code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def UpperCamelCase ( snake_case__ = ""): lowerCAmelCase_ : str = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowerCAmelCase_ : Any = BeautifulSoup(requests.get(snake_case__).text , "html.parser") lowerCAmelCase_ : List[str] = soup.find_all("td" , attrs="titleColumn") lowerCAmelCase_ : Any = soup.find_all("td" , class_="ratingColumn imdbRating") return { title.a.text: float(rating.strong.text) for title, rating in zip(snake_case__ , snake_case__) } def UpperCamelCase ( snake_case__ = "IMDb_Top_250_Movies.csv"): lowerCAmelCase_ : Any = get_imdb_top_aaa_movies() with open(snake_case__ , "w" , newline="") as out_file: lowerCAmelCase_ : List[Any] = csv.writer(snake_case__) writer.writerow(["Movie title", "IMDb rating"]) for title, rating in movies.items(): writer.writerow([title, rating]) if __name__ == "__main__": write_movies()
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
_lowercase = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
from __future__ import annotations class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = text, pattern lowerCAmelCase_ , lowerCAmelCase_ : int = len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase_ ( self : Optional[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase_ : int = self.mismatch_in_text(lowerCAmelCase__ ) if mismatch_index == -1: positions.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase_ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowercase = '''ABAABA''' _lowercase = '''AB''' _lowercase = BoyerMooreSearch(text, pattern) _lowercase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
def UpperCamelCase ( snake_case__ , snake_case__): while a != 0: lowerCAmelCase_ , lowerCAmelCase_ : str = b % a, a return b def UpperCamelCase ( snake_case__ , snake_case__): if gcd(snake_case__ , snake_case__) != 1: lowerCAmelCase_ : Any = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = 1, 0, a lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = 0, 1, m while va != 0: lowerCAmelCase_ : List[Any] = ua // va lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase = logging.get_logger(__name__) _lowercase = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'bloom' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any]=25_08_80 ,lowerCAmelCase__ : Tuple=64 ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : int=8 ,lowerCAmelCase__ : List[str]=1e-5 ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Optional[Any]=1 ,lowerCAmelCase__ : Dict=2 ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : str=1 ,lowerCAmelCase__ : Optional[Any]=False ,**lowerCAmelCase__ : List[str] ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ : List[str] = kwargs.pop("n_embed" ,lowerCAmelCase__ ) lowerCAmelCase_ : int = hidden_size if n_embed is None else n_embed lowerCAmelCase_ : str = n_layer lowerCAmelCase_ : Any = n_head lowerCAmelCase_ : Dict = layer_norm_epsilon lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : int = use_cache lowerCAmelCase_ : Tuple = pretraining_tp lowerCAmelCase_ : Optional[int] = apply_residual_connection_post_layernorm lowerCAmelCase_ : str = hidden_dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Optional[Any] = bos_token_id lowerCAmelCase_ : Tuple = eos_token_id lowerCAmelCase_ : Any = slow_but_exact super().__init__(bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = version.parse('1.12' ) def __init__( self : List[Any] ,lowerCAmelCase__ : PretrainedConfig ,lowerCAmelCase__ : str = "default" ,lowerCAmelCase__ : List[PatchingSpec] = None ,lowerCAmelCase__ : bool = False ,) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ,task=lowerCAmelCase__ ,patching_specs=lowerCAmelCase__ ,use_past=lowerCAmelCase__ ) if not getattr(self._config ,"pad_token_id" ,lowerCAmelCase__ ): # TODO: how to do that better? lowerCAmelCase_ : str = 0 @property def UpperCAmelCase_ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase_ : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCAmelCase__ ,direction="inputs" ,inverted_values_shape=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ : int = {0: "batch", 1: "sequence"} return common_inputs @property def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' return self._config.n_head @property def UpperCAmelCase_ ( self : Dict ) -> float: '''simple docstring''' return 1e-3 def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : "PreTrainedTokenizer" ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional["TensorType"] = None ,) -> Mapping[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = super(lowerCAmelCase__ ,self ).generate_dummy_inputs( lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,seq_length=lowerCAmelCase__ ,is_pair=lowerCAmelCase__ ,framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : int = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Dict = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ : List[str] = seqlen + 2 lowerCAmelCase_ : Optional[int] = self._config.hidden_size // self.num_attention_heads lowerCAmelCase_ : Union[str, Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase_ : Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase_ : Optional[Any] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : List[str] = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ : Dict = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ : Tuple = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ ,lowerCAmelCase__ ,dtype=lowerCAmelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return 13
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase_ = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase_ = field(default=snake_case__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) UpperCamelCase_ = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase_ = field( default=snake_case__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome.") lowerCAmelCase_ : Optional[Any] = import_module("tasks") try: lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , model_args.task_type) lowerCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''') # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , snake_case__) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task lowerCAmelCase_ : str = token_classification_task.get_labels(data_args.labels) lowerCAmelCase_ : Dict[int, str] = dict(enumerate(snake_case__)) lowerCAmelCase_ : List[Any] = len(snake_case__) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case__ , idalabel=snake_case__ , labelaid={label: i for i, label in enumerate(snake_case__)} , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase_ : Any = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=snake_case__ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase_ : str = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase_ : Any = ( TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(snake_case__ , snake_case__) -> Tuple[List[int], List[int]]: lowerCAmelCase_ : int = np.argmax(snake_case__ , axis=2) lowerCAmelCase_ , lowerCAmelCase_ : int = preds.shape lowerCAmelCase_ : List[str] = [[] for _ in range(snake_case__)] lowerCAmelCase_ : Optional[Any] = [[] for _ in range(snake_case__)] for i in range(snake_case__): for j in range(snake_case__): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(snake_case__) -> Dict: lowerCAmelCase_ , lowerCAmelCase_ : int = align_predictions(p.predictions , p.label_ids) return { "accuracy_score": accuracy_score(snake_case__ , snake_case__), "precision": precision_score(snake_case__ , snake_case__), "recall": recall_score(snake_case__ , snake_case__), "f1": fa_score(snake_case__ , snake_case__), } # Data collator lowerCAmelCase_ : List[str] = DataCollatorWithPadding(snake_case__ , pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase_ : List[Any] = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=snake_case__ , eval_dataset=snake_case__ , compute_metrics=snake_case__ , data_collator=snake_case__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation lowerCAmelCase_ : Optional[int] = {} if training_args.do_eval: logger.info("*** Evaluate ***") lowerCAmelCase_ : str = trainer.evaluate() lowerCAmelCase_ : Optional[Any] = os.path.join(training_args.output_dir , "eval_results.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s" , snake_case__ , snake_case__) writer.write("%s = %s\n" % (key, value)) results.update(snake_case__) # Predict if training_args.do_predict: lowerCAmelCase_ : Dict = TokenClassificationDataset( token_classification_task=snake_case__ , data_dir=data_args.data_dir , tokenizer=snake_case__ , labels=snake_case__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = trainer.predict(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Any = align_predictions(snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = os.path.join(training_args.output_dir , "test_results.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s" , snake_case__ , snake_case__) writer.write("%s = %s\n" % (key, value)) # Save predictions lowerCAmelCase_ : List[str] = os.path.join(training_args.output_dir , "test_predictions.txt") if trainer.is_world_process_zero(): with open(snake_case__ , "w") as writer: with open(os.path.join(data_args.data_dir , "test.txt") , "r") as f: token_classification_task.write_predictions_to_file(snake_case__ , snake_case__ , snake_case__) return results def UpperCamelCase ( snake_case__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import argparse from collections import defaultdict import yaml _lowercase = '''docs/source/en/_toctree.yml''' def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = defaultdict(snake_case__) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase_ : Any = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ : Union[str, Any] = [] for duplicate_key in duplicates: lowerCAmelCase_ : Optional[int] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key}) if len(snake_case__) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others.") # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1]) # Sort return sorted(snake_case__ , key=lambda snake_case__: s["title"].lower()) def UpperCamelCase ( snake_case__=False): with open(snake_case__ , encoding="utf-8") as f: lowerCAmelCase_ : Dict = yaml.safe_load(f.read()) # Get to the API doc lowerCAmelCase_ : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ : Any = content[api_idx]["sections"] # Then to the model doc lowerCAmelCase_ : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase_ : Any = api_doc[model_idx]["sections"] lowerCAmelCase_ : List[Any] = [(idx, section) for idx, section in enumerate(snake_case__) if "sections" in section] lowerCAmelCase_ : List[Any] = False for idx, modality_doc in modalities_docs: lowerCAmelCase_ : Any = modality_doc["sections"] lowerCAmelCase_ : List[str] = clean_model_doc_toc(snake_case__) if old_modality_doc != new_modality_doc: lowerCAmelCase_ : Optional[Any] = True if overwrite: lowerCAmelCase_ : Optional[int] = new_modality_doc if diff: if overwrite: lowerCAmelCase_ : Optional[Any] = model_doc lowerCAmelCase_ : Tuple = api_doc with open(snake_case__ , "w" , encoding="utf-8") as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__)) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this.") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _lowercase = parser.parse_args() _lowercase = '''cpu''' _lowercase = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _lowercase = '''path-to-your-trained-model''' _lowercase = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase = pipe.to(device) # to channels last _lowercase = pipe.unet.to(memory_format=torch.channels_last) _lowercase = pipe.vae.to(memory_format=torch.channels_last) _lowercase = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase = torch.randn(2, 4, 64, 64) _lowercase = torch.rand(1) * 999 _lowercase = torch.randn(2, 77, 768) _lowercase = (sample, timestep, encoder_hidden_status) try: _lowercase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase = 666 _lowercase = torch.Generator(device).manual_seed(seed) _lowercase = {'''generator''': generator} if args.steps is not None: _lowercase = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'gpt_neox' def __init__( self : str ,lowerCAmelCase__ : Union[str, Any]=5_04_32 ,lowerCAmelCase__ : Optional[int]=61_44 ,lowerCAmelCase__ : Union[str, Any]=44 ,lowerCAmelCase__ : int=64 ,lowerCAmelCase__ : Dict=2_45_76 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Union[str, Any]=0.25 ,lowerCAmelCase__ : Optional[int]=1_00_00 ,lowerCAmelCase__ : List[Any]=0.0 ,lowerCAmelCase__ : Optional[int]=0.0 ,lowerCAmelCase__ : List[str]=0.1 ,lowerCAmelCase__ : Union[str, Any]=20_48 ,lowerCAmelCase__ : Optional[Any]=0.02 ,lowerCAmelCase__ : List[str]=1e-5 ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : Any=0 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : List[Any]=False ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : int=None ,**lowerCAmelCase__ : Union[str, Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : str = rotary_pct lowerCAmelCase_ : Tuple = rotary_emb_base lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : List[Any] = hidden_dropout lowerCAmelCase_ : Optional[Any] = classifier_dropout lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[Any] = tie_word_embeddings lowerCAmelCase_ : List[Any] = use_parallel_residual lowerCAmelCase_ : Union[str, Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) lowerCAmelCase_ : Dict = self.rope_scaling.get("type" ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.rope_scaling.get("factor" ,lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
