=5_1_2 ) snake_case : List[str] = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=1_2_8 ) snake_case : str = inputs.input_ids snake_case : Tuple = inputs.attention_mask snake_case : Optional[Any] = outputs.input_ids snake_case : List[str] = outputs.input_ids.copy() snake_case : Union[str, Any] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] snake_case : str = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 5_1_2 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(A ): snake_case : List[str] = pred.label_ids snake_case : str = pred.predictions # all unnecessary tokens are removed snake_case : Union[str, Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) snake_case : int = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset snake_case : Optional[int] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset snake_case : int = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) snake_case : int = self.get_auto_remove_tmp_dir() snake_case : int = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="""steps""" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer snake_case : Optional[Any] = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
709
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever lowerCamelCase : str = logging.getLogger(__name__) class __lowercase (UpperCAmelCase__ ): """simple docstring""" def __init__( self , A , A , A , A=None ) -> Optional[int]: super().__init__( __lowerCAmelCase , question_encoder_tokenizer=__lowerCAmelCase , generator_tokenizer=__lowerCAmelCase , index=__lowerCAmelCase , init_retrieval=__lowerCAmelCase , ) snake_case : List[Any] = None def UpperCAmelCase ( self , A ) -> Union[str, Any]: logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually snake_case : Dict = self._infer_socket_ifname() # avoid clash with the NCCL port snake_case : int = str(distributed_port + 1 ) snake_case : Optional[int] = dist.new_group(ranks=__lowerCAmelCase , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase ( self ) -> Union[str, Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase ( self , A , A , A=torch.floataa ) -> Dict: snake_case : Optional[int] = torch.empty(__lowerCAmelCase , dtype=__lowerCAmelCase ) dist.scatter(__lowerCAmelCase , src=0 , scatter_list=__lowerCAmelCase , group=self.process_group ) return target_tensor def UpperCAmelCase ( self ) -> List[str]: snake_case : str = psutil.net_if_addrs() # a hacky way to deal with varying network interface names snake_case : Optional[Any] = next((addr for addr in addrs if addr.startswith("""e""" )) , __lowerCAmelCase ) return ifname def UpperCAmelCase ( self , A , A ) -> Tuple[np.ndarray, List[dict]]: if not dist.is_initialized(): snake_case , snake_case : List[Any] = self._main_retrieve(__lowerCAmelCase , __lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCAmelCase ) # distributed training snake_case : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic snake_case : Optional[Any] = None if self._is_main(): snake_case : Any = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCAmelCase )] dist.gather(torch.tensor(__lowerCAmelCase ) , dst=0 , gather_list=__lowerCAmelCase , group=self.process_group ) # scatter logic snake_case : Optional[int] = question_hidden_states.shape[0] snake_case : Union[str, Any] = [] snake_case : Optional[int] = [] if self._is_main(): assert len(__lowerCAmelCase ) == world_size snake_case , snake_case : List[Any] = self._main_retrieve(torch.cat(__lowerCAmelCase ).numpy() , __lowerCAmelCase ) snake_case , snake_case : List[Any] = torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) snake_case : List[str] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) snake_case : List[str] = self._chunk_tensor(__lowerCAmelCase , __lowerCAmelCase ) snake_case : Dict = self._scattered(__lowerCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) snake_case : Optional[Any] = self._scattered(__lowerCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCAmelCase )
710
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
0