code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str=7 ,lowerCAmelCase__ : List[str]=3 ,lowerCAmelCase__ : Any=18 ,lowerCAmelCase__ : Dict=30 ,lowerCAmelCase__ : Optional[int]=4_00 ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] ,) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : List[str] = min_resolution lowerCAmelCase_ : Optional[int] = max_resolution lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Dict = size if size is not None else {"height": 18, "width": 20} lowerCAmelCase_ : Dict = do_thumbnail lowerCAmelCase_ : List[str] = do_align_axis lowerCAmelCase_ : Union[str, Any] = do_pad lowerCAmelCase_ : Union[str, Any] = do_normalize lowerCAmelCase_ : str = image_mean lowerCAmelCase_ : Union[str, Any] = image_std def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_thumbnail" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_align_long_axis" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_pad" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_std" ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 20} ) lowerCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowerCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=(42, 84) ) self.assertEqual(image_processor.size ,{"height": 84, "width": 42} ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @is_flaky() def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,Image.Image ) # Test not batched input lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : Optional[int] = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,np.ndarray ) # Test not batched input lowerCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : str = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) @is_flaky() def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched lowerCAmelCase_ : Tuple = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,)
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
_lowercase : Tuple = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase : Any = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase : Dict = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : str ,*lowerCAmelCase__ : Optional[int] ,**lowerCAmelCase__ : Any ) -> None: '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." ,lowerCAmelCase__ ,) super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ )
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def UpperCamelCase ( ): lowerCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument("-f") lowerCAmelCase_ : List[Any] = parser.parse_args() return args.f class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,"run_glue_deebert.py" ) with patch.object(lowerCAmelCase__ ,"argv" ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ ,0.666 ) @slow @require_torch_non_multi_gpu def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ )
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
from __future__ import annotations import math def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Dict = u for i in range(1 , snake_case__): lowerCAmelCase_ : Tuple = temp * (u - i) return temp def UpperCamelCase ( ): lowerCAmelCase_ : Dict = int(input("enter the numbers of values: ")) lowerCAmelCase_ : list[list[float]] = [] for _ in range(snake_case__): y.append([]) for i in range(snake_case__): for j in range(snake_case__): y[i].append(snake_case__) lowerCAmelCase_ : int = 0 print("enter the values of parameters in a list: ") lowerCAmelCase_ : Tuple = list(map(snake_case__ , input().split())) print("enter the values of corresponding parameters: ") for i in range(snake_case__): lowerCAmelCase_ : int = float(input()) lowerCAmelCase_ : Tuple = int(input("enter the value to interpolate: ")) lowerCAmelCase_ : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , snake_case__): for j in range(n - i): lowerCAmelCase_ : List[str] = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase_ : List[Any] = y[0][0] for i in range(1 , snake_case__): summ += (ucal(snake_case__ , snake_case__) * y[0][i]) / math.factorial(snake_case__) print(F'''the value at {value} is {summ}''') if __name__ == "__main__": main()
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} _lowercase = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } _lowercase = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def UpperCamelCase ( snake_case__ , snake_case__): with open(snake_case__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : Dict = json.loads(f.read()) lowerCAmelCase_ : Tuple = collections.OrderedDict() lowerCAmelCase_ : Optional[int] = collections.OrderedDict() lowerCAmelCase_ : List[str] = collections.OrderedDict() with open(snake_case__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : int = f.readlines() lowerCAmelCase_ : List[str] = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = b lowerCAmelCase_ : List[Any] = idx for wd in b: lowerCAmelCase_ : Dict = idx return vocab, raw_vocab, ids_to_tokens, emoji class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str]="<|endoftext|>" ,lowerCAmelCase__ : Optional[Any]="<|endoftext|>" ,lowerCAmelCase__ : List[Any]="<|startoftext|>" ,lowerCAmelCase__ : Optional[Any]="<|endoftext|>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : Union[str, Any] ,) -> List[Any]: '''simple docstring''' super().__init__( unk_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,do_clean_text=lowerCAmelCase__ ,**lowerCAmelCase__ ,) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCAmelCase_ : Optional[int] = do_clean_text lowerCAmelCase_ : Optional[int] = load_vocab_and_emoji(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' return self.subword_tokenizer.tokenize(lowerCAmelCase__ ,clean=self.do_clean_text ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(lowerCAmelCase__ ,self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : str = "".join(lowerCAmelCase__ ).strip() return out_string def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : "Conversation" ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: lowerCAmelCase_ : str = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 if os.path.isdir(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Optional[int] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCAmelCase_ : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Optional[Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : List[Any] = token_index writer.write(",".join(lowerCAmelCase__ ) + "\n" ) index += 1 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: json.dump(self.emoji ,lowerCAmelCase__ ) return vocab_file, emoji_file class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Dict ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = vocab # same as swe lowerCAmelCase_ : List[str] = ids_to_tokens # same as bpe lowerCAmelCase_ : List[str] = emoji lowerCAmelCase_ : Union[str, Any] = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) lowerCAmelCase_ : List[Any] = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCAmelCase_ : List[str] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCAmelCase_ : List[str] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCAmelCase_ : Optional[int] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : List[str] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : str = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCAmelCase_ : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCAmelCase_ : int = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCAmelCase_ : int = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.content_repattera.sub("<URL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<EMAIL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<TEL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.content_repattera.sub("<DATE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : int = self.content_repattera.sub("<DATE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<PRICE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase_ : Tuple = content.replace("<BLOCK><BLOCK>" ,"<BLOCK>" ) return content def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Union[str, Any]=False ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : int = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : int = text.replace("\r\n" ,"<BR>" ) lowerCAmelCase_ : Union[str, Any] = text.replace("\n" ,"<BR>" ) lowerCAmelCase_ : int = text.replace("\r" ,"<BR>" ) lowerCAmelCase_ : Union[str, Any] = text.replace("\t" ,"<TAB>" ) lowerCAmelCase_ : Optional[Any] = text.replace("—" ,"ー" ) lowerCAmelCase_ : List[Any] = text.replace("−" ,"ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase_ : str = text.replace(lowerCAmelCase__ ,lowerCAmelCase__ ) if clean: lowerCAmelCase_ : Optional[Any] = self.clean_text(lowerCAmelCase__ ) def check_simbol(lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : List[Any] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: lowerCAmelCase_ : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(lowerCAmelCase__ : int ): lowerCAmelCase_ : Optional[int] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: lowerCAmelCase_ : Optional[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = [] while pos < len(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = min(len(lowerCAmelCase__ ) ,pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCAmelCase_ : Optional[int] = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ ,lowerCAmelCase__ ,-1 ): lowerCAmelCase_ : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: lowerCAmelCase_ : List[str] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted lowerCAmelCase_ : List[Any] = sorted(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : x[0] )[0] result.append(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = e else: lowerCAmelCase_ : Union[str, Any] = pos + 1 lowerCAmelCase_ : List[str] = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCAmelCase_ : List[str] = end return result def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple="\n" ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Tuple = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : List[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : Any = "".join(lowerCAmelCase__ ) return text
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if height >= 1: move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__) move_disk(snake_case__ , snake_case__) move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): print("moving disk from" , snake_case__ , "to" , snake_case__) def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = int(input("Height of hanoi: ").strip()) move_tower(snake_case__ , "A" , "B" , "C") if __name__ == "__main__": main()
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'convbert' def __init__( self : Optional[Any] ,lowerCAmelCase__ : List[str]=3_05_22 ,lowerCAmelCase__ : Optional[Any]=7_68 ,lowerCAmelCase__ : Any=12 ,lowerCAmelCase__ : int=12 ,lowerCAmelCase__ : int=30_72 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Any=0.1 ,lowerCAmelCase__ : List[str]=0.1 ,lowerCAmelCase__ : Optional[Any]=5_12 ,lowerCAmelCase__ : List[str]=2 ,lowerCAmelCase__ : Union[str, Any]=0.02 ,lowerCAmelCase__ : str=1e-1_2 ,lowerCAmelCase__ : Union[str, Any]=1 ,lowerCAmelCase__ : Optional[Any]=0 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : int=7_68 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Optional[Any]=9 ,lowerCAmelCase__ : str=1 ,lowerCAmelCase__ : List[Any]=None ,**lowerCAmelCase__ : List[str] ,) -> List[str]: '''simple docstring''' super().__init__( pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Tuple = embedding_size lowerCAmelCase_ : Tuple = head_ratio lowerCAmelCase_ : Any = conv_kernel_size lowerCAmelCase_ : int = num_groups lowerCAmelCase_ : Tuple = classifier_dropout class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 4_2 UpperCamelCase_ = 4_2 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'EncodecFeatureExtractor' UpperCamelCase_ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.feature_extractor lowerCAmelCase_ : List[str] = False def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Union[str, Any]=True ) -> Dict: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ ,language=lowerCAmelCase__ ,no_timestamps=lowerCAmelCase__ ) def __call__( self : int ,*lowerCAmelCase__ : int ,**lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("audio" ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = kwargs.pop("sampling_rate" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = kwargs.pop("text" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : Dict = args[0] lowerCAmelCase_ : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase_ : Union[str, Any] = self.tokenizer(lowerCAmelCase__ ,**lowerCAmelCase__ ) if audio is not None: lowerCAmelCase_ : int = self.feature_extractor(lowerCAmelCase__ ,*lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,**lowerCAmelCase__ ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase_ : Union[str, Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase_ : List[Any] = audio_inputs["padding_mask"] return inputs def UpperCAmelCase_ ( self : Dict ,*lowerCAmelCase__ : Optional[Any] ,**lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = kwargs.pop("audio" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = kwargs.pop("padding_mask" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : int = args[0] lowerCAmelCase_ : Union[str, Any] = args[1:] if audio_values is not None: return self._decode_audio(lowerCAmelCase__ ,padding_mask=lowerCAmelCase__ ) else: return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,*lowerCAmelCase__ : Union[str, Any] ,**lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional = None ) -> List[np.ndarray]: '''simple docstring''' lowerCAmelCase_ : int = to_numpy(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = audio_values.shape if padding_mask is None: return list(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = to_numpy(lowerCAmelCase__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase_ : int = seq_len - padding_mask.shape[-1] lowerCAmelCase_ : str = 1 - self.feature_extractor.padding_value lowerCAmelCase_ : str = np.pad(lowerCAmelCase__ ,((0, 0), (0, difference)) ,"constant" ,constant_values=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = audio_values.tolist() for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase_ : Dict = sliced_audio.reshape(lowerCAmelCase__ ,-1 ) return audio_values
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase = logging.get_logger(__name__) _lowercase = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'bloom' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any]=25_08_80 ,lowerCAmelCase__ : Tuple=64 ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : int=8 ,lowerCAmelCase__ : List[str]=1e-5 ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Optional[Any]=1 ,lowerCAmelCase__ : Dict=2 ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : str=1 ,lowerCAmelCase__ : Optional[Any]=False ,**lowerCAmelCase__ : List[str] ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ : List[str] = kwargs.pop("n_embed" ,lowerCAmelCase__ ) lowerCAmelCase_ : int = hidden_size if n_embed is None else n_embed lowerCAmelCase_ : str = n_layer lowerCAmelCase_ : Any = n_head lowerCAmelCase_ : Dict = layer_norm_epsilon lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : int = use_cache lowerCAmelCase_ : Tuple = pretraining_tp lowerCAmelCase_ : Optional[int] = apply_residual_connection_post_layernorm lowerCAmelCase_ : str = hidden_dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Optional[Any] = bos_token_id lowerCAmelCase_ : Tuple = eos_token_id lowerCAmelCase_ : Any = slow_but_exact super().__init__(bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = version.parse('1.12' ) def __init__( self : List[Any] ,lowerCAmelCase__ : PretrainedConfig ,lowerCAmelCase__ : str = "default" ,lowerCAmelCase__ : List[PatchingSpec] = None ,lowerCAmelCase__ : bool = False ,) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ,task=lowerCAmelCase__ ,patching_specs=lowerCAmelCase__ ,use_past=lowerCAmelCase__ ) if not getattr(self._config ,"pad_token_id" ,lowerCAmelCase__ ): # TODO: how to do that better? lowerCAmelCase_ : str = 0 @property def UpperCAmelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCAmelCase__ ,direction="inputs" ,inverted_values_shape=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : int = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' return self._config.n_head @property def UpperCAmelCase_ ( self : Dict ) -> float: '''simple docstring''' return 1e-3 def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : "PreTrainedTokenizer" ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional["TensorType"] = None ,) -> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = super(lowerCAmelCase__ ,self ).generate_dummy_inputs( lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,seq_length=lowerCAmelCase__ ,is_pair=lowerCAmelCase__ ,framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : List[str] = seqlen + 2 lowerCAmelCase_ : Optional[int] = self._config.hidden_size // self.num_attention_heads lowerCAmelCase_ : Union[str, Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase_ : Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase_ : Optional[Any] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : List[str] = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : Dict = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ ,lowerCAmelCase__ ,dtype=lowerCAmelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return 13
707
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
0
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = None lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(batch_size=2 ,length=lowerCAmelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase_ : List[str] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase_ : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(lowerCAmelCase__ ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : str = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase_ : int = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Tuple = 2 # create ramp distribution lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() lowerCAmelCase_ : int = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase_ : str = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : Any = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase_ : List[Any] = 5 lowerCAmelCase_ : Dict = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, length) ).copy() lowerCAmelCase_ : List[Any] = top_k_warp_safety_check(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[str] = 10 lowerCAmelCase_ : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase_ : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase_ : Any = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase_ : Union[str, Any] = np.exp(top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase_ : Optional[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase_ : Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase_ : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase_ : Tuple = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 20 lowerCAmelCase_ : List[str] = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) # check that min length is applied at length 5 lowerCAmelCase_ : Any = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCAmelCase_ : Dict = 5 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase_ : Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = 15 lowerCAmelCase_ : Optional[int] = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = 20 lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase_ : Any = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : int = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : int = 4 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Any = 5 lowerCAmelCase_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase_ : Optional[Any] = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCAmelCase_ : Union[str, Any] = 4 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase_ : Union[str, Any] = 3 lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = 4 lowerCAmelCase_ : Union[str, Any] = 10 lowerCAmelCase_ : List[Any] = 15 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Dict = 15 # dummy input_ids and scores lowerCAmelCase_ : List[Any] = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = input_ids.copy() lowerCAmelCase_ : str = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = 10 # no processor list lowerCAmelCase_ : int = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # with processor list lowerCAmelCase_ : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : List[str] = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : int = 15 lowerCAmelCase_ : Union[str, Any] = 2 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = 15 # dummy input_ids and scores lowerCAmelCase_ : str = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = input_ids.copy() lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores # with processor list def run_processor_list(lowerCAmelCase__ : str ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : Any = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores lowerCAmelCase_ : Any = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : str = jitted_run_no_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jitted_run_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
710
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt'''} _lowercase = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } _lowercase = { '''openbmb/cpm-ant-10b''': 1024, } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = collections.OrderedDict() with open(snake_case__ , "r" , encoding="utf-8") as reader: lowerCAmelCase_ : Any = reader.readlines() for index, token in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = token.rstrip("\n") lowerCAmelCase_ : Union[str, Any] = index return vocab class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any="<unk>" ,lowerCAmelCase__ : Union[str, Any]=2_00 ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = vocab lowerCAmelCase_ : Any = unk_token lowerCAmelCase_ : List[str] = max_input_chars_per_word def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : str = list(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Union[str, Any] = [] while start < len(lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = len(lowerCAmelCase__ ) lowerCAmelCase_ : str = None while start < end: lowerCAmelCase_ : int = "".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(lowerCAmelCase__ ) lowerCAmelCase_ : Any = end return sub_tokens class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = False def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str]="<d>" ,lowerCAmelCase__ : Union[str, Any]="</d>" ,lowerCAmelCase__ : str="<s>" ,lowerCAmelCase__ : List[Any]="</s>" ,lowerCAmelCase__ : str="<pad>" ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="</n>" ,lowerCAmelCase__ : Optional[int]="</_>" ,lowerCAmelCase__ : List[Any]="left" ,**lowerCAmelCase__ : Tuple ,) -> Optional[int]: '''simple docstring''' requires_backends(self ,["jieba"] ) super().__init__( bod_token=lowerCAmelCase__ ,eod_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,line_token=lowerCAmelCase__ ,space_token=lowerCAmelCase__ ,padding_side=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = bod_token lowerCAmelCase_ : Tuple = eod_token lowerCAmelCase_ : Tuple = load_vocab(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.encoder[space_token] lowerCAmelCase_ : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda lowerCAmelCase__ : x[1] ) ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : Union[str, Any] = WordpieceTokenizer(vocab=self.encoder ,unk_token=self.unk_token ) @property def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' return self.encoder[self.bod_token] @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return self.encoder[self.eod_token] @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder["\n"] @property def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = [] for x in jieba.cut(lowerCAmelCase__ ,cut_all=lowerCAmelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(lowerCAmelCase__ ) ) return output_tokens def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Any ,**lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = [i for i in token_ids if i >= 0] lowerCAmelCase_ : List[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return token in self.encoder def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' return "".join(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ,self.unk_token ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : List[str] = (filename_prefix + "-" if filename_prefix else "") + save_directory lowerCAmelCase_ : str = 0 if " " in self.encoder: lowerCAmelCase_ : str = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ : List[str] = self.encoder["\n"] del self.encoder["\n"] lowerCAmelCase_ : str = collections.OrderedDict(sorted(self.encoder.items() ,key=lambda lowerCAmelCase__ : x[1] ) ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : Dict = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : List[int] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) return [1] + ([0] * len(lowerCAmelCase__ ))