from manim import * class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase_ : int = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : int = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Union[str, Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : List[Any] = VGroup(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Optional[int] = Text("CPU" ,font_size=24 ) lowerCAmelCase_ : Union[str, Any] = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(4 )] lowerCAmelCase_ : Optional[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Dict = Text("GPU" ,font_size=24 ) lowerCAmelCase_ : List[Any] = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Dict = Text("Model" ,font_size=24 ) lowerCAmelCase_ : Tuple = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = [] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCAmelCase_ : int = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] ,direction=lowerCAmelCase__ ,buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] ,direction=lowerCAmelCase__ ,buff=0.0 ) self.add(lowerCAmelCase__ ) cpu_targs.append(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Union[str, Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Optional[int] = Text("Loaded Checkpoint" ,font_size=24 ) lowerCAmelCase_ : Tuple = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,aligned_edge=lowerCAmelCase__ ,buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCAmelCase_ : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase_ : List[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' ,font_size=18 ,) blue_text.next_to(lowerCAmelCase__ ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) lowerCAmelCase_ : Dict = MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ) ,Write(lowerCAmelCase__ ) ) self.play(Write(lowerCAmelCase__ ,run_time=1 ) ,Create(lowerCAmelCase__ ,run_time=1 ) ) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[Any] = [] for i, rect in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = fill.copy().set_fill(lowerCAmelCase__ ,opacity=0.7 ) target.move_to(lowerCAmelCase__ ) first_animations.append(GrowFromCenter(lowerCAmelCase__ ,run_time=1 ) ) lowerCAmelCase_ : Tuple = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCAmelCase__ ,run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(*lowerCAmelCase__ ) self.wait()
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowercase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } _lowercase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = SqueezeBertTokenizer def __init__( self : Optional[int] ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : List[str]="[UNK]" ,lowerCAmelCase__ : Union[str, Any]="[SEP]" ,lowerCAmelCase__ : Dict="[PAD]" ,lowerCAmelCase__ : Any="[CLS]" ,lowerCAmelCase__ : List[Any]="[MASK]" ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Any=None ,**lowerCAmelCase__ : Dict ,) -> Union[str, Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Dict = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : Union[str, Any] = do_lower_case lowerCAmelCase_ : str = strip_accents lowerCAmelCase_ : Optional[int] = tokenize_chinese_chars lowerCAmelCase_ : Optional[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = do_lower_case def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[Any]=None ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DebertaTokenizer UpperCamelCase_ = True UpperCamelCase_ = DebertaTokenizerFast def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Union[str, Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[str] = {"unk_token": "[UNK]"} lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Tuple ,**lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = "lower newer" lowerCAmelCase_ : int = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : Optional[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Any = tokenizer("Hello" ,"World" ) lowerCAmelCase_ : Any = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] ,lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : Optional[int] = tokenizer.encode("sequence builders" ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = tokenizer.encode("multi-sequence build" ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode( "sequence builders" ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = tokenizer.encode( "sequence builders" ,"multi-sequence build" ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) lowerCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ,lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase_ : str = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase_ : int = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = [tokenizer.decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ) for seq in encoding["input_ids"]] # fmt: off lowerCAmelCase_ : Any = { "input_ids": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase_ : Dict = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data ,lowerCAmelCase__ ) for expected, decoded in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowercase = HfApi() _lowercase = {} # fmt: off _lowercase = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) _lowercase = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) _lowercase = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) _lowercase = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) _lowercase = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) _lowercase = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) _lowercase = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) _lowercase = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) _lowercase = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) _lowercase = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) _lowercase = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) _lowercase = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) _lowercase = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) _lowercase = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) _lowercase = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on _lowercase = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowercase = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"Started running {mod.modelId}!!!") if mod.modelId.startswith('''CompVis'''): _lowercase = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: _lowercase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowercase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowercase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowercase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(f"{mod.modelId} has passed successfully!!!")
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowerCAmelCase_ : List[str] = True for i in range(0 , len(snake_case__) - 1 , 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowerCAmelCase_ , lowerCAmelCase_ : str = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase_ : Optional[int] = False for i in range(1 , len(snake_case__) - 1 , 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowerCAmelCase_ : Any = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') _lowercase = [int(x) for x in input().split()] # inputing elements of the list in one line _lowercase = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [chr(i + 65) for i in range(26)] # Remove duplicate characters from key lowerCAmelCase_ : Optional[int] = remove_duplicates(key.upper()) lowerCAmelCase_ : Union[str, Any] = len(snake_case__) # First fill cipher with key characters lowerCAmelCase_ : str = {alphabet[i]: char for i, char in enumerate(snake_case__)} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(snake_case__) , 26): lowerCAmelCase_ : Optional[int] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase_ : int = alphabet[i - offset] lowerCAmelCase_ : Any = char return cipher_alphabet def UpperCamelCase ( snake_case__ , snake_case__): return "".join(cipher_map.get(snake_case__ , snake_case__) for ch in message.upper()) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(snake_case__ , snake_case__) for ch in message.upper()) def UpperCamelCase ( ): lowerCAmelCase_ : Optional[int] = input("Enter message to encode or decode: ").strip() lowerCAmelCase_ : List[str] = input("Enter keyword: ").strip() lowerCAmelCase_ : Any = input("Encipher or decipher? E/D:").strip()[0].lower() try: lowerCAmelCase_ : str = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option") lowerCAmelCase_ : List[str] = create_cipher_map(snake_case__) print(func(snake_case__ , snake_case__)) if __name__ == "__main__": import doctest doctest.testmod() main()
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("DownBlock2D", "AttnDownBlock2D") ,up_block_types=("AttnUpBlock2D", "UpBlock2D") ,) return model def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = self.dummy_uncond_unet lowerCAmelCase_ : Any = PNDMScheduler() lowerCAmelCase_ : List[str] = PNDMPipeline(unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) pndm.to(lowerCAmelCase__ ) pndm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = pndm(generator=lowerCAmelCase__ ,num_inference_steps=20 ,output_type="numpy" ).images lowerCAmelCase_ : int = torch.manual_seed(0 ) lowerCAmelCase_ : int = pndm(generator=lowerCAmelCase__ ,num_inference_steps=20 ,output_type="numpy" ,return_dict=lowerCAmelCase__ )[0] lowerCAmelCase_ : str = image[0, -3:, -3:, -1] lowerCAmelCase_ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = "google/ddpm-cifar10-32" lowerCAmelCase_ : Optional[int] = UNetaDModel.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = PNDMScheduler() lowerCAmelCase_ : Dict = PNDMPipeline(unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) pndm.to(lowerCAmelCase__ ) pndm.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pndm(generator=lowerCAmelCase__ ,output_type="numpy" ).images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : Union[str, Any] = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] UpperCamelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return 1_00 @property def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Any = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase_ : List[Any] = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.dummy_unet lowerCAmelCase_ : Optional[Any] = self.dummy_movq lowerCAmelCase_ : List[str] = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCAmelCase_ : Optional[Any] = DDIMScheduler(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Any=0 ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] lowerCAmelCase_ : Any = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_56, 2_56) ) # create hint lowerCAmelCase_ : Dict = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : str = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = "cpu" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : List[Any] = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = output.images lowerCAmelCase_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) ,return_dict=lowerCAmelCase__ ,)[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Optional[int] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) lowerCAmelCase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase_ : Union[str, Any] = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 255.0 lowerCAmelCase_ : Any = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) lowerCAmelCase_ : int = "A robot, 4k photo" lowerCAmelCase_ : str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" ,torch_dtype=torch.floataa ) lowerCAmelCase_ : List[str] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = pipe_prior( lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.85 ,generator=lowerCAmelCase__ ,negative_prompt="" ,).to_tuple() lowerCAmelCase_ : List[Any] = pipeline( image=lowerCAmelCase__ ,image_embeds=lowerCAmelCase__ ,negative_image_embeds=lowerCAmelCase__ ,hint=lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=1_00 ,height=5_12 ,width=5_12 ,strength=0.5 ,output_type="np" ,) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCAmelCase__ ,lowerCAmelCase__ )
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowercase = TypeVar('''T''') class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : T ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = data lowerCAmelCase_ : Node[T] | None = None def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f'''{self.data}''' class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : str ) -> None: '''simple docstring''' lowerCAmelCase_ : Node[T] | None = None def __iter__( self : str ) -> Iterator[T]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.top while node: yield node.data lowerCAmelCase_ : str = node.next def __str__( self : List[str] ) -> str: '''simple docstring''' return "->".join([str(lowerCAmelCase__ ) for item in self] ) def __len__( self : Dict ) -> int: '''simple docstring''' return len(tuple(iter(self ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> bool: '''simple docstring''' return self.top is None def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : T ) -> None: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = Node(lowerCAmelCase__ ) if not self.is_empty(): lowerCAmelCase_ : Dict = self.top lowerCAmelCase_ : Optional[int] = node def UpperCAmelCase_ ( self : List[Any] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top ,lowerCAmelCase__ ) lowerCAmelCase_ : int = self.top lowerCAmelCase_ : Union[str, Any] = self.top.next return pop_node.data def UpperCAmelCase_ ( self : Optional[int] ) -> T: '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def UpperCAmelCase_ ( self : Dict ) -> None: '''simple docstring''' lowerCAmelCase_ : str = None if __name__ == "__main__": from doctest import testmod testmod()
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
from typing import TYPE_CHECKING from ..utils import _LazyModule _lowercase = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import collections import os import re from pathlib import Path _lowercase = '''src/transformers''' # Matches is_xxx_available() _lowercase = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase = re.compile(r'''^\s*try:''') # Catches a line with else: _lowercase = re.compile(r'''^\s*else:''') def UpperCamelCase ( snake_case__): if _re_test_backend.search(snake_case__) is None: return None lowerCAmelCase_ : Optional[Any] = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def UpperCamelCase ( snake_case__): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Any = f.readlines() lowerCAmelCase_ : int = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("_import_structure = {"): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase_ : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING") and find_backend(lines[line_index]) is None: lowerCAmelCase_ : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): lowerCAmelCase_ : List[Any] = _re_one_line_import_struct.search(snake_case__).groups()[0] lowerCAmelCase_ : List[str] = re.findall(R"\[([^\]]+)\]" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", ")]) line_index += 1 continue lowerCAmelCase_ : int = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: lowerCAmelCase_ : Any = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", ") if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(" " * 8 + "\""): objects.append(line[9:-3]) line_index += 1 lowerCAmelCase_ : str = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING"): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase_ : List[Any] = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: lowerCAmelCase_ : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 lowerCAmelCase_ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 4): lowerCAmelCase_ : Tuple = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: lowerCAmelCase_ : Dict = _re_import_struct_add_many.search(snake_case__).groups()[0].split(", ") lowerCAmelCase_ : Optional[int] = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: lowerCAmelCase_ : Any = _re_between_brackets.search(snake_case__).groups()[0].split(", ") lowerCAmelCase_ : Optional[int] = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(" " * 8 + "\""): objects.append(line[9:-3]) elif line.startswith(" " * 12 + "\""): objects.append(line[13:-3]) line_index += 1 lowerCAmelCase_ : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase_ : Optional[Any] = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("else") ): lowerCAmelCase_ : Optional[Any] = lines[line_index] lowerCAmelCase_ : Tuple = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 8): objects.append(line[8:-2]) line_index += 1 lowerCAmelCase_ : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase_ : List[Any] = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: lowerCAmelCase_ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 lowerCAmelCase_ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8): lowerCAmelCase_ : Optional[Any] = lines[line_index] lowerCAmelCase_ : int = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 12): objects.append(line[12:-2]) line_index += 1 lowerCAmelCase_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase ( snake_case__ , snake_case__): def find_duplicates(snake_case__): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase_ : Tuple = [] for key in import_dict_objects.keys(): lowerCAmelCase_ : Dict = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') lowerCAmelCase_ : Union[str, Any] = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): lowerCAmelCase_ : Tuple = "base imports" if key == "none" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def UpperCamelCase ( ): lowerCAmelCase_ : Optional[int] = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: lowerCAmelCase_ : int = os.path.join(snake_case__ , "__init__.py") lowerCAmelCase_ : str = parse_init(snake_case__) if objects is not None: lowerCAmelCase_ : Tuple = analyze_results(*snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Dict = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("\n\n".join(snake_case__)) def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("_"): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("*.py"))) == 0: continue lowerCAmelCase_ : Union[str, Any] = str((Path(snake_case__) / folder).relative_to(snake_case__)) lowerCAmelCase_ : List[Any] = short_path.replace(os.path.sep , ".") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue lowerCAmelCase_ : Dict = str((Path(snake_case__) / fname).relative_to(snake_case__)) lowerCAmelCase_ : Any = short_path.replace(".py" , "").replace(os.path.sep , ".") if len(submodule.split(".")) == 1: submodules.append(snake_case__) return submodules _lowercase = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def UpperCamelCase ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import lowerCAmelCase_ : int = direct_transformers_import(snake_case__) lowerCAmelCase_ : Optional[int] = set(transformers._import_structure.keys()) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case__ , "__init__.py") , "r") as f: lowerCAmelCase_ : Any = f.read() import_structure_keys.update(set(re.findall(R"import_structure\[\"([^\"]*)\"\]" , snake_case__))) lowerCAmelCase_ : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case__) > 0: lowerCAmelCase_ : str = "\n".join(F'''- {module}''' for module in module_not_registered) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" F'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.") if __name__ == "__main__": check_all_inits() check_submodules()
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
import math def UpperCamelCase ( snake_case__ , snake_case__ = 0 , snake_case__ = 0): lowerCAmelCase_ : List[str] = end or len(snake_case__) for i in range(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = i lowerCAmelCase_ : Optional[Any] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCAmelCase_ : Dict = array[temp_index - 1] temp_index -= 1 lowerCAmelCase_ : Optional[int] = temp_index_value return array def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): # Max Heap lowerCAmelCase_ : Optional[Any] = index lowerCAmelCase_ : int = 2 * index + 1 # Left Node lowerCAmelCase_ : Optional[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCAmelCase_ : Dict = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCAmelCase_ : Union[str, Any] = right_index if largest != index: lowerCAmelCase_ , lowerCAmelCase_ : Any = array[largest], array[index] heapify(snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = len(snake_case__) for i in range(n // 2 , -1 , -1): heapify(snake_case__ , snake_case__ , snake_case__) for i in range(n - 1 , 0 , -1): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = array[0], array[i] heapify(snake_case__ , 0 , snake_case__) return array def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Any = low lowerCAmelCase_ : List[str] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCAmelCase_ , lowerCAmelCase_ : List[str] = array[j], array[i] i += 1 def UpperCamelCase ( snake_case__): if len(snake_case__) == 0: return array lowerCAmelCase_ : List[Any] = 2 * math.ceil(math.loga(len(snake_case__))) lowerCAmelCase_ : Any = 16 return intro_sort(snake_case__ , 0 , len(snake_case__) , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): while end - start > size_threshold: if max_depth == 0: return heap_sort(snake_case__) max_depth -= 1 lowerCAmelCase_ : int = median_of_a(snake_case__ , snake_case__ , start + ((end - start) // 2) + 1 , end - 1) lowerCAmelCase_ : Union[str, Any] = partition(snake_case__ , snake_case__ , snake_case__ , snake_case__) intro_sort(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : int = p return insertion_sort(snake_case__ , snake_case__ , snake_case__) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input('''Enter numbers separated by a comma : ''').strip() _lowercase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = AlbertTokenizer UpperCamelCase_ = AlbertTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = True def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Optional[Any] = AlbertTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = "this is a test" lowerCAmelCase_ : Any = "this is a test" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = "<pad>" lowerCAmelCase_ : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) ,lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<pad>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"▁eloquent" ) self.assertEqual(len(lowerCAmelCase__ ) ,3_00_00 ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,3_00_00 ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Any = self.get_rust_tokenizer() lowerCAmelCase_ : Optional[Any] = "I was born in 92000, and this is falsé." lowerCAmelCase_ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : int = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = AlbertTokenizer(lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ) lowerCAmelCase_ : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ ,["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[48, 25, 21, 12_89] ) lowerCAmelCase_ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) lowerCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,[31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) lowerCAmelCase_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ ,["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] ,) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Dict = AlbertTokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode("sequence builders" ) lowerCAmelCase_ : Union[str, Any] = tokenizer.encode("multi-sequence build" ) lowerCAmelCase_ : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) lowerCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ,lowerCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ ,model_name="albert-base-v2" ,revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" ,)