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = TextToVideoSDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCamelCase_ = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") ,up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") ,cross_attention_dim=32 ,attention_head_dim=4 ,) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=5_12 ,) lowerCAmelCase_ : Dict = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str]=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : int = TextToVideoSDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "np" lowerCAmelCase_ : Dict = sd_pipe(**lowerCAmelCase__ ).frames lowerCAmelCase_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCAmelCase_ : Optional[Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) lowerCAmelCase_ : int = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Optional[Any] = pipe.to("cuda" ) lowerCAmelCase_ : List[str] = "Spiderman is surfing" lowerCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ : Any = pipe(lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=25 ,output_type="pt" ).frames lowerCAmelCase_ : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) lowerCAmelCase_ : Union[str, Any] = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) lowerCAmelCase_ : str = pipe.to("cuda" ) lowerCAmelCase_ : str = "Spiderman is surfing" lowerCAmelCase_ : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe(lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=2 ,output_type="pt" ).frames lowerCAmelCase_ : Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
713
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
0
import numpy as np def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = int(np.ceil((x_end - xa) / h)) lowerCAmelCase_ : int = np.zeros((n + 1,)) lowerCAmelCase_ : Optional[int] = ya lowerCAmelCase_ : Optional[Any] = xa for k in range(snake_case__): lowerCAmelCase_ : int = f(snake_case__ , y[k]) lowerCAmelCase_ : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowerCAmelCase_ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowerCAmelCase_ : Tuple = f(x + h , y[k] + h * ka) lowerCAmelCase_ : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowercase = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = SavedModel() lowerCAmelCase_ : List[Any] = [] with open(os.path.join(snake_case__ , "utils" , "tf_ops" , "onnx.json")) as f: lowerCAmelCase_ : List[Any] = json.load(snake_case__)["opsets"] for i in range(1 , opset + 1): onnx_ops.extend(onnx_opsets[str(snake_case__)]) with open(snake_case__ , "rb") as f: saved_model.ParseFromString(f.read()) lowerCAmelCase_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def) # Convert to list, sorted if you want lowerCAmelCase_ : Optional[Any] = sorted(snake_case__) lowerCAmelCase_ : List[str] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case__) if strict and len(snake_case__) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops) elif len(snake_case__) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''') print(*snake_case__ , sep="\n") else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''') if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _lowercase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } _lowercase = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } _lowercase = { '''ctrl''': 256, } _lowercase = { '''Pregnancy''': 168629, '''Christianity''': 7675, '''Explain''': 106423, '''Fitness''': 63440, '''Saving''': 63163, '''Ask''': 27171, '''Ass''': 95985, '''Joke''': 163509, '''Questions''': 45622, '''Thoughts''': 49605, '''Retail''': 52342, '''Feminism''': 164338, '''Writing''': 11992, '''Atheism''': 192263, '''Netflix''': 48616, '''Computing''': 39639, '''Opinion''': 43213, '''Alone''': 44967, '''Funny''': 58917, '''Gaming''': 40358, '''Human''': 4088, '''India''': 1331, '''Joker''': 77138, '''Diet''': 36206, '''Legal''': 11859, '''Norman''': 4939, '''Tip''': 72689, '''Weight''': 52343, '''Movies''': 46273, '''Running''': 23425, '''Science''': 2090, '''Horror''': 37793, '''Confession''': 60572, '''Finance''': 12250, '''Politics''': 16360, '''Scary''': 191985, '''Support''': 12654, '''Technologies''': 32516, '''Teenage''': 66160, '''Event''': 32769, '''Learned''': 67460, '''Notion''': 182770, '''Wikipedia''': 37583, '''Books''': 6665, '''Extract''': 76050, '''Confessions''': 102701, '''Conspiracy''': 75932, '''Links''': 63674, '''Narcissus''': 150425, '''Relationship''': 54766, '''Relationships''': 134796, '''Reviews''': 41671, '''News''': 4256, '''Translation''': 26820, '''multilingual''': 128406, } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = set() lowerCAmelCase_ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : str = char lowerCAmelCase_ : Union[str, Any] = set(snake_case__) return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = CONTROL_CODES def __init__( self : Optional[int] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any="<unk>" ,**lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' super().__init__(unk_token=lowerCAmelCase__ ,**lowerCAmelCase__ ) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : Dict = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Optional[int] = [tuple(merge.split() ) for merge in merges] lowerCAmelCase_ : List[str] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : int = {} @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Any = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowerCAmelCase_ : List[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Optional[int] = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ : Optional[Any] = bigram lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[Any] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : str = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : List[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : int = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Any = "@@ ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word[:-4] lowerCAmelCase_ : Optional[Any] = word return word def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Optional[Any] = re.findall(R"\S+\n?" ,lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ,self.unk_token ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = " ".join(lowerCAmelCase__ ).replace("@@ " ,"" ).strip() return out_string def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[int] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Optional[int] = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : int = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
716
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return 1_00 @property def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Any = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase_ : List[Any] = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.dummy_unet lowerCAmelCase_ : Optional[Any] = self.dummy_movq lowerCAmelCase_ : List[str] = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase_ : Optional[Any] = DDIMScheduler(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Any=0 ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCAmelCase_ : Any = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint lowerCAmelCase_ : Dict = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : str = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = "cpu" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : List[Any] = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = output.images lowerCAmelCase_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) ,return_dict=lowerCAmelCase__ ,)[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCAmelCase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase_ : Union[str, Any] = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 255.0 lowerCAmelCase_ : Any = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) lowerCAmelCase_ : int = "A robot, 4k photo" lowerCAmelCase_ : str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" ,torch_dtype=torch.floataa ) lowerCAmelCase_ : List[str] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ : Tuple = pipe_prior( lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.85 ,generator=lowerCAmelCase__ ,negative_prompt="" ,).to_tuple() lowerCAmelCase_ : List[Any] = pipeline( image=lowerCAmelCase__ ,image_embeds=lowerCAmelCase__ ,negative_image_embeds=lowerCAmelCase__ ,hint=lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=1_00 ,height=5_12 ,width=5_12 ,strength=0.5 ,output_type="np" ,) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCAmelCase__ ,lowerCAmelCase__ )
717
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ShapEPipeline UpperCamelCase_ = ['prompt'] UpperCamelCase_ = ['prompt'] UpperCamelCase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' return 8 @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCAmelCase_ : Optional[int] = PriorTransformer(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase_ : Any = ShapERenderer(**lowerCAmelCase__ ) return model def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = self.dummy_prior lowerCAmelCase_ : Optional[int] = self.dummy_text_encoder lowerCAmelCase_ : Tuple = self.dummy_tokenizer lowerCAmelCase_ : Any = self.dummy_renderer lowerCAmelCase_ : List[Any] = HeunDiscreteScheduler( beta_schedule="exp" ,num_train_timesteps=10_24 ,prediction_type="sample" ,use_karras_sigmas=lowerCAmelCase__ ,clip_sample=lowerCAmelCase__ ,clip_sample_range=1.0 ,) lowerCAmelCase_ : Union[str, Any] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : str=0 ) -> Union[str, Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : int = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = "cpu" lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : str = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = output.images[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase_ : List[str] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = torch_device == "cpu" lowerCAmelCase_ : List[str] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=lowerCAmelCase__ ,relax_max_difference=lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ : Dict = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : str = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase_ : List[str] = batch_size * [inputs[key]] lowerCAmelCase_ : List[str] = pipe(**lowerCAmelCase__ ,num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) lowerCAmelCase_ : Optional[int] = ShapEPipeline.from_pretrained("openai/shap-e" ) lowerCAmelCase_ : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe( "a shark" ,generator=lowerCAmelCase__ ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ ,lowerCAmelCase__ )
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } _lowercase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = SqueezeBertTokenizer def __init__( self : Optional[int] ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : List[str]="[UNK]" ,lowerCAmelCase__ : Union[str, Any]="[SEP]" ,lowerCAmelCase__ : Dict="[PAD]" ,lowerCAmelCase__ : Any="[CLS]" ,lowerCAmelCase__ : List[Any]="[MASK]" ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Any=None ,**lowerCAmelCase__ : Dict ,) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Dict = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : Union[str, Any] = do_lower_case lowerCAmelCase_ : str = strip_accents lowerCAmelCase_ : Optional[int] = tokenize_chinese_chars lowerCAmelCase_ : Optional[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = do_lower_case def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[Any]=None ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
from __future__ import annotations import typing from collections import Counter def UpperCamelCase ( snake_case__): lowerCAmelCase_ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1): for perpendicular in range(snake_case__ , max_perimeter + 1): lowerCAmelCase_ : Union[str, Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case__): lowerCAmelCase_ : List[str] = int(base + perpendicular + hypotenuse) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def UpperCamelCase ( snake_case__ = 10_00): lowerCAmelCase_ : Any = pythagorean_triple(snake_case__) return triplets.most_common(1)[0][0] if __name__ == "__main__": print(f"Perimeter {solution()} has maximum solutions")
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=0 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = floats_tensor((1, 3, 1_28, 1_28) ,rng=random.Random(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = torch.manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[str] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Dict = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Any = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Union[str, Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs() lowerCAmelCase_ : List[str] = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : int = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = ort.SessionOptions() lowerCAmelCase_ : Union[str, Any] = False return options def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Optional[Any] = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Dict = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Any = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Any = init_image.resize((1_28, 1_28) ) lowerCAmelCase_ : Dict = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,subfolder="scheduler" ) lowerCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,scheduler=lowerCAmelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[Any] = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *lowerCAmelCase__ : int ,**lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase_ : str = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = vqa_pipeline(lowerCAmelCase__ ,top_k=1 ) self.assertEqual( lowerCAmelCase__ ,[ [{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}], [{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}], ] ,) @require_torch def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase_ : Any = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Optional[Any] = "How many cats are there?" lowerCAmelCase_ : Dict = vqa_pipeline(image=lowerCAmelCase__ ,question="How many cats are there?" ,top_k=2 ) self.assertEqual( lowerCAmelCase__ ,[{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}] ) lowerCAmelCase_ : Optional[Any] = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( lowerCAmelCase__ ,[{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}] ) @slow @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = pipeline("visual-question-answering" ,model="dandelin/vilt-b32-finetuned-vqa" ) lowerCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Dict = "How many cats are there?" lowerCAmelCase_ : Optional[Any] = vqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase_ : int = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase_ : List[str] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 ,) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
def UpperCamelCase ( snake_case__): return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Any = number while duplicate > 0: lowerCAmelCase_ : str = divmod(snake_case__ , 10) fact_sum += factorial(snake_case__) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') _lowercase = int(input('''Enter number: ''').strip()) print( f"{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number." )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __snake_case ( snake_case__ , snake_case__ ): """simple docstring""" UpperCamelCase_ = 'focalnet' def __init__( self : int ,lowerCAmelCase__ : Dict=2_24 ,lowerCAmelCase__ : str=4 ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : Optional[int]=96 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : List[str]=[1_92, 3_84, 7_68, 7_68] ,lowerCAmelCase__ : Any=[2, 2, 6, 2] ,lowerCAmelCase__ : Tuple=[2, 2, 2, 2] ,lowerCAmelCase__ : List[Any]=[3, 3, 3, 3] ,lowerCAmelCase__ : str="gelu" ,lowerCAmelCase__ : int=4.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[Any]=False ,lowerCAmelCase__ : str=1e-4 ,lowerCAmelCase__ : Optional[int]=False ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : List[Any]=1e-5 ,lowerCAmelCase__ : Tuple=32 ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : Optional[int] ,) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : Any = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Dict = embed_dim lowerCAmelCase_ : str = use_conv_embed lowerCAmelCase_ : Optional[int] = hidden_sizes lowerCAmelCase_ : str = depths lowerCAmelCase_ : Optional[int] = focal_levels lowerCAmelCase_ : List[str] = focal_windows lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[int] = mlp_ratio lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = drop_path_rate lowerCAmelCase_ : Optional[int] = use_layerscale lowerCAmelCase_ : Union[str, Any] = layerscale_value lowerCAmelCase_ : Any = use_post_layernorm lowerCAmelCase_ : List[str] = use_post_layernorm_in_modulation lowerCAmelCase_ : List[Any] = normalize_modulator lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : int = encoder_stride lowerCAmelCase_ : Optional[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase_ : Any = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ ,out_indices=lowerCAmelCase__ ,stage_names=self.stage_names )
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = len(snake_case__) lowerCAmelCase_ : str = len(matrix[0]) lowerCAmelCase_ : Dict = min(snake_case__ , snake_case__) for row in range(snake_case__): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__): lowerCAmelCase_ : Tuple = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase_ : Union[str, Any] = True for i in range(row + 1 , snake_case__): if matrix[i][row] != 0: lowerCAmelCase_ : Union[str, Any] = matrix[i], matrix[row] lowerCAmelCase_ : Union[str, Any] = False break if reduce: rank -= 1 for i in range(snake_case__): lowerCAmelCase_ : List[str] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCAmelCase_ : List[str] = True for i in range(0 , len(snake_case__) - 1 , 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCAmelCase_ : str = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase_ : Optional[int] = False for i in range(1 , len(snake_case__) - 1 , 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCAmelCase_ : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase_ : Any = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') _lowercase = [int(x) for x in input().split()] # inputing elements of the list in one line _lowercase = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Dict=56 ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : str=99 ,lowerCAmelCase__ : List[Any]=32 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : Tuple=7 ,lowerCAmelCase__ : List[str]="gelu_new" ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[int]=0.1 ,lowerCAmelCase__ : List[str]=5_12 ,lowerCAmelCase__ : Tuple=16 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : Optional[Any]=0.02 ,lowerCAmelCase__ : int=4 ,lowerCAmelCase__ : int="block_sparse" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : str=2 ,lowerCAmelCase__ : Dict=3 ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : Tuple = seq_length lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : List[Any] = use_attention_mask lowerCAmelCase_ : Any = use_token_type_ids lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Any = num_choices lowerCAmelCase_ : Tuple = rescale_embeddings lowerCAmelCase_ : str = attention_type lowerCAmelCase_ : Optional[int] = use_bias lowerCAmelCase_ : Any = block_size lowerCAmelCase_ : int = num_random_blocks def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_attention_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase_ : Tuple = BigBirdConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCAmelCase__ ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,block_size=self.block_size ,num_random_blocks=self.num_random_blocks ,use_bias=self.use_bias ,rescale_embeddings=self.rescale_embeddings ,) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : Dict = config_and_inputs lowerCAmelCase_ : Optional[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ : int = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : Optional[int] ): return model(input_ids=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase_ : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_ : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[Any]=1e-5 ,lowerCAmelCase__ : int="outputs" ,lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
707
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
0