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = UNetaDModel( sample_size=(32, 64) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("AttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "AttnUpBlock2D") ,) return model @property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = UNetaDConditionModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") ,cross_attention_dim=10 ,) return model @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL( sample_size=(1_28, 64) ,in_channels=1 ,out_channels=1 ,latent_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") ,up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") ,) lowerCAmelCase_ : Optional[int] = UNetaDModel( sample_size=(64, 32) ,in_channels=1 ,out_channels=1 ,layers_per_block=2 ,block_out_channels=(1_28, 1_28) ,down_block_types=("AttnDownBlock2D", "DownBlock2D") ,up_block_types=("UpBlock2D", "AttnUpBlock2D") ,) return vqvae, unet @slow def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Dict = Mel( x_res=self.dummy_unet.config.sample_size[1] ,y_res=self.dummy_unet.config.sample_size[0] ,) lowerCAmelCase_ : Union[str, Any] = DDPMScheduler() lowerCAmelCase_ : List[str] = AudioDiffusionPipeline(vqvae=lowerCAmelCase__ ,unet=self.dummy_unet ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : str = pipe(generator=lowerCAmelCase__ ,steps=4 ) lowerCAmelCase_ : Optional[int] = output.audios[0] lowerCAmelCase_ : Optional[int] = output.images[0] lowerCAmelCase_ : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Any = pipe(generator=lowerCAmelCase__ ,steps=4 ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCAmelCase_ : Optional[Any] = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : List[str] = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase_ : List[Any] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] ,y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] ,) lowerCAmelCase_ : List[str] = DDIMScheduler() lowerCAmelCase_ : int = self.dummy_vqvae_and_unet lowerCAmelCase_ : Optional[int] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=dummy_vqvae_and_unet[1] ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) np.random.seed(0 ) lowerCAmelCase_ : Any = np.random.uniform(-1 ,1 ,((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCAmelCase_ : List[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Union[str, Any] = pipe(raw_audio=lowerCAmelCase__ ,generator=lowerCAmelCase__ ,start_step=5 ,steps=10 ) lowerCAmelCase_ : Dict = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCAmelCase_ : str = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Any = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCAmelCase_ : Union[str, Any] = self.dummy_unet_condition lowerCAmelCase_ : Tuple = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] ,unet=lowerCAmelCase__ ,mel=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) np.random.seed(0 ) lowerCAmelCase_ : List[Any] = torch.rand((1, 1, 10) ) lowerCAmelCase_ : List[Any] = pipe(generator=lowerCAmelCase__ ,encoding=lowerCAmelCase__ ) lowerCAmelCase_ : str = output.images[0] lowerCAmelCase_ : Union[str, Any] = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : List[Any] = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = torch_device lowerCAmelCase_ : int = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowerCAmelCase_ : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(42 ) lowerCAmelCase_ : Any = pipe(generator=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.audios[0] lowerCAmelCase_ : Union[str, Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCAmelCase_ : int = np.frombuffer(image.tobytes() ,dtype="uint8" )[:10] lowerCAmelCase_ : Tuple = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCamelCase ( snake_case__ , snake_case__=False): lowerCAmelCase_ : Union[str, Any] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ]) return rename_keys def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=False): for i in range(config.num_hidden_layers): if base_model: lowerCAmelCase_ : str = "" else: lowerCAmelCase_ : Optional[Any] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : Optional[Any] = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''') lowerCAmelCase_ : Optional[Any] = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : List[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : str = dct.pop(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Union[str, Any] = val def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Any = ViTMSNConfig() lowerCAmelCase_ : Tuple = 10_00 lowerCAmelCase_ : Optional[int] = "datasets/huggingface/label-files" lowerCAmelCase_ : List[Any] = "imagenet-1k-id2label.json" lowerCAmelCase_ : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) , "r")) lowerCAmelCase_ : Tuple = {int(SCREAMING_SNAKE_CASE_): v for k, v in idalabel.items()} lowerCAmelCase_ : Union[str, Any] = idalabel lowerCAmelCase_ : int = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowerCAmelCase_ : Tuple = 3_84 lowerCAmelCase_ : Union[str, Any] = 15_36 lowerCAmelCase_ : Optional[int] = 6 elif "l16" in checkpoint_url: lowerCAmelCase_ : Optional[Any] = 10_24 lowerCAmelCase_ : List[str] = 40_96 lowerCAmelCase_ : Tuple = 24 lowerCAmelCase_ : Dict = 16 lowerCAmelCase_ : Tuple = 0.1 elif "b4" in checkpoint_url: lowerCAmelCase_ : List[str] = 4 elif "l7" in checkpoint_url: lowerCAmelCase_ : Union[str, Any] = 7 lowerCAmelCase_ : Optional[Any] = 10_24 lowerCAmelCase_ : str = 40_96 lowerCAmelCase_ : Dict = 24 lowerCAmelCase_ : Tuple = 16 lowerCAmelCase_ : Tuple = 0.1 lowerCAmelCase_ : List[Any] = ViTMSNModel(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu")["target_encoder"] lowerCAmelCase_ : Tuple = ViTImageProcessor(size=config.image_size) remove_projection_head(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Optional[Any] = create_rename_keys(SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , base_model=SCREAMING_SNAKE_CASE_) model.load_state_dict(SCREAMING_SNAKE_CASE_) model.eval() lowerCAmelCase_ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase_ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_).raw) lowerCAmelCase_ : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE_ , image_std=SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Optional[int] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt") # forward pass torch.manual_seed(2) lowerCAmelCase_ : Tuple = model(**SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowerCAmelCase_ : int = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]]) elif "b16" in checkpoint_url: lowerCAmelCase_ : Dict = torch.tensor([[14.2_889, -18.9_045, 11.7_281]]) elif "l16" in checkpoint_url: lowerCAmelCase_ : Optional[Any] = torch.tensor([[41.5_028, -22.8_681, 45.6_475]]) elif "b4" in checkpoint_url: lowerCAmelCase_ : Any = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]]) else: lowerCAmelCase_ : List[str] = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(SCREAMING_SNAKE_CASE_) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(SCREAMING_SNAKE_CASE_) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowercase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
def UpperCamelCase ( snake_case__): assert column_title.isupper() lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Any = len(__A) - 1 lowerCAmelCase_ : List[Any] = 0 while index >= 0: lowerCAmelCase_ : Dict = (ord(column_title[index]) - 64) * pow(26 , __A) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ["""image_processor""", """tokenizer"""] UpperCamelCase_ = """BlipImageProcessor""" UpperCamelCase_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Dict ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = False super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) lowerCAmelCase_ : List[Any] = self.image_processor def __call__( self : str ,lowerCAmelCase__ : ImageInput = None ,lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False ,lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : int = 0 ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : Tuple ,) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: lowerCAmelCase_ : List[Any] = self.tokenizer lowerCAmelCase_ : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) return text_encoding # add pixel_values lowerCAmelCase_ : Dict = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) if text is not None: lowerCAmelCase_ : str = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) else: lowerCAmelCase_ : str = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def UpperCAmelCase_ ( self : str ,*lowerCAmelCase__ : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Optional[Any] ,**lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Optional[Any]=99 ,lowerCAmelCase__ : Any=13 ,lowerCAmelCase__ : Union[str, Any]=16 ,lowerCAmelCase__ : Union[str, Any]=7 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : str=False ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : Any=32 ,lowerCAmelCase__ : List[str]=4 ,lowerCAmelCase__ : int=4 ,lowerCAmelCase__ : Tuple=30 ,lowerCAmelCase__ : Any=0 ,lowerCAmelCase__ : int=1 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Union[str, Any]=None ,) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Optional[Any] = decoder_seq_length # For common tests lowerCAmelCase_ : str = self.decoder_seq_length lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : Union[str, Any] = use_attention_mask lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Tuple = d_model lowerCAmelCase_ : List[Any] = d_model lowerCAmelCase_ : Any = decoder_layers lowerCAmelCase_ : List[str] = decoder_layers lowerCAmelCase_ : Optional[int] = decoder_ffn_dim lowerCAmelCase_ : List[str] = decoder_attention_heads lowerCAmelCase_ : Tuple = decoder_attention_heads lowerCAmelCase_ : int = eos_token_id lowerCAmelCase_ : Union[str, Any] = bos_token_id lowerCAmelCase_ : Tuple = pad_token_id lowerCAmelCase_ : Dict = decoder_start_token_id lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : str = None lowerCAmelCase_ : Optional[int] = decoder_seq_length lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : Optional[int] = 1 def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[Any] = None if self.use_attention_mask: lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2 ) lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[Any] = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[int] ,) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Union[str, Any] = TrOCRDecoder(config=A_ ).to(A_ ).eval() lowerCAmelCase_ : List[str] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowerCAmelCase_ : Union[str, Any] = model(A_ ,use_cache=A_ ) lowerCAmelCase_ : Dict = model(A_ ) lowerCAmelCase_ : List[Any] = model(A_ ,use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) lowerCAmelCase_ : str = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ : List[str] = ids_tensor((2, 1) ,config.vocab_size - 1 ) + 1 # append to next input_ids and lowerCAmelCase_ : Any = torch.cat([input_ids, next_tokens] ,dim=-1 ) lowerCAmelCase_ : List[str] = model(A_ )["last_hidden_state"] lowerCAmelCase_ : List[str] = model(A_ ,past_key_values=A_ )["last_hidden_state"] # select random slice lowerCAmelCase_ : Tuple = ids_tensor((1,) ,output_from_past.shape[-1] ).item() lowerCAmelCase_ : Optional[int] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowerCAmelCase_ : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A_ ,A_ ,atol=1e-3 ) def UpperCAmelCase_ ( self : Tuple ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCamelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () UpperCamelCase_ = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} UpperCamelCase_ = True UpperCamelCase_ = False def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = TrOCRStandaloneDecoderModelTester(self ,is_training=A_ ) lowerCAmelCase_ : int = ConfigTester(self ,config_class=A_ ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A_ ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' pass
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = set() lowerCAmelCase_ : Optional[Any] = [] def parse_line(snake_case__): for line in fp: if isinstance(_lowercase , _lowercase): lowerCAmelCase_ : List[str] = line.decode("UTF-8") if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" "): # process a single warning and move it to `selected_warnings`. if len(_lowercase) > 0: lowerCAmelCase_ : List[str] = '\n'.join(_lowercase) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets): selected_warnings.add(_lowercase) buffer.clear() continue else: lowerCAmelCase_ : Any = line.strip() buffer.append(_lowercase) if from_gh: for filename in os.listdir(_lowercase): lowerCAmelCase_ : Dict = os.path.join(_lowercase , _lowercase) if not os.path.isdir(_lowercase): # read the file if filename != "warnings.txt": continue with open(_lowercase) as fp: parse_line(_lowercase) else: try: with zipfile.ZipFile(_lowercase) as z: for filename in z.namelist(): if not os.path.isdir(_lowercase): # read the file if filename != "warnings.txt": continue with z.open(_lowercase) as fp: parse_line(_lowercase) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''') return selected_warnings def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = set() lowerCAmelCase_ : Any = [os.path.join(_lowercase , _lowercase) for p in os.listdir(_lowercase) if (p.endswith(".zip") or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowercase , _lowercase)) return selected_warnings if __name__ == "__main__": def UpperCamelCase ( snake_case__): return values.split(",") _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) _lowercase = parser.parse_args() _lowercase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowercase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowercase = extract_warnings(args.output_dir, args.targets) _lowercase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( lowercase__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : str=80 ,lowerCAmelCase__ : Optional[int]=1_60_00 ,lowerCAmelCase__ : Optional[int]=80 ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Optional[int]=True ,**lowerCAmelCase__ : Optional[int] ,) -> Dict: '''simple docstring''' super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase_ : Any = num_mel_bins lowerCAmelCase_ : Any = do_ceptral_normalize lowerCAmelCase_ : List[str] = normalize_means lowerCAmelCase_ : List[Any] = normalize_vars lowerCAmelCase_ : int = True def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : np.ndarray ,) -> Any: '''simple docstring''' lowerCAmelCase_ : int = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase_ : Dict = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) lowerCAmelCase_ : Optional[Any] = ta_kaldi.fbank(__lowerCamelCase ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : np.ndarray ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[bool] = True ,lowerCAmelCase__ : Optional[bool] = True ,lowerCAmelCase__ : float = 0.0 ,) -> Dict: '''simple docstring''' if normalize_means: lowerCAmelCase_ : int = x[:input_length].mean(axis=0 ) lowerCAmelCase_ : int = np.subtract(__lowerCamelCase ,__lowerCamelCase ) if normalize_vars: lowerCAmelCase_ : int = x[:input_length].std(axis=0 ) lowerCAmelCase_ : List[Any] = np.divide(__lowerCamelCase ,__lowerCamelCase ) if input_length < x.shape[0]: lowerCAmelCase_ : Optional[int] = padding_value # make sure array is in float32 lowerCAmelCase_ : List[Any] = x.astype(np.floataa ) return x def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : Optional[np.ndarray] = None ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCamelCase ,__lowerCamelCase ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(__lowerCamelCase ,__lowerCamelCase ) ] def __call__( self : Dict ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,**lowerCAmelCase__ : List[str] ,) -> Optional[int]: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : int = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : int = is_batched_numpy or ( isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Optional[Any] = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ): lowerCAmelCase_ : List[Any] = np.asarray(__lowerCamelCase ,dtype=np.floataa ) elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Dict = [raw_speech] # extract fbank features lowerCAmelCase_ : Dict = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase_ : Optional[Any] = BatchFeature({"input_features": features} ) lowerCAmelCase_ : Dict = self.pad( __lowerCamelCase ,padding=__lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,**__lowerCamelCase ,) # make sure list is in array format lowerCAmelCase_ : Tuple = padded_inputs.get("input_features" ) if isinstance(input_features[0] ,__lowerCamelCase ): lowerCAmelCase_ : List[str] = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in input_features] lowerCAmelCase_ : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCAmelCase_ : Tuple = [np.asarray(__lowerCamelCase ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase_ : Any = ( np.array(__lowerCamelCase ,dtype=np.intaa ) if self._get_padding_strategies(__lowerCamelCase ,max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase_ : List[Any] = self.normalize( padded_inputs["input_features"] ,attention_mask=__lowerCamelCase ) if return_tensors is not None: lowerCAmelCase_ : Optional[Any] = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''], '''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''VisionTextDualEncoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''FlaxVisionTextDualEncoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''TFVisionTextDualEncoderModel'''] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_lowercase ): lowerCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) lowerCAmelCase_ : int = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) @slow def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_lowercase ): lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) lowerCAmelCase_ : Optional[Any] = FlaxAutoModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase ,_lowercase ) @slow def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(_lowercase ) lowerCAmelCase_ : Dict = FlaxBertModel.from_pretrained(_lowercase ) lowerCAmelCase_ : int = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ : Tuple ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() @slow def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase ) lowerCAmelCase_ : Optional[int] = FlaxRobertaModel.from_pretrained(_lowercase ) lowerCAmelCase_ : int = tokenizer("Do you support jax jitted function?" ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ : Tuple ): return model(**_lowercase ) eval(**_lowercase ).block_until_ready() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( _lowercase ,"bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase_ : List[Any] = FlaxAutoModel.from_pretrained("bert-base" ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' with self.assertRaisesRegex( _lowercase ,R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase_ : Union[str, Any] = FlaxAutoModel.from_pretrained(_lowercase ,revision="aaaaaa" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' with self.assertRaisesRegex( _lowercase ,"hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" ,): lowerCAmelCase_ : Union[str, Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex(_lowercase ,"Use `from_pt=True` to load this model" ): lowerCAmelCase_ : Optional[Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
707
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
'''simple docstring''' _lowercase = "Input must be a string of 8 numbers plus letter" _lowercase = "TRWAGMYFPDXBNJZSQVHLCKE" def UpperCamelCase ( snake_case__): if not isinstance(lowerCamelCase__ , lowerCamelCase__): lowerCAmelCase_ : Dict = F'''Expected string as input, found {type(lowerCamelCase__).__name__}''' raise TypeError(lowerCamelCase__) lowerCAmelCase_ : Tuple = spanish_id.replace("-" , "").upper() if len(lowerCamelCase__) != 9: raise ValueError(lowerCamelCase__) try: lowerCAmelCase_ : Dict = int(spanish_id_clean[0:8]) lowerCAmelCase_ : Dict = spanish_id_clean[8] except ValueError as ex: raise ValueError(lowerCamelCase__) from ex if letter.isdigit(): raise ValueError(lowerCamelCase__) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
710
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) _lowercase = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'perceiver' def __init__( self : Tuple ,lowerCAmelCase__ : Tuple=2_56 ,lowerCAmelCase__ : Dict=12_80 ,lowerCAmelCase__ : str=7_68 ,lowerCAmelCase__ : int=1 ,lowerCAmelCase__ : List[Any]=26 ,lowerCAmelCase__ : Optional[int]=8 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : int="kv" ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : str=1 ,lowerCAmelCase__ : Union[str, Any]="gelu" ,lowerCAmelCase__ : Optional[Any]=0.1 ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : List[Any]=1e-1_2 ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Union[str, Any]=2_62 ,lowerCAmelCase__ : Tuple=20_48 ,lowerCAmelCase__ : Any=56 ,lowerCAmelCase__ : Optional[int]=[3_68, 4_96] ,lowerCAmelCase__ : Optional[Any]=16 ,lowerCAmelCase__ : Optional[Any]=19_20 ,lowerCAmelCase__ : Any=16 ,lowerCAmelCase__ : Union[str, Any]=[1, 16, 2_24, 2_24] ,**lowerCAmelCase__ : str ,) -> int: '''simple docstring''' super().__init__(**__A ) lowerCAmelCase_ : str = num_latents lowerCAmelCase_ : List[str] = d_latents lowerCAmelCase_ : Optional[Any] = d_model lowerCAmelCase_ : Tuple = num_blocks lowerCAmelCase_ : Union[str, Any] = num_self_attends_per_block lowerCAmelCase_ : Dict = num_self_attention_heads lowerCAmelCase_ : List[Any] = num_cross_attention_heads lowerCAmelCase_ : int = qk_channels lowerCAmelCase_ : Dict = v_channels lowerCAmelCase_ : Optional[int] = cross_attention_shape_for_attention lowerCAmelCase_ : str = self_attention_widening_factor lowerCAmelCase_ : List[str] = cross_attention_widening_factor lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : str = use_query_residual # masked language modeling attributes lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : List[Any] = max_position_embeddings # image classification attributes lowerCAmelCase_ : Dict = image_size # flow attributes lowerCAmelCase_ : str = train_size # multimodal autoencoding attributes lowerCAmelCase_ : Any = num_frames lowerCAmelCase_ : Dict = audio_samples_per_frame lowerCAmelCase_ : Tuple = samples_per_patch lowerCAmelCase_ : int = output_shape class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : str = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 1e-4 def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : int = -1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[TensorType] = None ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : int = 40 ,lowerCAmelCase__ : int = 40 ,) -> Optional[Any]: '''simple docstring''' if isinstance(__A ,__A ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Dict = compute_effective_axis_dimension( __A ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : str = preprocessor.num_special_tokens_to_add(__A ) lowerCAmelCase_ : Any = compute_effective_axis_dimension( __A ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : int = [" ".join(["a"] ) * seq_length] * batch_size lowerCAmelCase_ : int = dict(preprocessor(__A ,return_tensors=__A ) ) lowerCAmelCase_ : int = inputs.pop("input_ids" ) return inputs elif isinstance(__A ,__A ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : int = compute_effective_axis_dimension(__A ,fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase_ : Tuple = self._generate_dummy_images(__A ,__A ,__A ,__A ) lowerCAmelCase_ : Any = dict(preprocessor(images=__A ,return_tensors=__A ) ) lowerCAmelCase_ : Optional[int] = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
from __future__ import annotations from collections import Counter from random import random class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = {} def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : List[str] = {} def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' if nodea not in self.connections: self.add_node(_a ) if nodea not in self.connections: self.add_node(_a ) lowerCAmelCase_ : int = probability def UpperCAmelCase_ ( self : Union[str, Any] ) -> list[str]: '''simple docstring''' return list(self.connections ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : int = 0 lowerCAmelCase_ : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Any = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase_ : str = Counter(graph.get_nodes()) lowerCAmelCase_ : Optional[Any] = start for _ in range(__lowerCAmelCase): lowerCAmelCase_ : Optional[Any] = graph.transition(__lowerCAmelCase) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = [int(__UpperCAmelCase) for i in ip_va_address.split(".") if i.isdigit()] return len(__UpperCAmelCase) == 4 and all(0 <= int(__UpperCAmelCase) <= 2_54 for octet in octets) if __name__ == "__main__": _lowercase = input().strip() _lowercase = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(f"{ip} is a {valid_or_invalid} IP v4 address.")