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("AttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "AttnUpBlock2D") ,) return model @property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") ,cross_attention_dim=10 ,) return model @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") ,up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") ,) lowerCAmelCase_ : Optional[int] = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("AttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "AttnUpBlock2D") ,) return vqvae, unet @slow def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Dict = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) lowerCAmelCase_ : Union[str, Any] = DDPMScheduler() lowerCAmelCase_ : List[str] = AudioDiffusionPipeline(vqvae=lowerCAmelCase__ ,unet=self.dummy_unet ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : str = pipe(generator=lowerCAmelCase__ ,steps=4 ) lowerCAmelCase_ : Optional[int] = output.audios[0] lowerCAmelCase_ : Optional[int] = output.images[0] lowerCAmelCase_ : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Any = pipe(generator=lowerCAmelCase__ ,steps=4 ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCAmelCase_ : Optional[Any] = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : List[str] = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase_ : List[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) lowerCAmelCase_ : List[str] = DDIMScheduler() lowerCAmelCase_ : int = self.dummy_vqvae_and_unet lowerCAmelCase_ : Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) np.random.seed(0 ) lowerCAmelCase_ : Any = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCAmelCase_ : List[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Union[str, Any] = pipe(raw_audio=lowerCAmelCase__ ,generator=lowerCAmelCase__ ,start_step=5 ,steps=10 ) lowerCAmelCase_ : Dict = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCAmelCase_ : str = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Any = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase_ : Union[str, Any] = self.dummy_unet_condition lowerCAmelCase_ : Tuple = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=lowerCAmelCase__ ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) np.random.seed(0 ) lowerCAmelCase_ : List[Any] = torch.rand((1, 1, 10) ) lowerCAmelCase_ : List[Any] = pipe(generator=lowerCAmelCase__ ,encoding=lowerCAmelCase__ ) lowerCAmelCase_ : str = output.images[0] lowerCAmelCase_ : Union[str, Any] = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : List[Any] = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = torch_device lowerCAmelCase_ : int = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowerCAmelCase_ : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Any = pipe(generator=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.audios[0] lowerCAmelCase_ : Union[str, Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCAmelCase_ : int = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Tuple = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import json import sys def UpperCamelCase ( snake_case__ , snake_case__): with open(snake_case__ , encoding="utf-8") as f: lowerCAmelCase_ : str = json.load(snake_case__) lowerCAmelCase_ : Optional[Any] = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(snake_case__): lowerCAmelCase_ : Optional[Any] = results[benchmark_name] lowerCAmelCase_ : Union[str, Any] = benchmark_name.split("/")[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''') lowerCAmelCase_ : str = "| metric |" lowerCAmelCase_ : Optional[int] = "|--------|" lowerCAmelCase_ : Tuple = "| new / old (diff) |" for metric_name in sorted(snake_case__): lowerCAmelCase_ : Tuple = benchmark_res[metric_name] lowerCAmelCase_ : Optional[int] = metric_vals["new"] lowerCAmelCase_ : Dict = metric_vals.get("old" , snake_case__) lowerCAmelCase_ : Tuple = metric_vals.get("diff" , snake_case__) lowerCAmelCase_ : List[Any] = F''' {new_val:f}''' if isinstance(snake_case__ , (int, float)) else "None" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(snake_case__ , (int, float)) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(snake_case__ , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>") with open(snake_case__ , "w" , encoding="utf-8") as f: f.writelines("\n".join(snake_case__)) if __name__ == "__main__": _lowercase = sys.argv[1] _lowercase = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = '''RegNetConfig''' # Base docstring _lowercase = '''facebook/regnet-y-040''' _lowercase = [1, 1088, 7, 7] # Image classification docstring _lowercase = '''facebook/regnet-y-040''' _lowercase = '''tabby, tabby cat''' _lowercase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : Optional[str] = "relu" ,) -> str: '''simple docstring''' super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Convad( lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=lowerCAmelCase__ ,stride=lowerCAmelCase__ ,padding=kernel_size // 2 ,groups=lowerCAmelCase__ ,bias=lowerCAmelCase__ ,) lowerCAmelCase_ : str = nn.BatchNormad(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.convolution(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.normalization(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : RegNetConfig ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[str] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowerCAmelCase_ : Optional[int] = config.num_channels def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCAmelCase_ : Dict = self.embedder(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 2 ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,stride=lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = nn.BatchNormad(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.convolution(lowerCAmelCase__ ) lowerCAmelCase_ : str = self.normalization(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> Any: '''simple docstring''' super().__init__() lowerCAmelCase_ : str = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase_ : Optional[int] = nn.Sequential( nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.pooler(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.attention(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = hidden_state * attention return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 1 ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Any = in_channels != out_channels or stride != 1 lowerCAmelCase_ : str = max(1 ,out_channels // config.groups_width ) lowerCAmelCase_ : List[Any] = ( RegNetShortCut(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,groups=lowerCAmelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=lowerCAmelCase__ ) ,) lowerCAmelCase_ : Union[str, Any] = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = hidden_state lowerCAmelCase_ : str = self.layer(lowerCAmelCase__ ) lowerCAmelCase_ : str = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowerCAmelCase_ : Optional[int] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : int ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Optional[int] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : Union[str, Any] = max(1 ,out_channels // config.groups_width ) lowerCAmelCase_ : Optional[int] = ( RegNetShortCut(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : Union[str, Any] = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,groups=lowerCAmelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCAmelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=lowerCAmelCase__ ) ,) lowerCAmelCase_ : Dict = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = hidden_state lowerCAmelCase_ : List[str] = self.layer(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowerCAmelCase_ : List[str] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 2 ,lowerCAmelCase__ : int = 2 ,) -> int: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[Any] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer lowerCAmelCase_ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,) ,*[layer(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for _ in range(depth - 1 )] ,) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.layers(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : RegNetConfig ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCAmelCase_ : List[Any] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,depth=lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tensor ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' lowerCAmelCase_ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ : Optional[Any] = hidden_states + (hidden_state,) lowerCAmelCase_ : int = stage_module(lowerCAmelCase__ ) if output_hidden_states: lowerCAmelCase_ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ ,hidden_states=lowerCAmelCase__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = RegNetConfig UpperCamelCase_ = 'regnet' UpperCamelCase_ = 'pixel_values' UpperCamelCase_ = True def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="fan_out" ,nonlinearity="relu" ) elif isinstance(lowerCAmelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str]=False ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = value _lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = config lowerCAmelCase_ : Union[str, Any] = RegNetEmbeddings(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = RegNetEncoder(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tensor ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowerCAmelCase_ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Optional[int] = self.embedder(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.encoder( lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : str = encoder_outputs[0] lowerCAmelCase_ : int = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ ,pooler_output=lowerCAmelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : str = config.num_labels lowerCAmelCase_ : Dict = RegNetModel(lowerCAmelCase__ ) # classification head lowerCAmelCase_ : Optional[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Optional[torch.FloatTensor] = None ,lowerCAmelCase__ : Optional[torch.LongTensor] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : int = self.regnet(lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : Tuple = self.classifier(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : List[str] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : Dict = "single_label_classification" else: lowerCAmelCase_ : str = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase_ : Dict = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : str = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase_ : List[Any] = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : Tuple = CrossEntropyLoss() lowerCAmelCase_ : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : int = BCEWithLogitsLoss() lowerCAmelCase_ : Optional[int] = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) if not return_dict: lowerCAmelCase_ : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ ,logits=lowerCAmelCase__ ,hidden_states=outputs.hidden_states )
710
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
0
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = LxmertTokenizer UpperCamelCase_ = LxmertTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = True def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' super().setUp() lowerCAmelCase_ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = "UNwant\u00E9d,running" lowerCAmelCase_ : str = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[str] = "I was born in 92000, and this is falsé." lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) lowerCAmelCase_ : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
from typing import Dict, Optional import numpy as np import datasets _lowercase = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' _lowercase = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' _lowercase = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , ): if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase_ : Optional[int] = new_id # turn into Numpy arrays lowerCAmelCase_ : str = np.array(snake_case__) lowerCAmelCase_ : Tuple = np.array(snake_case__) if reduce_labels: lowerCAmelCase_ : Tuple = 2_55 lowerCAmelCase_ : Dict = label - 1 lowerCAmelCase_ : Any = 2_55 lowerCAmelCase_ : Optional[Any] = label != ignore_index lowerCAmelCase_ : Union[str, Any] = np.not_equal(snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = pred_label[mask] lowerCAmelCase_ : Any = np.array(snake_case__)[mask] lowerCAmelCase_ : Optional[int] = pred_label[pred_label == label] lowerCAmelCase_ : List[str] = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : Tuple = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : Optional[Any] = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : Tuple = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : str = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : Any = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(snake_case__ , snake_case__): lowerCAmelCase_ : int = intersect_and_union( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : Optional[int] = total_intersect_and_union( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) # compute metrics lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Any = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase_ : Any = total_area_intersect / total_area_union lowerCAmelCase_ : Optional[int] = total_area_intersect / total_area_label lowerCAmelCase_ : List[str] = np.nanmean(snake_case__) lowerCAmelCase_ : Union[str, Any] = np.nanmean(snake_case__) lowerCAmelCase_ : Tuple = all_acc lowerCAmelCase_ : List[str] = iou lowerCAmelCase_ : List[Any] = acc if nan_to_num is not None: lowerCAmelCase_ : List[str] = {metric: np.nan_to_num(snake_case__ , nan=snake_case__) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) ,reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : int ,lowerCAmelCase__ : bool ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Dict[int, int]] = None ,lowerCAmelCase__ : bool = False ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = mean_iou( results=lowerCAmelCase__ ,gt_seg_maps=lowerCAmelCase__ ,num_labels=lowerCAmelCase__ ,ignore_index=lowerCAmelCase__ ,nan_to_num=lowerCAmelCase__ ,label_map=lowerCAmelCase__ ,reduce_labels=lowerCAmelCase__ ,) return iou_result
713
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
0
from __future__ import annotations from functools import lru_cache from math import ceil _lowercase = 100 _lowercase = set(range(3, NUM_PRIMES, 2)) primes.add(2) _lowercase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00) def UpperCamelCase ( snake_case__): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ : set[int] = set() lowerCAmelCase_ : int lowerCAmelCase_ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def UpperCamelCase ( snake_case__ = 50_00): for number_to_partition in range(1 , snake_case__): if len(partition(snake_case__)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } _lowercase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowercase = '''▁''' class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = AlbertTokenizer def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : str=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : List[Any]=False ,lowerCAmelCase__ : Optional[int]="[CLS]" ,lowerCAmelCase__ : List[Any]="[SEP]" ,lowerCAmelCase__ : Dict="<unk>" ,lowerCAmelCase__ : int="[SEP]" ,lowerCAmelCase__ : Optional[Any]="<pad>" ,lowerCAmelCase__ : List[str]="[CLS]" ,lowerCAmelCase__ : Optional[Any]="[MASK]" ,**lowerCAmelCase__ : Optional[int] ,) -> int: '''simple docstring''' lowerCAmelCase_ : int = ( AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ,normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token ) super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,remove_space=lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : List[str] = remove_space lowerCAmelCase_ : Any = keep_accents lowerCAmelCase_ : Optional[Any] = vocab_file lowerCAmelCase_ : Optional[int] = False if not self.vocab_file else True def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : List[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file ,lowerCAmelCase__ ) return (out_vocab_file,)
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
0
from __future__ import annotations class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = text, pattern lowerCAmelCase_ : int = len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase_ ( self : Optional[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase_ : int = self.mismatch_in_text(lowerCAmelCase__ ) if mismatch_index == -1: positions.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase_ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = '''ABAABA''' _lowercase = '''AB''' _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
716
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowercase = trt.Logger(trt.Logger.WARNING) _lowercase = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowercase = logging.getLogger(__name__) _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) _lowercase = parser.parse_args() if args.tokenizer_name: _lowercase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) _lowercase = args.per_device_eval_batch_size _lowercase = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowercase = True _lowercase = '''temp_engine/bert-fp32.engine''' if args.fpaa: _lowercase = '''temp_engine/bert-fp16.engine''' if args.inta: _lowercase = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') _lowercase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowercase = [network.get_input(i) for i in range(network.num_inputs)] _lowercase = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowercase = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowercase = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowercase = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = np.asarray(inputs["input_ids"] , dtype=np.intaa) lowerCAmelCase_ : Tuple = np.asarray(inputs["attention_mask"] , dtype=np.intaa) lowerCAmelCase_ : Any = np.asarray(inputs["token_type_ids"] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , snake_case__) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , snake_case__) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , snake_case__) # start time lowerCAmelCase_ : str = time.time() # Run inference context.execute_async( bindings=[int(snake_case__) for d_inp in d_inputs] + [int(snake_case__), int(snake_case__)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__) cuda.memcpy_dtoh_async(snake_case__ , snake_case__ , snake_case__) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase_ : List[str] = time.time() lowerCAmelCase_ : Optional[Any] = end_time - start_time lowerCAmelCase_ : Dict = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowercase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowercase = raw_datasets['''validation'''].column_names _lowercase = '''question''' if '''question''' in column_names else column_names[0] _lowercase = '''context''' if '''context''' in column_names else column_names[1] _lowercase = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowercase = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _lowercase = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( snake_case__): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase_ : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase_ : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=snake_case__ , stride=args.doc_stride , return_overflowing_tokens=snake_case__ , return_offsets_mapping=snake_case__ , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase_ : List[str] = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase_ : Optional[int] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase_ : Any = tokenized_examples.sequence_ids(snake_case__) lowerCAmelCase_ : Any = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase_ : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples _lowercase = raw_datasets['''validation'''] # Validation Feature Creation _lowercase = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) _lowercase = default_data_collator _lowercase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) _lowercase = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase_ : Union[str, Any] = postprocess_qa_predictions( examples=snake_case__ , features=snake_case__ , predictions=snake_case__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=snake_case__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase_ : int = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase_ : Tuple = [{"id": k, "prediction_text": v} for k, v in predictions.items()] lowerCAmelCase_ : List[Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=snake_case__ , label_ids=snake_case__) _lowercase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( snake_case__): return trt.volume(engine.get_binding_shape(snake_case__)) * engine.get_binding_dtype(snake_case__).itemsize # Allocate device memory for inputs and outputs. _lowercase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowercase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowercase = cuda.mem_alloc(h_outputa.nbytes) _lowercase = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowercase = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") _lowercase = 0.0 _lowercase = 0 _lowercase = timeit.default_timer() _lowercase = None for step, batch in enumerate(eval_dataloader): _lowercase , _lowercase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowercase , _lowercase = outputs _lowercase = torch.tensor(start_logits) _lowercase = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowercase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowercase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowercase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowercase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowercase = nested_truncate(all_preds, len(eval_dataset)) _lowercase = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) _lowercase = post_processing_function(eval_examples, eval_dataset, all_preds) _lowercase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
717