713
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowercase = '''__DUMMY_TRANSFORMERS_USER__''' _lowercase = '''Dummy User''' _lowercase = '''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''' _lowercase = '''https://hub-ci.huggingface.co''' _lowercase = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowercase = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowercase = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def UpperCamelCase ( snake_case__): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , lowerCAmelCase__) @pytest.fixture def UpperCamelCase ( snake_case__): monkeypatch.setattr("datasets.config.HF_ENDPOINT" , lowerCAmelCase__) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , lowerCAmelCase__) @pytest.fixture def UpperCamelCase ( snake_case__): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , lowerCAmelCase__) @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__): HfFolder.save_token(lowerCAmelCase__) yield HfFolder.delete_token() @pytest.fixture(scope="session") def UpperCamelCase ( ): return HfApi(endpoint=lowerCAmelCase__) @pytest.fixture(scope="session") def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = HfFolder.get_token() HfFolder.save_token(lowerCAmelCase__) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowerCAmelCase__) @pytest.fixture def UpperCamelCase ( snake_case__): def _cleanup_repo(snake_case__): hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset") return _cleanup_repo @pytest.fixture def UpperCamelCase ( snake_case__): @contextmanager def _temporary_repo(snake_case__): try: yield repo_id finally: cleanup_repo(lowerCAmelCase__) return _temporary_repo @pytest.fixture(scope="session") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = F'''repo_txt_data-{int(time.time() * 10e3)}''' lowerCAmelCase_ : Optional[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__) , path_in_repo="data/text_data.txt" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Any = F'''repo_zipped_txt_data-{int(time.time() * 10e3)}''' lowerCAmelCase_ : Any = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : str = F'''repo_zipped_img_data-{int(time.time() * 10e3)}''' lowerCAmelCase_ : List[Any] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset" , private=lowerCAmelCase__) hf_api.upload_file( token=lowerCAmelCase__ , path_or_fileobj=str(lowerCAmelCase__) , path_in_repo="data.zip" , repo_id=lowerCAmelCase__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(lowerCAmelCase__ , token=lowerCAmelCase__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return hf_private_dataset_repo_zipped_img_data_
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case : """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict=13 ,lowerCAmelCase__ : Optional[int]=32 ,lowerCAmelCase__ : Union[str, Any]=3 ,lowerCAmelCase__ : Any=4 ,lowerCAmelCase__ : int=[10, 20, 30, 40] ,lowerCAmelCase__ : Optional[int]=[2, 2, 3, 2] ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : List[Any]=37 ,lowerCAmelCase__ : List[Any]="gelu" ,lowerCAmelCase__ : Any=10 ,lowerCAmelCase__ : int=0.02 ,lowerCAmelCase__ : Union[str, Any]=["stage2", "stage3", "stage4"] ,lowerCAmelCase__ : Tuple=3 ,lowerCAmelCase__ : Optional[Any]=None ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Optional[Any] = num_stages lowerCAmelCase_ : str = hidden_sizes lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Union[str, Any] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : str = type_sequence_label_size lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : str = out_features lowerCAmelCase_ : int = num_labels lowerCAmelCase_ : List[Any] = scope lowerCAmelCase_ : List[Any] = num_stages def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Any = None if self.use_labels: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : str ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels ,num_stages=self.num_stages ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,is_training=self.is_training ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,out_features=self.out_features ,) def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() ,hidden_size=5_12 ,pool_scales=[1, 2, 3, 6] ,use_auxiliary_head=_UpperCamelCase ,auxiliary_loss_weight=0.4 ,auxiliary_in_channels=40 ,auxiliary_channels=2_56 ,auxiliary_num_convs=1 ,auxiliary_concat_input=_UpperCamelCase ,loss_ignore_index=2_55 ,num_labels=self.num_labels ,) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = UperNetForSemanticSegmentation(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ : Tuple = model(_UpperCamelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) : List[Any] = config_and_inputs lowerCAmelCase_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCamelCase_ = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = UperNetModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self ,config_class=_UpperCamelCase ,has_text_modality=_UpperCamelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' return def UpperCAmelCase_ ( self : Any ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(_UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,_UpperCamelCase ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' pass def UpperCAmelCase_ ( self : List[Any] ) -> str: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[Any] ): lowerCAmelCase_ : List[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(_UpperCamelCase ,_UpperCamelCase ) ) lowerCAmelCase_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Dict = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) ,expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = True check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : str = True check_hidden_states_output(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[Any] = _config_zero_init(_UpperCamelCase ) lowerCAmelCase_ : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(config=_UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @unittest.skip(reason="UperNet does not have tied weights" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @slow def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg") lowerCAmelCase_ : Optional[int] = Image.open(__A).convert("RGB") return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) lowerCAmelCase_ : str = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(_UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Optional[Any] = processor(images=_UpperCamelCase ,return_tensors="pt" ).to(_UpperCamelCase ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**_UpperCamelCase ) lowerCAmelCase_ : List[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,_UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,_UpperCamelCase ,atol=1e-4 ) ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) lowerCAmelCase_ : Tuple = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(_UpperCamelCase ) lowerCAmelCase_ : Dict = prepare_img() lowerCAmelCase_ : str = processor(images=_UpperCamelCase ,return_tensors="pt" ).to(_UpperCamelCase ) with torch.no_grad(): lowerCAmelCase_ : str = model(**_UpperCamelCase ) lowerCAmelCase_ : List[str] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape ,_UpperCamelCase ) lowerCAmelCase_ : List[str] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] ,_UpperCamelCase ,atol=1e-4 ) )
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( a__ ): """simple docstring""" UpperCamelCase_ = 4_2 UpperCamelCase_ = 4_2 def __init__( self : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=_A ,scheduler=_A ) @torch.no_grad() def __call__( self : List[Any] ,lowerCAmelCase__ : List[Any] = 1 ,lowerCAmelCase__ : Union[str, Any] = 50 ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Tuple = "pil" ,lowerCAmelCase__ : Any = True ,**lowerCAmelCase__ : Union[str, Any] ,) -> Any: '''simple docstring''' lowerCAmelCase_ : Dict = self.unet.config.sample_size lowerCAmelCase_ : List[Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase_ : List[str] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowerCAmelCase_ : Optional[Any] = randn_tensor(_A ,generator=_A ,device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowerCAmelCase_ : Tuple = self.scheduler.schedule[t] lowerCAmelCase_ : Union[str, Any] = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowerCAmelCase_ : Any = self.scheduler.add_noise_to_input(_A ,_A ,generator=_A ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase_ : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 ,sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowerCAmelCase_ : Any = self.scheduler.step(_A ,_A ,_A ,_A ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowerCAmelCase_ : List[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 ,sigma_prev / 2 ).sample lowerCAmelCase_ : Any = self.scheduler.step_correct( _A ,_A ,_A ,_A ,step_output.prev_sample ,step_output["derivative"] ,) lowerCAmelCase_ : List[Any] = step_output.prev_sample lowerCAmelCase_ : Any = (sample / 2 + 0.5).clamp(0 ,1 ) lowerCAmelCase_ : str = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
716
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase ( ): raise RuntimeError("CUDA out of memory.") class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple ) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ : Dict = nn.Linear(3 ,4 ) lowerCAmelCase_ : Dict = nn.BatchNormad(4 ) lowerCAmelCase_ : Optional[Any] = nn.Linear(4 ,5 ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase__ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase ,[1_28, 64, 32, 16, 8] ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : int ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCAmelCase_ : str = mock_training_loop_function("hello" ) self.assertListEqual(__lowerCamelCase ,[1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] ,[8, "hello"] ) def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ : Union[str, Any] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." ,cm.exception.args[0] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ : Optional[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." ,cm.exception.args[0] ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Dict ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(1_28 ,"hello" ,"world" ) self.assertIn("Batch size was passed into `f`" ,cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" ,cm.exception.args[0] ) def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowerCAmelCase__ : Optional[int] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" ,cm.exception.args[0] ) @require_cuda def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = torch.cuda.memory_allocated() lowerCAmelCase_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() ,__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() ,__lowerCamelCase )
717
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ = 'umt5' UpperCamelCase_ = ['past_key_values'] def __init__( self : Any ,lowerCAmelCase__ : Union[str, Any]=25_01_12 ,lowerCAmelCase__ : Tuple=5_12 ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : str=10_24 ,lowerCAmelCase__ : List[str]=8 ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[int]=6 ,lowerCAmelCase__ : int=32 ,lowerCAmelCase__ : Dict=1_28 ,lowerCAmelCase__ : List[Any]=0.1 ,lowerCAmelCase__ : List[Any]=1e-6 ,lowerCAmelCase__ : List[str]=1.0 ,lowerCAmelCase__ : Union[str, Any]="gated-gelu" ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : Tuple="T5Tokenizer" ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : int=0 ,lowerCAmelCase__ : int=1 ,lowerCAmelCase__ : int=0 ,**lowerCAmelCase__ : Optional[Any] ,) -> List[str]: '''simple docstring''' super().__init__( is_encoder_decoder=lowerCamelCase_ ,tokenizer_class=lowerCamelCase_ ,tie_word_embeddings=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : List[Any] = d_model lowerCAmelCase_ : List[Any] = d_kv lowerCAmelCase_ : Optional[int] = d_ff lowerCAmelCase_ : List[str] = num_layers lowerCAmelCase_ : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase_ : Dict = num_heads lowerCAmelCase_ : int = relative_attention_num_buckets lowerCAmelCase_ : str = relative_attention_max_distance lowerCAmelCase_ : str = dropout_rate lowerCAmelCase_ : int = layer_norm_epsilon lowerCAmelCase_ : Optional[Any] = initializer_factor lowerCAmelCase_ : List[str] = feed_forward_proj lowerCAmelCase_ : List[str] = use_cache lowerCAmelCase_ : Any = self.feed_forward_proj.split("-" ) lowerCAmelCase_ : Tuple = act_info[-1] lowerCAmelCase_ : Optional[Any] = act_info[0] == '''gated''' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) if feed_forward_proj == "gated-gelu": lowerCAmelCase_ : Any = '''gelu_new''' @property def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' return self.d_model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.num_heads @property def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' return self.num_layers class __snake_case ( _UpperCAmelCase ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase_ ( self : int ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: lowerCAmelCase_ : int = '''past_encoder_sequence + sequence''' lowerCAmelCase_ : str = {0: '''batch'''} lowerCAmelCase_ : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase_ : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return 13 @property def UpperCAmelCase_ ( self : List[str] ) -> float: '''simple docstring''' return 5e-4
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
def UpperCamelCase ( snake_case__ , snake_case__): return int(input_a == input_a == 0) def UpperCamelCase ( ): print("Truth Table of NOR Gate:") print("| Input 1 | Input 2 | Output |") print(F'''| 0 | 0 | {nor_gate(0 , 0)} |''') print(F'''| 0 | 1 | {nor_gate(0 , 1)} |''') print(F'''| 1 | 0 | {nor_gate(1 , 0)} |''') print(F'''| 1 | 1 | {nor_gate(1 , 1)} |''') if __name__ == "__main__": import doctest doctest.testmod() main()
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
from __future__ import annotations from typing import Generic, TypeVar _lowercase : Any = TypeVar('''T''') class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Any ) -> None: '''simple docstring''' lowerCAmelCase_ : Any = data lowerCAmelCase_ : List[str] = self lowerCAmelCase_ : Dict = 0 class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : Any ) -> None: '''simple docstring''' lowerCAmelCase_ : List[Any] = {} def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' lowerCAmelCase_ : str = DisjointSetTreeNode(snake_case_ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Union[str, Any] ) -> DisjointSetTreeNode[T]: '''simple docstring''' lowerCAmelCase_ : int = self.map[data] if elem_ref != elem_ref.parent: lowerCAmelCase_ : List[str] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ) -> None: '''simple docstring''' if nodea.rank > nodea.rank: lowerCAmelCase_ : Tuple = nodea else: lowerCAmelCase_ : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Any ) -> None: '''simple docstring''' self.link(self.find_set(snake_case_ ) ,self.find_set(snake_case_ ) ) class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self : str ) -> None: '''simple docstring''' lowerCAmelCase_ : Tuple = {} def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' if node not in self.connections: lowerCAmelCase_ : List[Any] = {} def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[Any] ) -> None: '''simple docstring''' self.add_node(snake_case_ ) self.add_node(snake_case_ ) lowerCAmelCase_ : Optional[Any] = weight lowerCAmelCase_ : str = weight def UpperCAmelCase_ ( self : Optional[Any] ) -> GraphUndirectedWeighted[T]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : str = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda lowerCAmelCase__ : x[2] ) # creating the disjoint set lowerCAmelCase_ : Optional[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case_ ) # MST generation lowerCAmelCase_ : str = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = edges[index] index += 1 lowerCAmelCase_ : Optional[int] = disjoint_set.find_set(snake_case_ ) lowerCAmelCase_ : int = disjoint_set.find_set(snake_case_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case_ ,snake_case_ ,snake_case_ ) disjoint_set.union(snake_case_ ,snake_case_ ) return graph
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = MobileNetVaConfig(layer_norm_eps=0.001) if "_quant" in model_name: raise ValueError("Quantized models are not supported.") lowerCAmelCase_ : Union[str, Any] = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , __UpperCamelCase) if matches: lowerCAmelCase_ : str = float(matches[1]) lowerCAmelCase_ : List[str] = int(matches[2]) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCAmelCase_ : str = 10_01 lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset") , "r")) lowerCAmelCase_ : Optional[Any] = {int(__UpperCamelCase) + 1: v for k, v in idalabel.items()} lowerCAmelCase_ : Dict = """background""" lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw) return im @torch.no_grad() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False): lowerCAmelCase_ : List[Any] = get_mobilenet_va_config(__UpperCamelCase) # Load 🤗 model lowerCAmelCase_ : int = MobileNetVaForImageClassification(__UpperCamelCase).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCAmelCase_ : List[str] = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="pt") lowerCAmelCase_ : Dict = model(**__UpperCamelCase) lowerCAmelCase_ : List[Any] = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": lowerCAmelCase_ : Any = torch.tensor([-4.1_739, -1.1_233, 3.1_205]) elif model_name == "mobilenet_v1_0.75_192": lowerCAmelCase_ : Any = torch.tensor([-3.9_440, -2.3_141, -0.3_333]) else: lowerCAmelCase_ : Tuple = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __UpperCamelCase , atol=1e-4) Path(__UpperCamelCase).mkdir(exist_ok=__UpperCamelCase) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(__UpperCamelCase) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(__UpperCamelCase) if push_to_hub: print("Pushing to the hub...") lowerCAmelCase_ : int = """google/""" + model_name image_processor.push_to_hub(__UpperCamelCase) model.push_to_hub(__UpperCamelCase) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _lowercase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __snake_case : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = hashlib.mda(image.tobytes()) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = DepthEstimationPipeline(model=A_ ,image_processor=A_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} ,A_ ) import datasets lowerCAmelCase_ : Optional[Any] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" ,"image" ,split="test" ) lowerCAmelCase_ : Any = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] ,A_ ,) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' pass @slow @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = "Intel/dpt-large" lowerCAmelCase_ : Any = pipeline("depth-estimation" ,model=A_ ) lowerCAmelCase_ : str = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) lowerCAmelCase_ : Union[str, Any] = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) ,2.662 ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _lowercase = (3, 9, -11, 0, 7, 5, 1, -1) _lowercase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 class __snake_case : """simple docstring""" def __init__( self : str ,lowerCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = None for i in sorted(lowerCAmelCase__ ,reverse=lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = Node(lowerCAmelCase__ ,self.head ) def __iter__( self : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.head while node: yield node.data lowerCAmelCase_ : Optional[int] = node.next_node def __len__( self : List[str] ) -> Optional[int]: '''simple docstring''' return sum(1 for _ in self ) def __str__( self : Any ) -> List[str]: '''simple docstring''' return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def UpperCamelCase ( snake_case__ , snake_case__): return SortedLinkedList(list(__SCREAMING_SNAKE_CASE) + list(__SCREAMING_SNAKE_CASE)) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[str] = None ,lowerCAmelCase__ : Tuple = None ,lowerCAmelCase__ : List[Any] = True ,lowerCAmelCase__ : Dict = None ,lowerCAmelCase__ : str = False ,lowerCAmelCase__ : Union[str, Any] = None ,lowerCAmelCase__ : Optional[int] = True ,lowerCAmelCase__ : List[str] = "arrow" ,**lowerCAmelCase__ : Tuple ,) -> Optional[int]: '''simple docstring''' super().__init__( split=lowerCAmelCase__ ,features=lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,keep_in_memory=lowerCAmelCase__ ,streaming=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = load_from_cache_file lowerCAmelCase_ : Any = file_format lowerCAmelCase_ : Union[str, Any] = Spark( df=lowerCAmelCase__ ,features=lowerCAmelCase__ ,cache_dir=lowerCAmelCase__ ,working_dir=lowerCAmelCase__ ,**lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase_ : Dict = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase__ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowercase = logging.get_logger(__name__) class __snake_case ( UpperCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] ,*lowerCAmelCase__ : List[Any] ,**lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." ,__A ,) super().__init__(*__A ,**__A )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowercase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : Union[str, Any] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[str] = {"unk_token": "<unk>"} lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : int ,**lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,**lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Optional[int] = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : int = "lower newer" lowerCAmelCase_ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Any = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : List[str] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Any = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,*lowerCAmelCase__ : Tuple ,**lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Optional[int]=15 ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Union[str, Any] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Union[str, Any] = "This is a simple input" lowerCAmelCase_ : Tuple = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Optional[int] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : List[str] = tokenizer.pad_token_id lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Dict = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Dict = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = "$$$" lowerCAmelCase_ : str = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "This is a simple input" lowerCAmelCase_ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Optional[Any] = tokenizer.bos_token_id lowerCAmelCase_ : Dict = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : Tuple = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Tuple = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : Optional[int] = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Dict = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } _lowercase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class __snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = SqueezeBertTokenizer def __init__( self : Optional[int] ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Any="[UNK]" ,lowerCAmelCase__ : str="[SEP]" ,lowerCAmelCase__ : Optional[Any]="[PAD]" ,lowerCAmelCase__ : List[str]="[CLS]" ,lowerCAmelCase__ : List[str]="[MASK]" ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Optional[Any]=None ,**lowerCAmelCase__ : Any ,) -> str: '''simple docstring''' super().__init__( _a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,) lowerCAmelCase_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,_a ) != do_lower_case or normalizer_state.get("strip_accents" ,_a ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,_a ) != tokenize_chinese_chars ): lowerCAmelCase_ : List[Any] = getattr(_a ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : Union[str, Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Dict = tokenize_chinese_chars lowerCAmelCase_ : List[str] = normalizer_class(**_a ) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict=None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __snake_case ( __a , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = XLMProphetNetTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Tuple = XLMProphetNetTokenizer(a_ ,keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = """[PAD]""" lowerCAmelCase_ : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"[PAD]" ) self.assertEqual(vocab_keys[1] ,"[CLS]" ) self.assertEqual(vocab_keys[-1] ,"j" ) self.assertEqual(len(a_ ) ,10_12 ) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,10_12 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = XLMProphetNetTokenizer(a_ ,keep_accents=a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) lowerCAmelCase_ : int = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) lowerCAmelCase_ : str = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] ,) @cached_property def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = """Hello World!""" lowerCAmelCase_ : Optional[int] = [3_53_89, 66_72, 49, 2] self.assertListEqual(a_ ,self.big_tokenizer.encode(a_ ) ) @slow def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = {"""input_ids""": [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name="microsoft/xprophetnet-large-wiki100-cased" ,revision="1acad1643ddd54a44df6a1b797ada8373685d90e" ,)