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowercase = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'maskformer' UpperCamelCase_ = {'hidden_size': 'mask_feature_size'} UpperCamelCase_ = ['resnet', 'swin'] UpperCamelCase_ = ['detr'] def __init__( self : Dict ,lowerCAmelCase__ : int = 2_56 ,lowerCAmelCase__ : int = 2_56 ,lowerCAmelCase__ : float = 0.1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[Dict] = None ,lowerCAmelCase__ : Optional[Dict] = None ,lowerCAmelCase__ : float = 0.02 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 1.0 ,lowerCAmelCase__ : float = 20.0 ,lowerCAmelCase__ : Optional[bool] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase_ : int = SwinConfig( image_size=3_84 ,in_channels=3 ,patch_size=4 ,embed_dim=1_28 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = backbone_config.pop("model_type" ) lowerCAmelCase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : int = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase_ : List[str] = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase_ : Tuple = ( decoder_config.pop("model_type" ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[Any] = CONFIG_MAPPING[decoder_type] lowerCAmelCase_ : List[Any] = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = backbone_config lowerCAmelCase_ : str = decoder_config # main feature dimension for the model lowerCAmelCase_ : Tuple = fpn_feature_size lowerCAmelCase_ : List[Any] = mask_feature_size # initializer lowerCAmelCase_ : Optional[int] = init_std lowerCAmelCase_ : Optional[Any] = init_xavier_std # Hungarian matcher && loss lowerCAmelCase_ : Optional[int] = cross_entropy_weight lowerCAmelCase_ : Tuple = dice_weight lowerCAmelCase_ : str = mask_weight lowerCAmelCase_ : List[str] = use_auxiliary_loss lowerCAmelCase_ : Optional[int] = no_object_weight lowerCAmelCase_ : Tuple = output_auxiliary_logits lowerCAmelCase_ : Union[str, Any] = self.decoder_config.encoder_attention_heads lowerCAmelCase_ : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : Optional[int] ,lowerCAmelCase__ : PretrainedConfig ,lowerCAmelCase__ : PretrainedConfig ,**lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return cls( backbone_config=lowerCAmelCase__ ,decoder_config=lowerCAmelCase__ ,**lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : Tuple ) -> Dict[str, any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Any = self.backbone_config.to_dict() lowerCAmelCase_ : Any = self.decoder_config.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowercase = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _lowercase = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _lowercase = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ) ,id="references" ), } ) ,codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] ,reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] ,) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str]=4 ,lowerCAmelCase__ : List[str]=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = compute_bleu( reference_corpus=lowerCAmelCase__ ,translation_corpus=lowerCAmelCase__ ,max_order=lowerCAmelCase__ ,smooth=lowerCAmelCase__ ) (lowerCAmelCase_) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): # Initialise PyTorch model lowerCAmelCase_ : Optional[Any] = BigBirdConfig.from_json_file(snake_case__) print(F'''Building PyTorch model from configuration: {config}''') if is_trivia_qa: lowerCAmelCase_ : List[str] = BigBirdForQuestionAnswering(snake_case__) else: lowerCAmelCase_ : str = BigBirdForPreTraining(snake_case__) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case__ , snake_case__ , is_trivia_qa=snake_case__) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(snake_case__) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : str = pipeline( task="zero-shot-audio-classification" ,model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowerCAmelCase_ : List[Any] = load_dataset("ashraq/esc50" ) lowerCAmelCase_ : Tuple = dataset["train"]["audio"][-1]["array"] lowerCAmelCase_ : str = audio_classifier(lowerCAmelCase__ ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[{"score": 0.501, "label": "Sound of a dog"}, {"score": 0.499, "label": "Sound of vaccum cleaner"}] ,) @unittest.skip("No models are available in TF" ) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' pass @slow @require_torch def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = pipeline( task="zero-shot-audio-classification" ,model="laion/clap-htsat-unfused" ,) # This is an audio of a dog lowerCAmelCase_ : Optional[int] = load_dataset("ashraq/esc50" ) lowerCAmelCase_ : Optional[int] = dataset["train"]["audio"][-1]["array"] lowerCAmelCase_ : int = audio_classifier(lowerCAmelCase__ ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ] ,) lowerCAmelCase_ : str = audio_classifier([audio] * 5 ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 ,) lowerCAmelCase_ : List[str] = audio_classifier( [audio] * 5 ,candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ,batch_size=5 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) ,[ [ {"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}, ], ] * 5 ,) @unittest.skip("No models are available in TF" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A ) -> Optional[int]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case : Dict = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self , A = 1 , A = None , A = 0.0 , A = 5_0 , A = None , A = "pil" , A = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , A ): snake_case : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case : Optional[int] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A , A ) and len(A ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(A )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) snake_case : Tuple = randn_tensor(A , generator=A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case : Any = self.unet(A , A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case : Any = self.scheduler.step( A , A , A , eta=A , use_clipped_model_output=A , generator=A ).prev_sample snake_case : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) snake_case : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case : Optional[Any] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
lowerCamelCase : int = [0, 2, 4, 6, 8] lowerCamelCase : Optional[Any] = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 ,-1 ,-1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 snake_case : int = 0 for digit in range(10 ): snake_case : Optional[int] = digit result += reversible_numbers( 0 ,(remainder + 2 * digit) // 10 ,lowercase ,lowercase ) return result snake_case : List[Any] = 0 for digita in range(10 ): snake_case : str = digita if (remainder + digita) % 2 == 0: snake_case : Any = ODD_DIGITS else: snake_case : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: snake_case : List[str] = digita result += reversible_numbers( remaining_length - 2 ,(remainder + digita + digita) // 10 ,lowercase ,lowercase ,) return result def SCREAMING_SNAKE_CASE__ ( lowercase = 9 ) -> int: snake_case : Optional[int] = 0 for length in range(1 ,max_power + 1 ): result += reversible_numbers(lowercase ,0 ,[0] * length ,lowercase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """distilbert""" _snake_case = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self , A=3_0_5_2_2 , A=5_1_2 , A=False , A=6 , A=1_2 , A=7_6_8 , A=4 * 7_6_8 , A=0.1 , A=0.1 , A="gelu" , A=0.02 , A=0.1 , A=0.2 , A=0 , **A , ) -> Dict: snake_case : Optional[Any] = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = sinusoidal_pos_embds snake_case : Optional[int] = n_layers snake_case : Dict = n_heads snake_case : int = dim snake_case : List[str] = hidden_dim snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : Union[str, Any] = activation snake_case : List[str] = initializer_range snake_case : List[Any] = qa_dropout snake_case : Dict = seq_classif_dropout super().__init__(**A , pad_token_id=A ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: if len(lowercase ) <= 1: return [tuple(lowercase )] snake_case : str = [] def generate(lowercase ,lowercase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 ,lowercase ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case , snake_case : List[Any] = arr[k - 1], arr[i] else: # k is odd snake_case , snake_case : List[Any] = arr[k - 1], arr[0] generate(k - 1 ,lowercase ) generate(len(lowercase ) ,lowercase ) return res if __name__ == "__main__": lowerCamelCase : int = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : int = [int(item) for item in user_input.split(',')] print(heaps(arr))
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Dict = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ,lowercase=False ) -> Tuple: snake_case : Optional[Any] = """backbone.""" if is_semantic else """""" snake_case : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", """beit.embeddings.cls_token"""), (f"""{prefix}patch_embed.proj.weight""", """beit.embeddings.patch_embeddings.projection.weight"""), (f"""{prefix}patch_embed.proj.bias""", """beit.embeddings.patch_embeddings.projection.bias"""), (f"""{prefix}pos_embed""", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ,lowercase=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): snake_case : int = """backbone.""" if is_semantic else """""" # queries, keys and values snake_case : Union[str, Any] = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) snake_case : List[str] = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) snake_case : Dict = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) snake_case : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] snake_case : List[str] = q_bias snake_case : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case : Tuple = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) snake_case : Union[str, Any] = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) snake_case : str = gamma_a snake_case : int = gamma_a def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : str = dct.pop(lowercase ) snake_case : Any = val def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : int = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ) -> List[str]: snake_case : List[str] = False if """rvlcdip""" in checkpoint_url else True snake_case : Tuple = BeitConfig(use_absolute_position_embeddings=lowercase ,use_mask_token=lowercase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case : List[str] = 1024 snake_case : Optional[int] = 4096 snake_case : List[str] = 24 snake_case : Dict = 16 # labels if "rvlcdip" in checkpoint_url: snake_case : int = 16 snake_case : Any = """huggingface/label-files""" snake_case : List[str] = """rvlcdip-id2label.json""" snake_case : Union[str, Any] = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : List[str] = {int(lowercase ): v for k, v in idalabel.items()} snake_case : Any = idalabel snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case : List[Any] = torch.hub.load_state_dict_from_url(lowercase ,map_location="""cpu""" )["""model"""] snake_case : Any = create_rename_keys(lowercase ,has_lm_head=lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_q_k_v(lowercase ,lowercase ,has_lm_head=lowercase ) # load HuggingFace model snake_case : List[str] = BeitForMaskedImageModeling(lowercase ) if has_lm_head else BeitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # Check outputs on an image snake_case : int = BeitImageProcessor( size=config.image_size ,resample=PILImageResampling.BILINEAR ,do_center_crop=lowercase ) snake_case : Any = prepare_img() snake_case : Tuple = image_processor(images=lowercase ,return_tensors="""pt""" ) snake_case : Optional[int] = encoding["""pixel_values"""] snake_case : str = model(lowercase ) snake_case : List[Any] = outputs.logits # verify logits snake_case : Tuple = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowercase ), "Shape of logits not as expected" Path(lowercase ).mkdir(exist_ok=lowercase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) if push_to_hub: if has_lm_head: snake_case : Dict = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: snake_case : Union[str, Any] = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowercase ,lowercase ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=lowercase ,) model.push_to_hub( repo_path_or_name=Path(lowercase ,lowercase ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=lowercase ,) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) lowerCamelCase : Tuple = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __lowercase (UpperCamelCase__ ): """simple docstring""" def __lt__( self , A ) -> Dict: return self[-1] < other[-1] def __eq__( self , A ) -> str: return self[-1] == other[-1] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: snake_case : list[Stack] = [] # sort into stacks for element in collection: snake_case : int = Stack([element] ) snake_case : Optional[int] = bisect_left(lowercase ,lowercase ) if i != len(lowercase ): stacks[i].append(lowercase ) else: stacks.append(lowercase ) # use a heap-based merge to merge stack efficiently snake_case : Optional[int] = merge(*(reversed(lowercase ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Union[str, Any] = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
import pytest lowerCamelCase : Union[str, Any] = '__dummy_dataset1__' lowerCamelCase : int = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def SCREAMING_SNAKE_CASE__ ( ) -> str: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def SCREAMING_SNAKE_CASE__ ( ) -> int: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : int = dataset_loading_script_name snake_case : Any = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowercase ) snake_case : int = script_dir / f"""{script_name}.py""" with open(lowercase ,"""w""" ) as f: f.write(lowercase ) return str(lowercase )
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A=None , A=True , A=None , **A ) -> Optional[int]: snake_case : Optional[Any] = parent snake_case : Tuple = config_class snake_case : Dict = has_text_modality snake_case : Optional[Any] = kwargs snake_case : List[Any] = common_properties def UpperCAmelCase ( self ) -> Dict: snake_case : Any = self.config_class(**self.inputs_dict ) snake_case : Optional[Any] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(A , A ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(A ): try: setattr(A , A , A ) self.parent.assertEqual( getattr(A , A ) , A , msg=f"""`{name} value {idx} expected, but was {getattr(A , A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(A ): try: snake_case : List[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(A , A ) , A , msg=f"""`{name} value {idx} expected, but was {getattr(A , A )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = self.config_class(**self.inputs_dict ) snake_case : Optional[Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case : Dict = os.path.join(A , """config.json""" ) config_first.to_json_file(A ) snake_case : Any = self.config_class.from_json_file(A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(A ) snake_case : List[Any] = self.config_class.from_pretrained(A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = self.config_class(**self.inputs_dict ) snake_case : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: snake_case : List[str] = os.path.join(A , A ) config_first.save_pretrained(A ) snake_case : Union[str, Any] = self.config_class.from_pretrained(A , subfolder=A ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) snake_case : Any = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCAmelCase ( self ) -> List[str]: if self.config_class.is_composition: return snake_case : Optional[int] = self.config_class() self.parent.assertIsNotNone(A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[Any] = copy.deepcopy(A ) snake_case : List[Any] = self.config_class(**A ) snake_case : Dict = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(A , A ) != value: wrong_values.append((key, getattr(A , A ), value) ) if len(A ) > 0: snake_case : Union[str, Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCAmelCase ( self ) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : Union[str, Any] = 1_6 lowerCamelCase : Tuple = 3_2 def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = 16 ,lowercase = "bert-base-cased" ) -> int: snake_case : Optional[int] = AutoTokenizer.from_pretrained(lowercase ) snake_case : Optional[Any] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case : Any = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case : Optional[int] = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case : Union[str, Any] = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(lowercase ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. snake_case : str = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) snake_case : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Optional[int]: model.eval() snake_case : Union[str, Any] = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case : int = model(**lowercase ) snake_case : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case , snake_case : Any = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: snake_case : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase ,references=lowercase ,) snake_case : List[str] = metric.compute() return eval_metric["accuracy"] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: # Initialize accelerator snake_case : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case : Optional[Any] = config["""lr"""] snake_case : Union[str, Any] = int(config["""num_epochs"""] ) snake_case : Dict = int(config["""seed"""] ) snake_case : Union[str, Any] = int(config["""batch_size"""] ) snake_case : Tuple = args.model_name_or_path set_seed(lowercase ) snake_case , snake_case : Optional[Any] = get_dataloaders(lowercase ,lowercase ,lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase ,return_dict=lowercase ) # Instantiate optimizer snake_case : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case : List[str] = optimizer_cls(params=model.parameters() ,lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: snake_case : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case : List[Any] = 1 snake_case : Tuple = (len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case : Any = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=0 ,num_training_steps=lowercase ,) else: snake_case : Optional[int] = DummyScheduler(lowercase ,total_num_steps=lowercase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case : List[Any] = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # We need to keep track of how many total steps we have iterated over snake_case : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = evaluate.load("""glue""" ,"""mrpc""" ) snake_case : Any = num_epochs if args.partial_train_epoch is not None: snake_case : str = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case : str = args.resume_from_checkpoint.split("""epoch_""" )[1] snake_case : int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case : List[str] = int(lowercase ) + 1 snake_case : Union[str, Any] = evaluation_loop(lowercase ,lowercase ,lowercase ,lowercase ) accelerator.print("""resumed checkpoint performance:""" ,lowercase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" ,lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" ,optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir ,f"""state_{starting_epoch-1}.json""" ) ,"""r""" ) as f: snake_case : Any = json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case : List[Any] = {} for epoch in range(lowercase ,lowercase ): model.train() for step, batch in enumerate(lowercase ): snake_case : str = model(**lowercase ) snake_case : str = outputs.loss snake_case : Dict = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case : Optional[int] = f"""epoch_{epoch}""" snake_case : Optional[int] = os.path.join(args.output_dir ,lowercase ) accelerator.save_state(lowercase ) snake_case : Dict = evaluation_loop(lowercase ,lowercase ,lowercase ,lowercase ) snake_case : str = accuracy snake_case : Optional[Any] = lr_scheduler.get_lr()[0] snake_case : List[str] = optimizer.param_groups[0]["""lr"""] snake_case : int = epoch snake_case : int = overall_step accelerator.print(f"""epoch {epoch}:""" ,lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,f"""state_{epoch}.json""" ) ,"""w""" ) as f: json.dump(lowercase ,lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Optional[int] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowercase ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowercase ,) parser.add_argument( """--output_dir""" ,type=lowercase ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--resume_from_checkpoint""" ,type=lowercase ,default=lowercase ,help="""If the training should continue from a checkpoint folder.""" ,) parser.add_argument( """--partial_train_epoch""" ,type=lowercase ,default=lowercase ,help="""If passed, the training will stop after this number of epochs.""" ,) parser.add_argument( """--num_epochs""" ,type=lowercase ,default=2 ,help="""Number of train epochs.""" ,) snake_case : Optional[Any] = parser.parse_args() snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """""" _snake_case = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , A = None , A = None , **A , ) -> List[str]: super().__init__(self , **A ) snake_case : Dict = repo_info snake_case : Union[str, Any] = token snake_case : int = None def UpperCAmelCase ( self ) -> Union[str, Any]: if self.dir_cache is None: snake_case : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case : Any = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(A ): {"""name""": str(A ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCAmelCase ( self , A , A = "rb" , **A , ) -> Dict: if not isinstance(self.repo_info , A ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case : int = hf_hub_url(self.repo_info.id , A , revision=self.repo_info.sha ) return fsspec.open( A , mode=A , headers=get_authentication_headers_for_url(A , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCAmelCase ( self , A , **A ) -> Any: self._get_dirs() snake_case : int = self._strip_protocol(A ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(A ) def UpperCAmelCase ( self , A , A=False , **A ) -> int: self._get_dirs() snake_case : Optional[int] = PurePosixPath(path.strip("""/""" ) ) snake_case : Optional[int] = {} for p, f in self.dir_cache.items(): snake_case : Dict = PurePosixPath(p.strip("""/""" ) ) snake_case : Union[str, Any] = p.parent if root == path: snake_case : List[str] = f snake_case : Optional[int] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = XLMTokenizer _snake_case = False def UpperCAmelCase ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] snake_case : Any = dict(zip(A , range(len(A ) ) ) ) snake_case : Optional[int] = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , A ) -> int: snake_case : str = """lower newer""" snake_case : int = """lower newer""" return input_text, output_text def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = XLMTokenizer(self.vocab_file , self.merges_file ) snake_case : Optional[Any] = """lower""" snake_case : List[Any] = ["""low""", """er</w>"""] snake_case : str = tokenizer.tokenize(A ) self.assertListEqual(A , A ) snake_case : Dict = tokens + ["""<unk>"""] snake_case : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : List[str] = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) snake_case : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) snake_case : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A ) snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
import os from collections import deque import torch from torch.utils.data import Dataset class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A="" , A="train" ) -> int: assert os.path.isdir(A ) snake_case : Optional[Any] = [] snake_case : int = os.listdir(A ) for story_filename in story_filenames_list: if "summary" in story_filename: continue snake_case : Tuple = os.path.join(A , A ) if not os.path.isfile(A ): continue self.documents.append(A ) def __len__( self ) -> int: return len(self.documents ) def __getitem__( self , A ) -> List[str]: snake_case : str = self.documents[idx] snake_case : Any = document_path.split("""/""" )[-1] with open(A , encoding="""utf-8""" ) as source: snake_case : List[Any] = source.read() snake_case , snake_case : Optional[Any] = process_story(A ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: snake_case : int = list(filter(lambda lowercase : len(lowercase ) != 0 ,[line.strip() for line in raw_story.split("""\n""" )] ) ) # for some unknown reason some lines miss a period, add it snake_case : Union[str, Any] = [_add_missing_period(lowercase ) for line in nonempty_lines] # gather article lines snake_case : List[str] = [] snake_case : Dict = deque(lowercase ) while True: try: snake_case : Union[str, Any] = lines.popleft() if element.startswith("""@highlight""" ): break story_lines.append(lowercase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines snake_case : str = list(filter(lambda lowercase : not t.startswith("""@highlight""" ) ,lowercase ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : List[str] = [""".""", """!""", """?""", """...""", """'""", """`""", """\"""", """\u2019""", """\u2019""", """)"""] if line.startswith("""@highlight""" ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if len(lowercase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowercase )) ) return sequence def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Optional[Any] = torch.ones_like(lowercase ) snake_case : List[Any] = sequence == pad_token_id snake_case : List[Any] = 0 return mask def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Dict: snake_case : Tuple = [tokenizer.encode(lowercase ) for line in story_lines] snake_case : int = [token for sentence in story_lines_token_ids for token in sentence] snake_case : Optional[int] = [tokenizer.encode(lowercase ) for line in summary_lines] snake_case : Union[str, Any] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: snake_case : Optional[Any] = [] for sequence in batch: snake_case : Dict = -1 snake_case : Optional[int] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowercase ) return torch.tensor(lowercase )
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=True , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> Tuple: snake_case : Union[str, Any] = parent snake_case : Union[str, Any] = batch_size snake_case : Optional[Any] = seq_length snake_case : Tuple = is_training snake_case : int = use_input_mask snake_case : Optional[int] = use_token_type_ids snake_case : Dict = use_labels snake_case : List[str] = vocab_size snake_case : Optional[int] = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Any = hidden_act snake_case : int = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : Any = max_position_embeddings snake_case : Tuple = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : str = num_labels snake_case : List[str] = num_choices snake_case : List[str] = scope def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : int = None if self.use_input_mask: snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[str] = None if self.use_token_type_ids: snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : Optional[Any] = None snake_case : Union[str, Any] = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[str]: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = NystromformerModel(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A ) snake_case : str = model(A , token_type_ids=A ) snake_case : Union[str, Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : List[Any] = NystromformerForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : str = NystromformerForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Dict = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> int: snake_case : int = self.num_labels snake_case : Dict = NystromformerForSequenceClassification(A ) model.to(A ) model.eval() snake_case : Dict = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : str = self.num_labels snake_case : List[str] = NystromformerForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : str = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Any = self.num_choices snake_case : Tuple = NystromformerForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Tuple = config_and_inputs snake_case : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _snake_case = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) _snake_case = False _snake_case = False def UpperCAmelCase ( self ) -> str: snake_case : str = NystromformerModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> str: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : int = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> str: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Any = NystromformerModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Any: snake_case : Optional[int] = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case : Any = model(A )[0] snake_case : Optional[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : List[str] = torch.tensor( [[[-0.45_32, -0.09_36, 0.51_37], [-0.26_76, 0.06_28, 0.61_86], [-0.36_29, -0.17_26, 0.47_16]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Tuple: snake_case : int = """the [MASK] of Belgium is Brussels""" snake_case : Union[str, Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : str = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) snake_case : Tuple = tokenizer(A , return_tensors="""pt""" ) with torch.no_grad(): snake_case : int = model(encoding.input_ids ).logits snake_case : Dict = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A ) , """capital""" )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCamelCase : Any = _symbol_database.Default() lowerCamelCase : Optional[int] = _descriptor_pool.Default().AddSerializedFile( B'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) lowerCamelCase : Optional[int] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCamelCase : Optional[Any] = None lowerCamelCase : int = B'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCamelCase : Any = 4_5 lowerCamelCase : Optional[Any] = 1_5_8_1 lowerCamelCase : Tuple = 1_5_1_7 lowerCamelCase : Dict = 1_5_7_0 lowerCamelCase : List[Any] = 1_5_8_4 lowerCamelCase : str = 1_7_9_3 lowerCamelCase : Union[str, Any] = 1_7_9_5 lowerCamelCase : Optional[int] = 1_9_1_6 lowerCamelCase : str = 1_8_6_4 lowerCamelCase : Any = 1_9_0_5 lowerCamelCase : Union[str, Any] = 1_9_1_9 lowerCamelCase : List[Any] = 2_4_2_9 lowerCamelCase : str = 2_2_0_8 lowerCamelCase : Union[str, Any] = 2_4_1_8 lowerCamelCase : List[Any] = 2_3_2_3 lowerCamelCase : str = 2_4_0_7 # @@protoc_insertion_point(module_scope)
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: create_state_space_tree(lowercase ,[] ,0 ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> None: if index == len(lowercase ): print(lowercase ) return create_state_space_tree(lowercase ,lowercase ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase ,lowercase ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: snake_case : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=lowercase ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=lowercase ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=lowercase ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( ) -> int: snake_case : Union[str, Any] = parse_args() # Import training_script as a module. snake_case : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case : Union[str, Any] = script_fpath.stem snake_case : Optional[Any] = importlib.import_module(lowercase ) # Patch sys.argv snake_case : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase : Optional[Any] = '\nimport os\n' lowerCamelCase : str = '\ndef foo():\n import os\n return False\n' lowerCamelCase : Optional[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' lowerCamelCase : List[str] = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase : Optional[int] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' lowerCamelCase : int = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' lowerCamelCase : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' lowerCamelCase : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' lowerCamelCase : List[str] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase : Dict = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' lowerCamelCase : Any = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" ,lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[Any]: snake_case : Optional[int] = os.path.join(lowercase ,"""test_file.py""" ) with open(lowercase ,"""w""" ) as _tmp_file: _tmp_file.write(lowercase ) snake_case : str = get_imports(lowercase ) assert parsed_imports == ["os"]
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase : Any = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = ['DPTFeatureExtractor'] lowerCamelCase : Optional[int] = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: assert x is not None assert y is not None snake_case : Optional[Any] = len(lowercase ) snake_case : List[Any] = len(lowercase ) # declaring the array for storing the dp values snake_case : Optional[int] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 ,m + 1 ): for j in range(1 ,n + 1 ): snake_case : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0 snake_case : List[str] = max(l[i - 1][j] ,l[i][j - 1] ,l[i - 1][j - 1] + match ) snake_case : Tuple = """""" snake_case , snake_case : List[str] = m, n while i > 0 and j > 0: snake_case : Tuple = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: snake_case : Union[str, Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase : Tuple = 'AGGTAB' lowerCamelCase : int = 'GXTXAYB' lowerCamelCase : str = 4 lowerCamelCase : List[Any] = 'GTAB' lowerCamelCase , lowerCamelCase : List[str] = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : str = [1] snake_case , snake_case , snake_case : Any = 0, 0, 0 snake_case : Any = ugly_nums[ia] * 2 snake_case : List[str] = ugly_nums[ia] * 3 snake_case : List[Any] = ugly_nums[ia] * 5 for _ in range(1 ,lowercase ): snake_case : List[Any] = min(lowercase ,lowercase ,lowercase ) ugly_nums.append(lowercase ) if next_num == next_a: ia += 1 snake_case : str = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 snake_case : Dict = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 snake_case : Dict = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_0_0) = }""")
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" _snake_case = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Union[str, Any] = (3, 3_2, 1_2_8) snake_case : Optional[int] = tempfile.mkdtemp() # fmt: off snake_case : Optional[int] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case : List[Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) snake_case : Optional[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 3_2, """width""": 1_2_8}, } snake_case : Optional[int] = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def UpperCAmelCase ( self , **A ) -> int: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , **A ) -> Union[str, Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Tuple = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) snake_case : Optional[Any] = Image.fromarray(np.moveaxis(A , 0 , -1 ) ) return image_input def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = self.get_tokenizer() snake_case : List[str] = self.get_image_processor() snake_case : Union[str, Any] = MgpstrProcessor(tokenizer=A , image_processor=A ) processor.save_pretrained(self.tmpdirname ) snake_case : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[Any] = self.get_tokenizer() snake_case : List[str] = self.get_image_processor() snake_case : Tuple = MgpstrProcessor(tokenizer=A , image_processor=A ) processor.save_pretrained(self.tmpdirname ) snake_case : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case : Optional[int] = self.get_image_processor(do_normalize=A , padding_value=1.0 ) snake_case : Union[str, Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = self.get_image_processor() snake_case : List[str] = self.get_tokenizer() snake_case : List[str] = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : List[str] = self.prepare_image_inputs() snake_case : Union[str, Any] = image_processor(A , return_tensors="""np""" ) snake_case : List[Any] = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Dict = self.get_image_processor() snake_case : Union[str, Any] = self.get_tokenizer() snake_case : Optional[int] = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : Optional[int] = """test""" snake_case : int = processor(text=A ) snake_case : Union[str, Any] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ) -> Dict: snake_case : Tuple = self.get_image_processor() snake_case : List[Any] = self.get_tokenizer() snake_case : List[str] = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : List[str] = """test""" snake_case : List[Any] = self.prepare_image_inputs() snake_case : str = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Union[str, Any] = self.get_image_processor() snake_case : Optional[Any] = self.get_tokenizer() snake_case : Dict = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case : List[str] = processor.char_decode(A ) snake_case : Optional[Any] = tokenizer.batch_decode(A ) snake_case : Tuple = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(A , A ) def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = self.get_image_processor() snake_case : Tuple = self.get_tokenizer() snake_case : List[str] = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : List[Any] = None snake_case : Any = self.prepare_image_inputs() snake_case : List[Any] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.get_image_processor() snake_case : Any = self.get_tokenizer() snake_case : Union[str, Any] = MgpstrProcessor(tokenizer=A , image_processor=A ) snake_case : Union[str, Any] = torch.randn(1 , 2_7 , 3_8 ) snake_case : str = torch.randn(1 , 2_7 , 5_0_2_5_7 ) snake_case : Any = torch.randn(1 , 2_7 , 3_0_5_2_2 ) snake_case : int = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase = 600851475143 ) -> int: try: snake_case : Optional[int] = int(lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) snake_case : str = 2 snake_case : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case : Any = i while n % i == 0: snake_case : Dict = n // i i += 1 return int(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCamelCase : Dict = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCamelCase : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : Optional[int] = ( list(range(ord("""!""" ) ,ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) ,ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) ,ord("""ÿ""" ) + 1 ) ) ) snake_case : Dict = bs[:] snake_case : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 snake_case : Union[str, Any] = [chr(lowercase ) for n in cs] return dict(zip(lowercase ,lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : Union[str, Any] = set() snake_case : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : List[str] = char return pairs class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> Tuple: snake_case : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token snake_case : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token snake_case : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token snake_case : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) snake_case : int = {v: k for k, v in self.encoder.items()} snake_case : str = errors # how to handle errors in decoding snake_case : Tuple = bytes_to_unicode() snake_case : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="""utf-8""" ) as merges_handle: snake_case : Dict = merges_handle.read().split("""\n""" )[1:-1] snake_case : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : List[Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : Optional[Any] = {} snake_case : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Optional[int] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self ) -> Dict: return len(self.encoder ) def UpperCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase ( self , A ) -> str: if token in self.cache: return self.cache[token] snake_case : List[str] = tuple(A ) snake_case : List[str] = get_pairs(A ) if not pairs: return token while True: snake_case : Union[str, Any] = min(A , key=lambda A : self.bpe_ranks.get(A , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case , snake_case : str = bigram snake_case : Any = [] snake_case : Union[str, Any] = 0 while i < len(A ): try: snake_case : str = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Optional[int] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Any = tuple(A ) snake_case : Optional[Any] = new_word if len(A ) == 1: break else: snake_case : Union[str, Any] = get_pairs(A ) snake_case : Dict = """ """.join(A ) snake_case : List[str] = word return word def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Union[str, Any] = [] for token in re.findall(self.pat , A ): snake_case : Optional[int] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase ( self , A ) -> Optional[int]: return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self , A ) -> List[Any]: return self.decoder.get(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Union[str, Any] = """""".join(A ) snake_case : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + """\n""" ) snake_case : int = 0 with open(A , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) snake_case : List[Any] = token_index writer.write(""" """.join(A ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : int = [self.sep_token_id] snake_case : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A=False , **A ) -> Dict: snake_case : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): snake_case : Optional[int] = """ """ + text return (text, kwargs) def UpperCAmelCase ( self , A , A = None ) -> Dict: return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A ) -> List[int]: snake_case : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(A ) snake_case : Optional[Any] = """ """.join(A ) snake_case : List[str] = self.encode(A ) if len(A ) > self.model_max_length: snake_case : Any = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase : Any = 'src/transformers' lowerCamelCase : Dict = 'docs/source/en' lowerCamelCase : int = '.' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Dict: with open(lowercase ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: snake_case : List[Any] = f.readlines() # Find the start prompt. snake_case : Dict = 0 while not lines[start_index].startswith(lowercase ): start_index += 1 start_index += 1 snake_case : Optional[Any] = start_index while not lines[end_index].startswith(lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase : List[str] = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. lowerCamelCase : Optional[int] = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase : Optional[int] = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : List[Any] = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[Any]: snake_case : Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" ,lowercase ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : Tuple = 2 if text == """✅""" or text == """❌""" else len(lowercase ) snake_case : int = (width - text_length) // 2 snake_case : str = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def SCREAMING_SNAKE_CASE__ ( ) -> Dict: snake_case : Optional[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case : List[str] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } snake_case : Optional[int] = {name: config.replace("""Config""" ,"""""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. snake_case : Tuple = collections.defaultdict(lowercase ) snake_case : List[Any] = collections.defaultdict(lowercase ) snake_case : Optional[Any] = collections.defaultdict(lowercase ) snake_case : Dict = collections.defaultdict(lowercase ) snake_case : Dict = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once). for attr_name in dir(lowercase ): snake_case : List[str] = None if attr_name.endswith("""Tokenizer""" ): snake_case : int = slow_tokenizers snake_case : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): snake_case : Optional[Any] = fast_tokenizers snake_case : Any = attr_name[:-13] elif _re_tf_models.match(lowercase ) is not None: snake_case : List[Any] = tf_models snake_case : Union[str, Any] = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: snake_case : int = flax_models snake_case : str = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: snake_case : Any = pt_models snake_case : List[str] = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_name_to_prefix.values(): snake_case : List[Any] = True break # Try again after removing the last word in the name snake_case : int = """""".join(camel_case_split(lowercase )[:-1] ) # Let's build that table! snake_case : Union[str, Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) snake_case : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). snake_case : Union[str, Any] = [len(lowercase ) + 2 for c in columns] snake_case : str = max([len(lowercase ) for name in model_names] ) + 2 # Build the table per se snake_case : Tuple = """|""" + """|""".join([_center_text(lowercase ,lowercase ) for c, w in zip(lowercase ,lowercase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" snake_case : Optional[Any] = {True: """✅""", False: """❌"""} for name in model_names: snake_case : List[Any] = model_name_to_prefix[name] snake_case : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowercase ,lowercase ) for l, w in zip(lowercase ,lowercase )] ) + "|\n" return table def SCREAMING_SNAKE_CASE__ ( lowercase=False ) -> Dict: snake_case , snake_case , snake_case , snake_case : List[Any] = _find_text_in_file( filename=os.path.join(lowercase ,"""index.md""" ) ,start_prompt="""<!--This table is updated automatically from the auto modules""" ,end_prompt="""<!-- End table-->""" ,) snake_case : List[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowercase ,"""index.md""" ) ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCamelCase : Optional[int] = parser.parse_args() check_model_table(args.fix_and_overwrite)
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
from math import sqrt def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = 0 for i in range(1 ,int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def SCREAMING_SNAKE_CASE__ ( lowercase = 10000 ) -> int: snake_case : Dict = sum( i for i in range(1 ,lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: assert column_title.isupper() snake_case : List[str] = 0 snake_case : Tuple = len(lowercase ) - 1 snake_case : Any = 0 while index >= 0: snake_case : Optional[int] = (ord(column_title[index] ) - 64) * pow(26 ,lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase : """simple docstring""" def __init__( self , A , A=2 , A=8 , A=True , A=True , A=True , A=True , A=9_9 , A=1_6 , A=5 , A=2 , A=3_6 , A="gelu" , A=0.0 , A=0.0 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> List[Any]: snake_case : Optional[Any] = parent snake_case : str = batch_size snake_case : Optional[Any] = seq_length snake_case : Optional[int] = is_training snake_case : Dict = use_input_mask snake_case : Union[str, Any] = use_token_type_ids snake_case : Tuple = use_labels snake_case : Any = vocab_size snake_case : int = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Any = intermediate_size snake_case : Union[str, Any] = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : int = type_vocab_size snake_case : Dict = type_sequence_label_size snake_case : Tuple = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Optional[Any] = num_choices snake_case : List[str] = scope def UpperCAmelCase ( self ) -> str: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Optional[Any] = None if self.use_input_mask: snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : List[str] = None if self.use_token_type_ids: snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case : str = None snake_case : int = None snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ) -> List[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Optional[int] = self.get_config() snake_case : Tuple = 3_0_0 return config def UpperCAmelCase ( self ) -> Any: ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Union[str, Any] = self.prepare_config_and_inputs() snake_case : Any = True snake_case : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Tuple = MraModel(config=A ) model.to(A ) model.eval() snake_case : Tuple = model(A , attention_mask=A , token_type_ids=A ) snake_case : List[str] = model(A , token_type_ids=A ) snake_case : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A , A , A , ) -> Optional[Any]: snake_case : List[Any] = True snake_case : Any = MraModel(A ) model.to(A ) model.eval() snake_case : str = model( A , attention_mask=A , token_type_ids=A , encoder_hidden_states=A , encoder_attention_mask=A , ) snake_case : str = model( A , attention_mask=A , token_type_ids=A , encoder_hidden_states=A , ) snake_case : List[str] = model(A , attention_mask=A , token_type_ids=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : Union[str, Any] = MraForMaskedLM(config=A ) model.to(A ) model.eval() snake_case : Dict = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Union[str, Any]: snake_case : Tuple = MraForQuestionAnswering(config=A ) model.to(A ) model.eval() snake_case : Any = model( A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Any: snake_case : Tuple = self.num_labels snake_case : Any = MraForSequenceClassification(A ) model.to(A ) model.eval() snake_case : List[Any] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Tuple: snake_case : List[str] = self.num_labels snake_case : str = MraForTokenClassification(config=A ) model.to(A ) model.eval() snake_case : Optional[int] = model(A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , A , A , A , A , A , A , A ) -> Dict: snake_case : List[Any] = self.num_choices snake_case : str = MraForMultipleChoice(config=A ) model.to(A ) model.eval() snake_case : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Any = model( A , attention_mask=A , token_type_ids=A , labels=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Dict = config_and_inputs snake_case : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = () def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Union[str, Any] = MraModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> List[Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Dict = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCAmelCase ( self ) -> str: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCAmelCase ( self ) -> Optional[Any]: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Tuple = MraModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase ( self ) -> Optional[Any]: return @require_torch class __lowercase (unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: snake_case : List[str] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : Optional[int] = model(A )[0] snake_case : Any = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , A ) snake_case : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Optional[int] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) snake_case : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : Dict = model(A )[0] snake_case : List[str] = 5_0_2_6_5 snake_case : Union[str, Any] = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , A ) snake_case : str = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @slow def UpperCAmelCase ( self ) -> int: snake_case : List[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) snake_case : List[Any] = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): snake_case : List[str] = model(A )[0] snake_case : List[str] = 5_0_2_6_5 snake_case : int = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , A ) snake_case : Union[str, Any] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
684
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCamelCase : Union[str, Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCamelCase : List[Any] = 'main' # Default branch name lowerCamelCase : Tuple = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) lowerCamelCase : List[Any] = 'aaaaaaa' # This commit does not exist, so we should 404. lowerCamelCase : List[Any] = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes lowerCamelCase : int = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __lowercase (unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> Optional[Any]: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def UpperCAmelCase ( self , A ) -> int: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def UpperCAmelCase ( self ) -> Optional[Any]: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_tf def UpperCAmelCase ( self ) -> str: self.assertEqual(find_labels(A ) , ["""labels"""] ) self.assertEqual(find_labels(A ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(A ) , ["""start_positions""", """end_positions"""] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , ["""labels"""] ) @require_flax def UpperCAmelCase ( self ) -> Any: # Flax models don't have labels self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) self.assertEqual(find_labels(A ) , [] ) class __lowercase (UpperCamelCase__ ): """simple docstring""" pass self.assertEqual(find_labels(A ) , [] )
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gptsan-japanese""" _snake_case = [ """past_key_values""", ] _snake_case = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , A=3_6_0_0_0 , A=1_2_8_0 , A=1_0_2_4 , A=8_1_9_2 , A=4_0_9_6 , A=1_2_8 , A=1_0 , A=0 , A=1_6 , A=1_6 , A=1_2_8 , A=0.0 , A=1e-5 , A=False , A=0.0 , A="float32" , A=False , A=False , A=False , A=0.0_02 , A=False , A=True , A=3_5_9_9_8 , A=3_5_9_9_5 , A=3_5_9_9_9 , **A , ) -> Any: snake_case : Tuple = vocab_size snake_case : List[Any] = max_position_embeddings snake_case : Tuple = d_model snake_case : Optional[Any] = d_ff snake_case : List[Any] = d_ext snake_case : str = d_spout snake_case : List[Any] = num_switch_layers snake_case : Tuple = num_ext_layers snake_case : Optional[int] = num_switch_layers + num_ext_layers snake_case : Any = num_heads snake_case : Tuple = num_experts snake_case : int = expert_capacity snake_case : Optional[int] = dropout_rate snake_case : int = layer_norm_epsilon snake_case : List[Any] = router_bias snake_case : Tuple = router_jitter_noise snake_case : Optional[Any] = router_dtype snake_case : Optional[Any] = router_ignore_padding_tokens snake_case : str = output_hidden_states snake_case : Tuple = output_attentions snake_case : Optional[Any] = initializer_factor snake_case : List[Any] = output_router_logits snake_case : Any = use_cache super().__init__( separator_token_id=A , pad_token_id=A , eos_token_id=A , **A , )
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """audio-spectrogram-transformer""" def __init__( self , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.0 , A=0.0 , A=0.02 , A=1e-1_2 , A=1_6 , A=True , A=1_0 , A=1_0 , A=1_0_2_4 , A=1_2_8 , **A , ) -> int: super().__init__(**A ) snake_case : Any = hidden_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Dict = intermediate_size snake_case : int = hidden_act snake_case : int = hidden_dropout_prob snake_case : Tuple = attention_probs_dropout_prob snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = patch_size snake_case : List[Any] = qkv_bias snake_case : int = frequency_stride snake_case : Any = time_stride snake_case : Union[str, Any] = max_length snake_case : Any = num_mel_bins
684
1
from collections.abc import Callable class __lowercase : """simple docstring""" def __init__( self , A = None ) -> None: # Stores actual heap items. snake_case : list = [] # Stores indexes of each item for supporting updates and deletion. snake_case : dict = {} # Stores current size of heap. snake_case : Union[str, Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. snake_case : Any = key or (lambda A : x) def UpperCAmelCase ( self , A ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase ( self , A ) -> int | None: snake_case : List[Any] = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase ( self , A ) -> int | None: snake_case : Union[str, Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase ( self , A , A ) -> None: snake_case , snake_case : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. snake_case , snake_case : List[Any] = self.arr[j], self.arr[i] def UpperCAmelCase ( self , A , A ) -> bool: return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase ( self , A ) -> int: snake_case : Dict = self._left(A ) snake_case : Optional[Any] = self._right(A ) snake_case : str = i if left is not None and not self._cmp(A , A ): snake_case : str = left if right is not None and not self._cmp(A , A ): snake_case : Optional[Any] = right return valid_parent def UpperCAmelCase ( self , A ) -> None: snake_case : List[Any] = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) snake_case , snake_case : Optional[Any] = parent, self._parent(A ) def UpperCAmelCase ( self , A ) -> None: snake_case : Any = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) snake_case , snake_case : Union[str, Any] = valid_parent, self._get_valid_parent(A ) def UpperCAmelCase ( self , A , A ) -> None: if item not in self.pos_map: return snake_case : Dict = self.pos_map[item] snake_case : Tuple = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def UpperCAmelCase ( self , A ) -> None: if item not in self.pos_map: return snake_case : Optional[int] = self.pos_map[item] del self.pos_map[item] snake_case : int = self.arr[self.size - 1] snake_case : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def UpperCAmelCase ( self , A , A ) -> None: snake_case : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: snake_case : List[Any] = [item, self.key(A )] snake_case : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase ( self ) -> tuple | None: return self.arr[0] if self.size else None def UpperCAmelCase ( self ) -> tuple | None: snake_case : int = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def SCREAMING_SNAKE_CASE__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
684
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) class __lowercase (enum.Enum ): """simple docstring""" _snake_case = 0 _snake_case = 1 @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """generated""" def __init__( self , *A , **A ) -> Optional[Any]: super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def UpperCAmelCase ( self , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> Optional[int]: snake_case : Tuple = {} if truncation is not None: snake_case : Union[str, Any] = truncation snake_case : Dict = generate_kwargs snake_case : int = {} if return_tensors is not None and return_type is None: snake_case : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: snake_case : int = clean_up_tokenization_spaces if stop_sequence is not None: snake_case : Tuple = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: return True def UpperCAmelCase ( self , *A , A ) -> Tuple: snake_case : Union[str, Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , A ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) snake_case : Union[str, Any] = ([prefix + arg for arg in args[0]],) snake_case : List[Any] = True elif isinstance(args[0] , A ): snake_case : str = (prefix + args[0],) snake_case : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) snake_case : Optional[Any] = self.tokenizer(*A , padding=A , truncation=A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A , **A ) -> Union[str, Any]: snake_case : Tuple = super().__call__(*A , **A ) if ( isinstance(args[0] , A ) and all(isinstance(A , A ) for el in args[0] ) and all(len(A ) == 1 for res in result ) ): return [res[0] for res in result] return result def UpperCAmelCase ( self , A , A=TruncationStrategy.DO_NOT_TRUNCATE , **A ) -> str: snake_case : Optional[Any] = self._parse_and_tokenize(A , truncation=A , **A ) return inputs def UpperCAmelCase ( self , A , **A ) -> Tuple: if self.framework == "pt": snake_case , snake_case : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": snake_case , snake_case : Optional[Any] = tf.shape(model_inputs["""input_ids"""] ).numpy() snake_case : Dict = generate_kwargs.get("""min_length""" , self.model.config.min_length ) snake_case : str = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(A , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) snake_case : List[str] = self.model.generate(**A , **A ) snake_case : Dict = output_ids.shape[0] if self.framework == "pt": snake_case : List[Any] = output_ids.reshape(A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": snake_case : Any = tf.reshape(A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def UpperCAmelCase ( self , A , A=ReturnType.TEXT , A=False ) -> Union[str, Any]: snake_case : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: snake_case : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: snake_case : int = { f"""{self.return_name}_text""": self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) } records.append(A ) return records @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """summary""" def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A ) def UpperCAmelCase ( self , A , A , A ) -> bool: if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(UpperCamelCase__ ) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """translation""" def UpperCAmelCase ( self , A , A , A ) -> Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def UpperCAmelCase ( self , *A , A=TruncationStrategy.DO_NOT_TRUNCATE , A=None , A=None ) -> Optional[int]: if getattr(self.tokenizer , """_build_translation_inputs""" , A ): return self.tokenizer._build_translation_inputs( *A , return_tensors=self.framework , truncation=A , src_lang=A , tgt_lang=A ) else: return super()._parse_and_tokenize(*A , truncation=A ) def UpperCAmelCase ( self , A=None , A=None , **A ) -> Union[str, Any]: snake_case , snake_case , snake_case : str = super()._sanitize_parameters(**A ) if src_lang is not None: snake_case : Tuple = src_lang if tgt_lang is not None: snake_case : str = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. snake_case : Union[str, Any] = kwargs.get("""task""" , self.task ) snake_case : Any = task.split("""_""" ) if task and len(A ) == 4: # translation, XX, to YY snake_case : Optional[Any] = items[1] snake_case : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A , **A ) -> str: return super().__call__(*A , **A )
684
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase : Optional[int] = pytest.mark.integration @require_faiss class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : List[str] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(A ) for x in np.arange(3_0 ).tolist()]} ) return dset def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Dataset = self._create_dummy_dataset() snake_case : Optional[int] = dset.map( lambda A , A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A , keep_in_memory=A ) snake_case : Tuple = dset.add_faiss_index("""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case , snake_case : Optional[int] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def UpperCAmelCase ( self ) -> List[Any]: import faiss snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) snake_case , snake_case : List[str] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) snake_case , snake_case : Any = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(A , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase ( self ) -> Any: from elasticsearch import Elasticsearch snake_case : Dataset = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: snake_case : int = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 3_0 ) snake_case : List[str] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 2_9}]}} snake_case : Dict = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=A ) snake_case , snake_case : Optional[int] = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: import faiss snake_case : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query snake_case : Any = np.zeros(5 , dtype=np.floataa ) snake_case : List[str] = 1 snake_case , snake_case : int = index.search(A ) self.assertRaises(A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries snake_case : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] snake_case , snake_case : List[Any] = index.search_batch(A ) self.assertRaises(A , index.search_batch , queries[0] ) snake_case : Tuple = [scores[0] for scores in total_scores] snake_case : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A ) def UpperCAmelCase ( self ) -> Tuple: import faiss snake_case : List[str] = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) snake_case : List[Any] = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A ): snake_case : Tuple = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase ( self ) -> Any: import faiss snake_case : Optional[Any] = faiss.IndexFlat(5 ) snake_case : Any = FaissIndex(custom_index=A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase ( self ) -> List[Any]: import faiss snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: index.save(tmp_file.name ) snake_case : Dict = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) snake_case : Tuple = np.zeros(5 , dtype=np.floataa ) snake_case : Optional[int] = 1 snake_case , snake_case : List[Any] = index.search(A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Any: import faiss snake_case : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) snake_case : int = """index.faiss""" snake_case : int = f"""mock://{index_name}""" index.save(lowercase ,storage_options=mockfs.storage_options ) snake_case : Dict = FaissIndex.load(lowercase ,storage_options=mockfs.storage_options ) snake_case : Dict = np.zeros(5 ,dtype=np.floataa ) snake_case : str = 1 snake_case , snake_case : Optional[Any] = index.search(lowercase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __lowercase (UpperCamelCase__ ): """simple docstring""" def UpperCAmelCase ( self ) -> str: from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: snake_case : Dict = Elasticsearch() snake_case : Tuple = {"""acknowledged""": True} snake_case : int = ElasticSearchIndex(es_client=A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query snake_case : Optional[int] = """foo""" snake_case : Tuple = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case , snake_case : Tuple = index.search(A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout snake_case : List[Any] = """foo""" snake_case : Dict = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} snake_case , snake_case : Any = index.search(A , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries snake_case : Tuple = ["""foo""", """bar""", """foobar"""] snake_case : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case , snake_case : Any = index.search_batch(A ) snake_case : List[Any] = [scores[0] for scores in total_scores] snake_case : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A ) # batched queries with timeout snake_case : Optional[Any] = ["""foo""", """bar""", """foobar"""] snake_case : int = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} snake_case , snake_case : Union[str, Any] = index.search_batch(A , request_timeout=3_0 ) snake_case : int = [scores[0] for scores in total_scores] snake_case : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) , 0 ) self.assertListEqual([1, 1, 1] , A )
684
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
1
lowerCamelCase : List[Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : List[str] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowerCamelCase : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 lowerCamelCase : Union[str, Any] = True lowerCamelCase : Tuple = False def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore snake_case : Optional[int] = chain(next_number(lowercase ) ) snake_case : Tuple = number_chain while number < 10000000: snake_case : List[Any] = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE__ ( lowercase = 10000000 ) -> int: for i in range(1 ,lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
684
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Tuple: # Initialise PyTorch model snake_case : int = RemBertConfig.from_json_file(lowercase ) print("""Building PyTorch model from configuration: {}""".format(str(lowercase ) ) ) snake_case : Tuple = RemBertModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowercase ,lowercase ,lowercase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowercase ) ) torch.save(model.state_dict() ,lowercase ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCamelCase : Dict = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> tuple[float, float]: # Check if the input is valid if not len(lowercase ) == len(lowercase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients snake_case , snake_case , snake_case : Union[str, Any] = equationa snake_case , snake_case , snake_case : Any = equationa # Calculate the determinants of the matrices snake_case : Dict = aa * ba - aa * ba snake_case : Dict = ca * ba - ca * ba snake_case : List[str] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: snake_case : Any = determinant_x / determinant snake_case : Any = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
from ..utils import DummyObject, requires_backends class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[str]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Any: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[int]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Union[str, Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Any: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> int: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Dict: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> str: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> List[Any]: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Optional[int]: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Optional[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Tuple: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> str: requires_backends(cls , ["""flax"""] ) class __lowercase (metaclass=UpperCamelCase__ ): """simple docstring""" _snake_case = ["""flax"""] def __init__( self , *A , **A ) -> Tuple: requires_backends(self , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Dict: requires_backends(cls , ["""flax"""] ) @classmethod def UpperCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ["""flax"""] )
684
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCamelCase : Tuple = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCamelCase : Tuple = {'facebook/blenderbot-3B': 1_2_8} class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] _snake_case = BlenderbotTokenizer def __init__( self , A=None , A=None , A=None , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , A=True , **A , ) -> Any: super().__init__( A , A , tokenizer_file=A , errors=A , bos_token=A , eos_token=A , sep_token=A , cls_token=A , unk_token=A , pad_token=A , mask_token=A , add_prefix_space=A , trim_offsets=A , **A , ) snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : Optional[int] = getattr(A , pre_tok_state.pop("""type""" ) ) snake_case : Dict = add_prefix_space snake_case : List[str] = pre_tok_class(**A ) snake_case : Any = add_prefix_space snake_case : List[str] = """post_processor""" snake_case : Union[str, Any] = getattr(self.backend_tokenizer , A , A ) if tokenizer_component_instance: snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case : Union[str, Any] = tuple(state["""sep"""] ) if "cls" in state: snake_case : int = tuple(state["""cls"""] ) snake_case : List[Any] = False if state.get("""add_prefix_space""" , A ) != add_prefix_space: snake_case : str = add_prefix_space snake_case : int = True if state.get("""trim_offsets""" , A ) != trim_offsets: snake_case : Dict = trim_offsets snake_case : Union[str, Any] = True if changes_to_apply: snake_case : List[str] = getattr(A , state.pop("""type""" ) ) snake_case : Any = component_class(**A ) setattr(self.backend_tokenizer , A , A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase ( self , A ) -> Any: snake_case : List[Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else value snake_case : str = value def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : Optional[int] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A , **A ) def UpperCAmelCase ( self , *A , **A ) -> BatchEncoding: snake_case : List[Any] = kwargs.get("""is_split_into_words""" , A ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A , **A ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: snake_case : Union[str, Any] = self._tokenizer.model.save(A , name=A ) return tuple(A ) def UpperCAmelCase ( self , A , A = None ) -> List[int]: snake_case : Union[str, Any] = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , A , A = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A ) -> List[int]: snake_case : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(A ) snake_case : int = """ """.join(A ) snake_case : Any = self.encode(A ) if len(A ) > self.model_max_length: snake_case : str = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
684
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def SCREAMING_SNAKE_CASE__ ( lowercase ) -> str: snake_case : int = [] for line in lines: snake_case : Dict = re.sub(R"""#.*""" ,"""""" ,lowercase ) # remove comments if line: filtered_lines.append(lowercase ) snake_case : Optional[int] = """\n""".join(lowercase ) # Make a hash from all this code snake_case : List[str] = full_str.encode("""utf-8""" ) return shaaaa(lowercase ).hexdigest() # get importable module names and hash for caching lowerCamelCase : Any = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase : Optional[int] = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase : Tuple = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name lowerCamelCase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> int: if exponent == 1: return base if exponent % 2 == 0: snake_case : Dict = _modexpt(lowercase ,exponent // 2 ,lowercase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowercase ,exponent - 1 ,lowercase )) % modulo_value def SCREAMING_SNAKE_CASE__ ( lowercase = 1777 ,lowercase = 1855 ,lowercase = 8 ) -> int: snake_case : int = base for _ in range(1 ,lowercase ): snake_case : List[str] = _modexpt(lowercase ,lowercase ,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase : Dict = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } lowerCamelCase : Tuple = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=False ) -> Tuple: snake_case , snake_case : Dict = create_model( """HTSAT-tiny""" ,"""roberta""" ,lowercase ,precision="""fp32""" ,device="""cuda:0""" if torch.cuda.is_available() else """cpu""" ,enable_fusion=lowercase ,fusion_type="""aff_2d""" if enable_fusion else None ,) return model, model_cfg def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: snake_case : str = {} snake_case : List[Any] = R""".*sequential.(\d+).*""" snake_case : List[Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case : Dict = key.replace(lowercase ,lowercase ) if re.match(lowercase ,lowercase ): # replace sequential layers with list snake_case : Any = re.match(lowercase ,lowercase ).group(1 ) snake_case : Any = key.replace(f"""sequential.{sequential_layer}.""" ,f"""layers.{int(lowercase )//3}.linear.""" ) elif re.match(lowercase ,lowercase ): snake_case : Union[str, Any] = int(re.match(lowercase ,lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case : Any = 1 if projecton_layer == 0 else 2 snake_case : Tuple = key.replace(f"""_projection.{projecton_layer}.""" ,f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case : Tuple = value snake_case : List[str] = mixed_qkv.size(0 ) // 3 snake_case : Any = mixed_qkv[:qkv_dim] snake_case : Any = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case : Tuple = mixed_qkv[qkv_dim * 2 :] snake_case : Dict = query_layer snake_case : Optional[Any] = key_layer snake_case : str = value_layer else: snake_case : Optional[int] = value return model_state_dict def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=False ) -> List[Any]: snake_case , snake_case : Optional[int] = init_clap(lowercase ,enable_fusion=lowercase ) clap_model.eval() snake_case : str = clap_model.state_dict() snake_case : int = rename_state_dict(lowercase ) snake_case : Any = ClapConfig() snake_case : Any = enable_fusion snake_case : str = ClapModel(lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase ,strict=lowercase ) model.save_pretrained(lowercase ) transformers_config.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
684
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase : Optional[Any] = 'pt' elif is_tf_available(): lowerCamelCase : Dict = 'tf' else: lowerCamelCase : str = 'jax' class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = ByTaTokenizer _snake_case = False def UpperCAmelCase ( self ) -> List[str]: super().setUp() snake_case : Optional[Any] = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase ( self ) -> Any: return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCAmelCase ( self , **A ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A , A=False , A=2_0 , A=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. snake_case : List[str] = [] for i in range(len(A ) ): try: snake_case : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=A ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case : List[Any] = list(filter(lambda A : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , A ) ) snake_case : Any = list(filter(lambda A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A ) , A ) ) if max_length is not None and len(A ) > max_length: snake_case : Dict = toks[:max_length] if min_length is not None and len(A ) < min_length and len(A ) > 0: while len(A ) < min_length: snake_case : Any = toks + toks # toks_str = [t[1] for t in toks] snake_case : Union[str, Any] = [t[0] for t in toks] # Ensure consistency snake_case : List[str] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) if " " not in output_txt and len(A ) > 1: snake_case : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A ) ) if with_prefix_space: snake_case : Optional[int] = """ """ + output_txt snake_case : Optional[Any] = tokenizer.encode(A , add_special_tokens=A ) return output_txt, output_ids def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = self.ta_base_tokenizer snake_case : Optional[Any] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) snake_case : Union[str, Any] = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def UpperCAmelCase ( self ) -> str: snake_case : Tuple = self.ta_base_tokenizer snake_case : Optional[Any] = """Unicode €.""" snake_case : Any = tokenizer(A ) snake_case : Optional[int] = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["""input_ids"""] , A ) # decoding snake_case : List[Any] = tokenizer.decode(A ) self.assertEqual(A , """Unicode €.</s>""" ) snake_case : int = tokenizer("""e è é ê ë""" ) snake_case : List[str] = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["""input_ids"""] , A ) # decoding snake_case : Optional[Any] = tokenizer.decode(A ) self.assertEqual(A , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def UpperCAmelCase ( self ) -> str: snake_case : Union[str, Any] = self.ta_base_tokenizer snake_case : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off snake_case : int = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on snake_case : str = tokenizer(A , padding=A , return_tensors=A ) self.assertIsInstance(A , A ) if FRAMEWORK != "jax": snake_case : List[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A , A ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = self.ta_base_tokenizer snake_case : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case : List[str] = tokenizer(A , padding=A , return_tensors=A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , A ) self.assertIn("""attention_mask""" , A ) self.assertNotIn("""decoder_input_ids""" , A ) self.assertNotIn("""decoder_attention_mask""" , A ) def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = self.ta_base_tokenizer snake_case : Dict = [ """Summary of the text.""", """Another summary.""", ] snake_case : Tuple = tokenizer( text_target=A , max_length=3_2 , padding="""max_length""" , truncation=A , return_tensors=A ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def UpperCAmelCase ( self ) -> List[str]: snake_case : List[Any] = self.ta_base_tokenizer snake_case : Optional[Any] = ["""A long paragraph for summarization. </s>"""] snake_case : List[Any] = ["""Summary of the text. </s>"""] # fmt: off snake_case : Dict = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] snake_case : List[Any] = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on snake_case : Dict = tokenizer(A , text_target=A ) self.assertEqual(A , batch["""input_ids"""][0] ) self.assertEqual(A , batch["""labels"""][0] ) def UpperCAmelCase ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test snake_case : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case : Dict = tempfile.mkdtemp() snake_case : str = """ He is very happy, UNwant\u00E9d,running""" snake_case : Dict = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) snake_case : List[Any] = tokenizer.__class__.from_pretrained(A ) snake_case : Tuple = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) shutil.rmtree(A ) snake_case : Tuple = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case : List[str] = tempfile.mkdtemp() snake_case : Any = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) snake_case : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) snake_case : Tuple = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) snake_case : Tuple = tokenizer.__class__.from_pretrained(A ) snake_case : int = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) snake_case : Optional[int] = tokenizer.__class__.from_pretrained(A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(A ) def UpperCAmelCase ( self ) -> Any: snake_case : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) with open(os.path.join(A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: snake_case : Union[str, Any] = json.load(A ) with open(os.path.join(A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: snake_case : Dict = json.load(A ) snake_case : int = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] snake_case : Any = added_tokens_extra_ids + [ """an_additional_special_token""" ] snake_case : Optional[int] = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) with open(os.path.join(A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A , A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case : Tuple = tokenizer_class.from_pretrained( A , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case : Union[str, Any] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=A )] snake_case : List[Any] = tokenizer_class.from_pretrained( A , additional_special_tokens=A , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def UpperCAmelCase ( self ) -> Any: snake_case : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) snake_case : Any = tokenizer_class.from_pretrained(A ) self.assertTrue(tokenizer.decode([2_5_5] ) == """""" ) def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Tuple: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens snake_case : Optional[Any] = self.get_tokenizers(fast=A , do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): snake_case : Optional[Any] = ["""t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """x""", """t""", """</s>"""] snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(A ) self.assertIsInstance(A , A ) def UpperCAmelCase ( self ) -> Union[str, Any]: snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): snake_case : Union[str, Any] = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] snake_case : Optional[int] = 0 snake_case : Tuple = tokenizer.convert_ids_to_tokens( A , skip_special_tokens=A ) for attr in attributes_list: setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , attr + """_id""" , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + """_id""" ) , A ) setattr(A , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [] ) setattr(A , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(A , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(A , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
684
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase : Tuple = TypeVar('T') def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (position - 1) // 2 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (2 * position) + 1 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return (2 * position) + 2 class __lowercase (Generic[T] ): """simple docstring""" def __init__( self ) -> None: snake_case : list[tuple[T, int]] = [] snake_case : dict[T, int] = {} snake_case : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def UpperCAmelCase ( self , A , A ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) snake_case : Optional[Any] = self.elements self.elements += 1 self._bubble_up(A ) def UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) snake_case , snake_case : Dict = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: snake_case , snake_case : Optional[int] = self.heap[0] self._bubble_down(A ) return elem def UpperCAmelCase ( self , A , A ) -> None: # Update the weight of the given key snake_case : List[str] = self.position_map[elem] snake_case : Optional[Any] = (elem, weight) if position > 0: snake_case : Union[str, Any] = get_parent_position(A ) snake_case , snake_case : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(A ) else: self._bubble_down(A ) else: self._bubble_down(A ) def UpperCAmelCase ( self , A ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] snake_case : Any = self.position_map[elem] if curr_pos == 0: return None snake_case : Union[str, Any] = get_parent_position(A ) snake_case , snake_case : str = self.heap[curr_pos] snake_case , snake_case : Optional[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(A , A ) return self._bubble_up(A ) return None def UpperCAmelCase ( self , A ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] snake_case : List[Any] = self.position_map[elem] snake_case , snake_case : Union[str, Any] = self.heap[curr_pos] snake_case : Dict = get_child_left_position(A ) snake_case : Any = get_child_right_position(A ) if child_left_position < self.elements and child_right_position < self.elements: snake_case , snake_case : List[str] = self.heap[child_left_position] snake_case , snake_case : Optional[int] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) if child_left_position < self.elements: snake_case , snake_case : str = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) else: return None if child_right_position < self.elements: snake_case , snake_case : Any = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(A , A ) return self._bubble_down(A ) return None def UpperCAmelCase ( self , A , A ) -> None: # Swap the nodes at the given positions snake_case : Optional[int] = self.heap[nodea_pos][0] snake_case : Any = self.heap[nodea_pos][0] snake_case , snake_case : Optional[Any] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) snake_case : str = nodea_pos snake_case : List[str] = nodea_pos class __lowercase (Generic[T] ): """simple docstring""" def __init__( self ) -> None: snake_case : dict[T, dict[T, int]] = {} snake_case : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def UpperCAmelCase ( self , A ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: snake_case : List[Any] = {} self.nodes += 1 def UpperCAmelCase ( self , A , A , A ) -> None: # Add an edge between 2 nodes in the graph self.add_node(A ) self.add_node(A ) snake_case : Any = weight snake_case : str = weight def SCREAMING_SNAKE_CASE__ ( lowercase ,) -> tuple[dict[T, int], dict[T, T | None]]: snake_case : dict[T, int] = {node: maxsize for node in graph.connections} snake_case : dict[T, T | None] = {node: None for node in graph.connections} snake_case : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowercase ,lowercase ) if priority_queue.is_empty(): return dist, parent # initialization snake_case : Dict = priority_queue.extract_min() snake_case : Dict = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case : List[str] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase ,dist[neighbour] ) snake_case : str = node # running prim's algorithm while not priority_queue.is_empty(): snake_case : Union[str, Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: snake_case : Dict = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowercase ,dist[neighbour] ) snake_case : Dict = node return dist, parent
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Optional[Any] = {} snake_case : List[str] = job["""started_at"""] snake_case : List[str] = job["""completed_at"""] snake_case : int = date_parser.parse(lowercase ) snake_case : Union[str, Any] = date_parser.parse(lowercase ) snake_case : Dict = round((end_datetime - start_datetime).total_seconds() / 60.0 ) snake_case : str = start snake_case : Tuple = end snake_case : Dict = duration_in_min return job_info def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase=None ) -> Optional[int]: snake_case : Union[str, Any] = None if token is not None: snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} snake_case : Union[str, Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" snake_case : List[str] = requests.get(lowercase ,headers=lowercase ).json() snake_case : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) snake_case : Optional[int] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowercase ): snake_case : List[str] = requests.get(url + f"""&page={i + 2}""" ,headers=lowercase ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') lowerCamelCase : Dict = parser.parse_args() lowerCamelCase : List[Any] = get_job_time(args.workflow_run_id) lowerCamelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list: for i in range(len(lowercase ) - 1 ,0 ,-1 ): snake_case : Any = False for j in range(lowercase ,0 ,-1 ): if unsorted[j] < unsorted[j - 1]: snake_case , snake_case : Optional[Any] = unsorted[j - 1], unsorted[j] snake_case : Dict = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: snake_case , snake_case : Dict = unsorted[j + 1], unsorted[j] snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() lowerCamelCase : Optional[int] = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
684
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase = 4 ) -> list[list[int]]: snake_case : str = abs(lowercase ) or 4 return [[1 + x + y * row_size for x in range(lowercase )] for y in range(lowercase )] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_row(transpose(lowercase ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_row(reverse_column(lowercase ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: return reverse_column(transpose(lowercase ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : Tuple = [list(lowercase ) for x in zip(*lowercase )] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : List[str] = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[list[int]]: snake_case : Dict = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: for i in matrix: print(*lowercase ) if __name__ == "__main__": lowerCamelCase : Dict = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowerCamelCase : Union[str, Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowerCamelCase : List[str] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
684
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Any = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCamelCase : Any = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCamelCase : Optional[int] = { 'jukebox': 5_1_2, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_LYRIC_TOKENS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A , A=["v3", "v2", "v2"] , A=5_1_2 , A=5 , A="<|endoftext|>" , **A , ) -> Optional[Any]: snake_case : Dict = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token super().__init__( unk_token=A , n_genres=A , version=A , max_n_lyric_tokens=A , **A , ) snake_case : Optional[Any] = version snake_case : Optional[Any] = max_n_lyric_tokens snake_case : Tuple = n_genres with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : Union[str, Any] = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : str = json.load(A ) with open(A , encoding="""utf-8""" ) as vocab_handle: snake_case : List[str] = json.load(A ) snake_case : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 7_9: snake_case : Optional[Any] = oov.replace(r"""\-'""" , r"""\-+'""" ) snake_case : Optional[Any] = regex.compile(A ) snake_case : Optional[Any] = {v: k for k, v in self.artists_encoder.items()} snake_case : int = {v: k for k, v in self.genres_encoder.items()} snake_case : List[Any] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase ( self ) -> Optional[Any]: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase ( self ) -> str: return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase ( self , A , A , A ) -> Optional[Any]: snake_case : Optional[int] = [self.artists_encoder.get(A , 0 ) for artist in list_artists] for genres in range(len(A ) ): snake_case : Optional[int] = [self.genres_encoder.get(A , 0 ) for genre in list_genres[genres]] snake_case : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) snake_case : Optional[Any] = [[self.lyrics_encoder.get(A , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase ( self , A ) -> List[str]: return list(A ) def UpperCAmelCase ( self , A , A , A , **A ) -> List[str]: snake_case , snake_case , snake_case : Any = self.prepare_for_tokenization(A , A , A ) snake_case : Tuple = self._tokenize(A ) return artist, genre, lyrics def UpperCAmelCase ( self , A , A , A , A = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": snake_case : Tuple = artists[idx].lower() snake_case : List[Any] = [genres[idx].lower()] else: snake_case : Union[str, Any] = self._normalize(artists[idx] ) + """.v2""" snake_case : Any = [ self._normalize(A ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case : str = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) snake_case : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case : Union[str, Any] = {vocab[index]: index + 1 for index in range(len(A ) )} snake_case : Optional[int] = 0 snake_case : Union[str, Any] = len(A ) + 1 snake_case : Optional[int] = self.vocab snake_case : str = {v: k for k, v in self.vocab.items()} snake_case : int = """""" else: snake_case : Optional[int] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) snake_case : int = self._run_strip_accents(A ) snake_case : Any = lyrics.replace("""\\""" , """\n""" ) snake_case : Tuple = self.out_of_vocab.sub("""""" , A ), [], [] return artists, genres, lyrics def UpperCAmelCase ( self , A ) -> List[Any]: snake_case : int = unicodedata.normalize("""NFD""" , A ) snake_case : int = [] for char in text: snake_case : Optional[Any] = unicodedata.category(A ) if cat == "Mn": continue output.append(A ) return "".join(A ) def UpperCAmelCase ( self , A ) -> str: snake_case : Dict = ( [chr(A ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(A ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(A ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) snake_case : Dict = frozenset(A ) snake_case : Dict = re.compile(r"""_+""" ) snake_case : str = """""".join([c if c in accepted else """_""" for c in text.lower()] ) snake_case : List[Any] = pattern.sub("""_""" , A ).strip("""_""" ) return text def UpperCAmelCase ( self , A ) -> str: return " ".join(A ) def UpperCAmelCase ( self , A , A = None , A = False ) -> List[Any]: # Convert to TensorType if not isinstance(A , A ): snake_case : Tuple = TensorType(A ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf snake_case : Union[str, Any] = tf.constant snake_case : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch snake_case : List[str] = torch.tensor snake_case : Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 snake_case : Optional[int] = jnp.array snake_case : Dict = _is_jax else: snake_case : List[str] = np.asarray snake_case : Tuple = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case : Any = [inputs] if not is_tensor(A ): snake_case : List[Any] = as_tensor(A ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self , A , A , A="" , A="pt" ) -> BatchEncoding: snake_case : List[str] = [0, 0, 0] snake_case : List[str] = [artist] * len(self.version ) snake_case : List[Any] = [genres] * len(self.version ) snake_case , snake_case , snake_case : Optional[int] = self.tokenize(A , A , A ) snake_case , snake_case , snake_case : int = self._convert_token_to_id(A , A , A ) snake_case : Any = [-INFINITY] * len(full_tokens[-1] ) snake_case : int = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A ) ) snake_case : Any = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A ) ) snake_case : Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase ( self , A , A , A ) -> List[Any]: snake_case : Optional[int] = self.artists_decoder.get(A ) snake_case : Optional[Any] = [self.genres_decoder.get(A ) for genre in genres_index] snake_case : Optional[int] = [self.lyrics_decoder.get(A ) for character in lyric_index] return artist, genres, lyrics
684
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """openai-gpt""" _snake_case = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A=4_0_4_7_8 , A=5_1_2 , A=7_6_8 , A=1_2 , A=1_2 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=1e-5 , A=0.02 , A="cls_index" , A=True , A=None , A=True , A=0.1 , **A , ) -> str: snake_case : Dict = vocab_size snake_case : str = n_positions snake_case : str = n_embd snake_case : Union[str, Any] = n_layer snake_case : List[str] = n_head snake_case : List[Any] = afn snake_case : List[Any] = resid_pdrop snake_case : Optional[int] = embd_pdrop snake_case : Tuple = attn_pdrop snake_case : Tuple = layer_norm_epsilon snake_case : str = initializer_range snake_case : Optional[Any] = summary_type snake_case : Union[str, Any] = summary_use_proj snake_case : Any = summary_activation snake_case : Any = summary_first_dropout snake_case : List[Any] = summary_proj_to_labels super().__init__(**A )
684
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list: snake_case : str = len(lowercase ) snake_case : Tuple = [] for i in range(len(lowercase ) - pat_len + 1 ): snake_case : str = True for j in range(lowercase ): if s[i + j] != pattern[j]: snake_case : Dict = False break if match_found: position.append(lowercase ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
684
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path lowerCamelCase : List[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) lowerCamelCase : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} lowerCamelCase : Any = 'zero2' lowerCamelCase : Dict = 'zero3' lowerCamelCase : List[Any] = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> Optional[int]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param snake_case : Optional[Any] = parameterized.to_safe_name("""_""".join(str(lowercase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test lowerCamelCase : Optional[int] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowercase (UpperCamelCase__ ): """simple docstring""" @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> Dict: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @require_torch_multi_gpu @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> List[Any]: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> str: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) @require_torch_multi_gpu @parameterized.expand(A , name_func=A ) def UpperCAmelCase ( self , A , A ) -> Optional[Any]: self.run_and_check( stage=A , model=A , distributed=A , fpaa=A , ) def UpperCAmelCase ( self , A ) -> Tuple: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase ( self , A , A , A = 1_0 , A = True , A = True , A = True , ) -> Tuple: snake_case : List[str] = models[model] snake_case : List[Any] = self.run_trainer( stage=A , model_name=A , eval_steps=A , num_train_epochs=1 , distributed=A , fpaa=A , ) self.do_checks(A ) return output_dir def UpperCAmelCase ( self , A , A , A = 1_0 , A = 1 , A = True , A = True , ) -> Dict: snake_case : List[Any] = self.get_auto_remove_tmp_dir("""./xxx""" , after=A ) snake_case : List[Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(A )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files snake_case : Union[str, Any] = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() snake_case : List[Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] snake_case : str = self.get_launcher(A ) snake_case : List[str] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A , env=self.get_env() ) return output_dir def UpperCAmelCase ( self , A=False ) -> Optional[Any]: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) snake_case : str = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
684
import numpy as np def SCREAMING_SNAKE_CASE__ ( lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
684
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ) -> Optional[int]: snake_case : str = 1 snake_case : Union[str, Any] = 3 snake_case : Any = (3_2, 3_2) snake_case : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A ) return image @property def UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) snake_case : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=A , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) snake_case : Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) return CLIPTextModel(A ) def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Any = self.dummy_cond_unet_upscale snake_case : Optional[int] = DDPMScheduler() snake_case : Optional[int] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : Optional[Any] = self.dummy_vae snake_case : str = self.dummy_text_encoder snake_case : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case : Dict = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Union[str, Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Dict = """A painting of a squirrel eating a burger""" snake_case : Optional[Any] = torch.Generator(device=A ).manual_seed(0 ) snake_case : Any = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Union[str, Any] = output.images snake_case : Union[str, Any] = torch.Generator(device=A ).manual_seed(0 ) snake_case : List[str] = sd_pipe( [prompt] , image=A , generator=A , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , return_dict=A , )[0] snake_case : str = image[0, -3:, -3:, -1] snake_case : Any = image_from_tuple[0, -3:, -3:, -1] snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) snake_case : Union[str, Any] = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase ( self ) -> Dict: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Dict = self.dummy_cond_unet_upscale snake_case : Any = DDPMScheduler() snake_case : Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : List[str] = self.dummy_vae snake_case : List[Any] = self.dummy_text_encoder snake_case : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk snake_case : Union[str, Any] = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : List[str] = """A painting of a squirrel eating a burger""" snake_case : str = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Union[str, Any] = output.images assert image.shape[0] == 2 snake_case : Optional[int] = torch.Generator(device=A ).manual_seed(0 ) snake_case : Tuple = sd_pipe( [prompt] , image=A , generator=A , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="""np""" , ) snake_case : Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def UpperCAmelCase ( self ) -> str: snake_case : str = self.dummy_cond_unet_upscale snake_case : Tuple = DDPMScheduler() snake_case : str = DDIMScheduler(prediction_type="""v_prediction""" ) snake_case : str = self.dummy_vae snake_case : List[Any] = self.dummy_text_encoder snake_case : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Optional[Any] = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 snake_case : Any = unet.half() snake_case : List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk snake_case : Union[str, Any] = StableDiffusionUpscalePipeline( unet=A , low_res_scheduler=A , scheduler=A , vae=A , text_encoder=A , tokenizer=A , max_noise_level=3_5_0 , ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[int] = """A painting of a squirrel eating a burger""" snake_case : Dict = torch.manual_seed(0 ) snake_case : Tuple = sd_pipe( [prompt] , image=A , generator=A , num_inference_steps=2 , output_type="""np""" , ).images snake_case : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ) -> List[Any]: snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) snake_case : Optional[int] = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained(A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Any = """a cat sitting on a park bench""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : str = pipe( prompt=A , image=A , generator=A , output_type="""np""" , ) snake_case : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def UpperCAmelCase ( self ) -> Dict: snake_case : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) snake_case : Union[str, Any] = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : int = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : int = """a cat sitting on a park bench""" snake_case : Union[str, Any] = torch.manual_seed(0 ) snake_case : List[str] = pipe( prompt=A , image=A , generator=A , output_type="""np""" , ) snake_case : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def UpperCAmelCase ( self ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) snake_case : int = """stabilityai/stable-diffusion-x4-upscaler""" snake_case : Any = StableDiffusionUpscalePipeline.from_pretrained( A , torch_dtype=torch.floataa , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : List[Any] = """a cat sitting on a park bench""" snake_case : Optional[Any] = torch.manual_seed(0 ) snake_case : List[Any] = pipe( prompt=A , image=A , generator=A , num_inference_steps=5 , output_type="""np""" , ) snake_case : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
684
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
1
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase : Any = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
684
lowerCamelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCamelCase : Tuple = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCamelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
684
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = {'vocab_file': 'spm_char.model'} lowerCamelCase : List[str] = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCamelCase : List[Any] = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["""input_ids""", """attention_mask"""] def __init__( self , A , A="<s>" , A="</s>" , A="<unk>" , A="<pad>" , A = None , **A , ) -> None: snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) snake_case : Tuple = vocab_file snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Any = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: snake_case : Optional[Any] = self.__dict__.copy() snake_case : Optional[Any] = None return state def __setstate__( self , A ) -> Tuple: snake_case : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case : List[Any] = {} snake_case : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , A ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase ( self , A ) -> Tuple: return self.sp_model.piece_to_id(A ) def UpperCAmelCase ( self , A ) -> int: snake_case : Union[str, Any] = self.sp_model.IdToPiece(A ) return token def UpperCAmelCase ( self , A ) -> Tuple: snake_case : Optional[int] = [] snake_case : str = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token snake_case : Dict = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase ( self , A , A=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) snake_case : Any = [1] if token_ids_a is None: return ([0] * len(A )) + suffix_ones return ([0] * len(A )) + ([0] * len(A )) + suffix_ones def UpperCAmelCase ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case : Optional[Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
684
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """gpt_neox_japanese""" def __init__( self , A=3_2_0_0_0 , A=2_5_6_0 , A=3_2 , A=3_2 , A=4 , A="gelu" , A=1.00 , A=1_0_0_0_0 , A=2_0_4_8 , A=0.02 , A=1e-5 , A=True , A=3_1_9_9_6 , A=3_1_9_9_9 , A=0.1 , A=0.0 , **A , ) -> str: super().__init__(bos_token_id=A , eos_token_id=A , **A ) snake_case : Optional[Any] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[int] = intermediate_multiple_size snake_case : int = hidden_act snake_case : str = rotary_pct snake_case : Optional[Any] = rotary_emb_base snake_case : Any = initializer_range snake_case : Any = layer_norm_eps snake_case : Optional[Any] = use_cache snake_case : Tuple = attention_dropout snake_case : Tuple = hidden_dropout
684
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = None ,lowercase = None ) -> None: if start is None: snake_case : List[str] = 0 if end is None: snake_case : Any = len(lowercase ) - 1 if start >= end: return snake_case : Union[str, Any] = (start + end) // 2 slowsort(lowercase ,lowercase ,lowercase ) slowsort(lowercase ,mid + 1 ,lowercase ) if sequence[end] < sequence[mid]: snake_case , snake_case : Optional[Any] = sequence[mid], sequence[end] slowsort(lowercase ,lowercase ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
684
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Optional[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) snake_case : Any = hex_num[0] == """-""" if is_negative: snake_case : int = hex_num[1:] try: snake_case : List[Any] = int(lowercase ,16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) snake_case : Dict = """""" while int_num > 0: snake_case : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
684
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowerCamelCase : Dict = True from torch.cuda.amp import autocast lowerCamelCase : List[Any] = logging.getLogger(__name__) @dataclass class __lowercase : """simple docstring""" _snake_case = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to log verbose messages or not."""} , ) _snake_case = field( default=2.0 , metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) _snake_case = field( default=0.5 , metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) _snake_case = field( default=0.999_995 , metadata={"""help""": """Decay of gumbel temperature during training."""} ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" ,datefmt="""%m/%d/%Y %H:%M:%S""" ,handlers=[logging.StreamHandler(sys.stdout )] ,) snake_case : int = logging.WARNING if model_args.verbose_logging: snake_case : List[str] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): snake_case : Any = logging.INFO logger.setLevel(lowercase ) @dataclass class __lowercase : """simple docstring""" _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _snake_case = field( default="""validation""" , metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) _snake_case = field( default="""file""" , metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _snake_case = field( default=1 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) _snake_case = field( default=UpperCamelCase__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _snake_case = field( default=20.0 , metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __lowercase : """simple docstring""" _snake_case = 42 _snake_case = 42 _snake_case = "longest" _snake_case = None _snake_case = None def __call__( self , A ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format snake_case : Dict = self.feature_extractor.pad( A , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) snake_case : Tuple = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) snake_case : Any = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case : Optional[int] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) snake_case : Optional[Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case : List[str] = 1 snake_case : str = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case : Tuple = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=A , min_masks=2 , ) return batch class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , *A , A=1 , A=0 , A=1.0 , **A ) -> int: super().__init__(*A , **A ) snake_case : Optional[Any] = 0 snake_case : Union[str, Any] = max_gumbel_temp snake_case : List[str] = min_gumbel_temp snake_case : List[Any] = gumbel_temp_decay def UpperCAmelCase ( self , A , A ) -> torch.Tensor: model.train() snake_case : Optional[Any] = self._prepare_inputs(A ) if self.use_amp: with autocast(): snake_case : int = self.compute_loss(A , A ) else: snake_case : Tuple = self.compute_loss(A , A ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case : Union[str, Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case : Optional[int] = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: snake_case : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(A ).backward() elif self.use_apex: with amp.scale_loss(A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(A ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case , snake_case , snake_case : List[str] = parser.parse_args_into_dataclasses() configure_logger(lowercase ,lowercase ) # Downloading and loading a dataset from the hub. snake_case : Tuple = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case : List[Any] = DatasetDict() snake_case : Union[str, Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}[:{data_args.validation_split_percentage}%]""" ,cache_dir=model_args.cache_dir ,) snake_case : str = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}[{data_args.validation_split_percentage}%:]""" ,cache_dir=model_args.cache_dir ,) else: # make sure only "validation" and "train" keys remain" snake_case : Optional[int] = DatasetDict() snake_case : List[str] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split="""validation""" ,cache_dir=model_args.cache_dir ,) snake_case : Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f"""{data_args.train_split_name}""" ,cache_dir=model_args.cache_dir ,) # only normalized-inputs-training is supported snake_case : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,do_normalize=lowercase ) def prepare_dataset(lowercase ): # check that all files have the correct sampling rate snake_case , snake_case : str = librosa.load(batch[data_args.speech_file_column] ,sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays snake_case : List[str] = datasets.map( lowercase ,num_proc=data_args.preprocessing_num_workers ,remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long snake_case : Union[str, Any] = vectorized_datasets.filter( lambda lowercase : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase ): return feature_extractor(batch["""speech"""] ,sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` snake_case : str = vectorized_datasets.map( lowercase ,batched=lowercase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,remove_columns=vectorized_datasets["""train"""].column_names ,) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case : Union[str, Any] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,gradient_checkpointing=training_args.gradient_checkpointing ,) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) snake_case : Union[str, Any] = WavaVecaForPreTraining(lowercase ) snake_case : List[str] = DataCollatorForWavaVecaPretraining(model=lowercase ,feature_extractor=lowercase ) snake_case : str = WavaVecaPreTrainer( model=lowercase ,data_collator=lowercase ,args=lowercase ,train_dataset=vectorized_datasets["""train"""] ,eval_dataset=vectorized_datasets["""validation"""] ,tokenizer=lowercase ,max_gumbel_temp=model_args.max_gumbel_temperature ,min_gumbel_temp=model_args.min_gumbel_temperature ,gumbel_temp_decay=model_args.gumbel_temperature_decay ,) trainer.train() if __name__ == "__main__": main()
684
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : Optional[int] = logging.get_logger(__name__) class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = ["""pixel_values"""] def __init__( self , A = True , A = None , A = PIL.Image.BICUBIC , A = True , A = None , A = 1 / 2_5_5 , A = True , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) snake_case : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6} snake_case : int = get_size_dict(A ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} snake_case : Dict = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = do_resize snake_case : str = size snake_case : Tuple = resample snake_case : Any = do_center_crop snake_case : Tuple = crop_size snake_case : int = do_rescale snake_case : Dict = rescale_factor snake_case : Union[str, Any] = do_normalize snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , A , A , A = PIL.Image.BICUBIC , A = None , **A , ) -> np.ndarray: snake_case : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> np.ndarray: snake_case : Any = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A = None , **A , ) -> Tuple: return rescale(A , scale=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def UpperCAmelCase ( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: snake_case : str = do_resize if do_resize is not None else self.do_resize snake_case : Dict = resample if resample is not None else self.resample snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : int = image_mean if image_mean is not None else self.image_mean snake_case : List[str] = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Tuple = get_size_dict(A ) snake_case : Dict = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(A , param_name="""crop_size""" ) snake_case : int = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case : Optional[Any] = [to_numpy_array(A ) for image in images] if do_resize: snake_case : Dict = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: snake_case : List[str] = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: snake_case : List[str] = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=A , mean=A , std=A ) for image in images] snake_case : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
684
1
import re import string import numpy as np import datasets lowerCamelCase : Any = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowerCamelCase : Optional[Any] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowerCamelCase : List[Any] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCAmelCase ( self , A , A , A=None , A=False , A=False , A=False , ) -> str: if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case : Optional[int] = np.array([re.sub(A , """""" , A ) for x in predictions] ) snake_case : Optional[int] = np.array([re.sub(A , """""" , A ) for x in references] ) else: snake_case : List[Any] = np.asarray(A ) snake_case : List[Any] = np.asarray(A ) if ignore_case: snake_case : List[Any] = np.char.lower(A ) snake_case : List[str] = np.char.lower(A ) if ignore_punctuation: snake_case : List[str] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case : Dict = np.char.translate(A , table=A ) snake_case : Optional[int] = np.char.translate(A , table=A ) if ignore_numbers: snake_case : Dict = string.digits.maketrans("""""" , """""" , string.digits ) snake_case : List[str] = np.char.translate(A , table=A ) snake_case : Tuple = np.char.translate(A , table=A ) snake_case : Dict = predictions == references return {"exact_match": np.mean(A ) * 1_0_0}
684
import inspect import unittest class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: try: import diffusers # noqa: F401 except ImportError: assert False def UpperCAmelCase ( self ) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps snake_case : List[str] = inspect.getmembers(A , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": snake_case : Tuple = """k-diffusion""" elif backend == "invisible_watermark": snake_case : Optional[int] = """invisible-watermark""" assert backend in deps, f"""{backend} is not in the deps table!"""
684
1