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionXLImgaImgPipeline UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} UpperCamelCase_ = PipelineTesterMixin.required_optional_params - {'latents'} UpperCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,attention_head_dim=(2, 4) ,use_linear_projection=__lowerCAmelCase ,addition_embed_type="text_time" ,addition_time_embed_dim=8 ,transformer_layers_per_block=(1, 2) ,projection_class_embeddings_input_dim=80 ,cross_attention_dim=64 ,) lowerCAmelCase_ : List[Any] = EulerDiscreteScheduler( beta_start=0.00_085 ,beta_end=0.012 ,steps_offset=1 ,beta_schedule="scaled_linear" ,timestep_spacing="leading" ,) torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=32 ,) lowerCAmelCase_ : str = CLIPTextModel(__lowerCAmelCase ) lowerCAmelCase_ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ,local_files_only=__lowerCAmelCase ) lowerCAmelCase_ : Any = CLIPTextModelWithProjection(__lowerCAmelCase ) lowerCAmelCase_ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ,local_files_only=__lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int=0 ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = image / 2 + 0.5 if str(__lowerCAmelCase ).startswith("mps" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowerCAmelCase_ : List[str] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : str = self.get_dummy_components() lowerCAmelCase_ : Any = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) lowerCAmelCase_ : int = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs(__lowerCAmelCase ) lowerCAmelCase_ : Union[str, Any] = sd_pipe(**__lowerCAmelCase ).images lowerCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : Union[str, Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = self.get_dummy_components() lowerCAmelCase_ : Optional[int] = StableDiffusionXLImgaImgPipeline(**__lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = sd_pipe.to(__lowerCAmelCase ) lowerCAmelCase_ : List[Any] = sd_pipe.to(__lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # forward without prompt embeds lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(__lowerCAmelCase ) lowerCAmelCase_ : Dict = 3 * ["this is a negative prompt"] lowerCAmelCase_ : List[Any] = negative_prompt lowerCAmelCase_ : Tuple = 3 * [inputs["prompt"]] lowerCAmelCase_ : Tuple = sd_pipe(**__lowerCAmelCase ) lowerCAmelCase_ : Dict = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase_ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowerCAmelCase_ : List[Any] = 3 * ["this is a negative prompt"] lowerCAmelCase_ : Tuple = 3 * [inputs.pop("prompt" )] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : Any = sd_pipe.encode_prompt(__lowerCAmelCase ,negative_prompt=__lowerCAmelCase ) lowerCAmelCase_ : Any = sd_pipe( **__lowerCAmelCase ,prompt_embeds=__lowerCAmelCase ,negative_prompt_embeds=__lowerCAmelCase ,pooled_prompt_embeds=__lowerCAmelCase ,negative_pooled_prompt_embeds=__lowerCAmelCase ,) lowerCAmelCase_ : str = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Any="cpu" ,lowerCAmelCase__ : Optional[Any]=torch.floataa ,lowerCAmelCase__ : Optional[Any]=0 ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = np.random.RandomState(__lowerCAmelCase ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(__lowerCAmelCase ).to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowerCAmelCase_ : List[str] = self.get_inputs(__lowerCAmelCase ) lowerCAmelCase_ : str = pipe(**__lowerCAmelCase ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
707
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
0
def UpperCamelCase ( snake_case__ , snake_case__ = " "): lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : int = 0 for index, char in enumerate(UpperCAmelCase__): if char == separator: split_words.append(string[last_index:index]) lowerCAmelCase_ : List[str] = index + 1 elif index + 1 == len(UpperCAmelCase__): split_words.append(string[last_index : index + 1]) return split_words if __name__ == "__main__": from doctest import testmod testmod()
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') _lowercase = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} _lowercase = '''>>zh<<''' _lowercase = '''Helsinki-NLP/''' if is_torch_available(): _lowercase = '''pt''' elif is_tf_available(): _lowercase = '''tf''' else: _lowercase = '''jax''' @require_sentencepiece class __snake_case ( a__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MarianTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' super().setUp() lowerCAmelCase_ : List[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = Path(self.tmpdirname ) save_json(lowerCAmelCase__ ,save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(lowerCAmelCase__ ,save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase__ ,save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(lowerCAmelCase__ ,save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCAmelCase_ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : str ,**lowerCAmelCase__ : str ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' return ( "This is a test", "This is a test", ) def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[Any] = "</s>" lowerCAmelCase_ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) ,lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"</s>" ) self.assertEqual(vocab_keys[1] ,"<unk>" ) self.assertEqual(vocab_keys[-1] ,"<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) ,9 ) def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) lowerCAmelCase_ : Any = en_de_tokenizer(["I am a small frog"] ,return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowerCAmelCase__ ,batch.input_ids[0] ) lowerCAmelCase_ : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )] self.assertIn("source.spm" ,lowerCAmelCase__ ) MarianTokenizer.from_pretrained(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = self.get_tokenizer() lowerCAmelCase_ : List[Any] = tok( ["I am a small frog" * 10_00, "I am a small frog"] ,padding=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape ,(2, 5_12) ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : str = self.get_tokenizer() lowerCAmelCase_ : Tuple = tok(["I am a tiny frog", "I am a small frog"] ,padding=lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = {"input_ids": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ ,model_name="Helsinki-NLP/opus-mt-en-de" ,revision="1a8c2263da11e68e50938f97e10cd57820bd504c" ,decode_kwargs={"use_source_tokenizer": True} ,) def UpperCAmelCase_ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ : str = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCAmelCase_ : Union[str, Any] = "Tämä on testi" lowerCAmelCase_ : Any = "This is a test" lowerCAmelCase_ : Optional[Any] = [76, 7, 20_47, 2] lowerCAmelCase_ : Dict = [69, 12, 11, 9_40, 2] lowerCAmelCase_ : int = tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = tokenizer(text_target=lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Optional[int] = len(UpperCAmelCase__) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase_ : List[Any] = i + 1 else: lowerCAmelCase_ : Optional[int] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
710
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
0
def UpperCamelCase ( snake_case__ , snake_case__): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive") lowerCAmelCase_ : int = str(bin(_snake_case))[2:] # remove the leading "0b" lowerCAmelCase_ : Dict = str(bin(_snake_case))[2:] # remove the leading "0b" lowerCAmelCase_ : Any = max(len(_snake_case) , len(_snake_case)) return "0b" + "".join( str(int(char_a == "1" and char_b == "1")) for char_a, char_b in zip(a_binary.zfill(_snake_case) , b_binary.zfill(_snake_case))) if __name__ == "__main__": import doctest doctest.testmod()
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class __snake_case ( UpperCamelCase_ ): """simple docstring""" UpperCamelCase_ = 'data2vec-text' def __init__( self : Optional[Any] ,lowerCAmelCase__ : List[str]=3_05_22 ,lowerCAmelCase__ : Tuple=7_68 ,lowerCAmelCase__ : Optional[int]=12 ,lowerCAmelCase__ : str=12 ,lowerCAmelCase__ : int=30_72 ,lowerCAmelCase__ : Any="gelu" ,lowerCAmelCase__ : str=0.1 ,lowerCAmelCase__ : str=0.1 ,lowerCAmelCase__ : Optional[int]=5_12 ,lowerCAmelCase__ : Optional[Any]=2 ,lowerCAmelCase__ : List[Any]=0.02 ,lowerCAmelCase__ : Union[str, Any]=1e-1_2 ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : Union[str, Any]=0 ,lowerCAmelCase__ : Dict=2 ,lowerCAmelCase__ : Any="absolute" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : List[Any]=None ,**lowerCAmelCase__ : Optional[Any] ,) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ ,bos_token_id=UpperCamelCase__ ,eos_token_id=UpperCamelCase__ ,**UpperCamelCase__ ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = position_embedding_type lowerCAmelCase_ : Any = use_cache lowerCAmelCase_ : str = classifier_dropout class __snake_case ( UpperCamelCase_ ): """simple docstring""" @property def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : int = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" ,revision="bf16" ,dtype=jnp.bfloataa ,) lowerCAmelCase_ : Tuple = "A painting of a squirrel eating a burger" lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : str = num_samples * [prompt] lowerCAmelCase_ : Dict = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Any = replicate(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Union[str, Any] = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Optional[Any] = jax.random.split(_SCREAMING_SNAKE_CASE ,jax.device_count() ) lowerCAmelCase_ : Optional[Any] = sd_pipe(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,num_inference_steps=25 ,jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCAmelCase_ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : Optional[int] = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase_ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : Optional[int] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : str = "stabilityai/stable-diffusion-2" lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = FlaxDPMSolverMultistepScheduler.from_pretrained(_SCREAMING_SNAKE_CASE ,subfolder="scheduler" ) lowerCAmelCase_ , lowerCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( _SCREAMING_SNAKE_CASE ,scheduler=_SCREAMING_SNAKE_CASE ,revision="bf16" ,dtype=jnp.bfloataa ,) lowerCAmelCase_ : Union[str, Any] = scheduler_params lowerCAmelCase_ : Any = "A painting of a squirrel eating a burger" lowerCAmelCase_ : str = jax.device_count() lowerCAmelCase_ : Optional[Any] = num_samples * [prompt] lowerCAmelCase_ : Tuple = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[Any] = replicate(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : str = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase_ : List[str] = jax.random.split(_SCREAMING_SNAKE_CASE ,jax.device_count() ) lowerCAmelCase_ : int = sd_pipe(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,num_inference_steps=25 ,jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCAmelCase_ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : Union[str, Any] = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase_ : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : List[str] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
713
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _lowercase = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __snake_case ( lowercase__ ): """simple docstring""" UpperCamelCase_ = """align_text_model""" def __init__( self : List[Any] ,lowerCAmelCase__ : str=3_05_22 ,lowerCAmelCase__ : Optional[int]=7_68 ,lowerCAmelCase__ : Union[str, Any]=12 ,lowerCAmelCase__ : List[str]=12 ,lowerCAmelCase__ : List[str]=30_72 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Optional[Any]=0.1 ,lowerCAmelCase__ : int=0.1 ,lowerCAmelCase__ : Optional[int]=5_12 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : str=1e-1_2 ,lowerCAmelCase__ : int=0 ,lowerCAmelCase__ : int="absolute" ,lowerCAmelCase__ : Any=True ,**lowerCAmelCase__ : List[str] ,) -> Any: '''simple docstring''' super().__init__(**__lowercase ) lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Optional[int] = num_attention_heads lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Optional[int] = type_vocab_size lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : List[Any] = position_embedding_type lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : List[Any] = pad_token_id @classmethod def UpperCAmelCase_ ( cls : Optional[int] ,lowerCAmelCase__ : Union[str, os.PathLike] ,**lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' cls._set_token_in_kwargs(__lowercase ) lowerCAmelCase_ , lowerCAmelCase_ : str = cls.get_config_dict(__lowercase ,**__lowercase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ : Any = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase ,**__lowercase ) class __snake_case ( lowercase__ ): """simple docstring""" UpperCamelCase_ = """align_vision_model""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : int = 6_00 ,lowerCAmelCase__ : float = 2.0 ,lowerCAmelCase__ : float = 3.1 ,lowerCAmelCase__ : int = 8 ,lowerCAmelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCAmelCase__ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] ,lowerCAmelCase__ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] ,lowerCAmelCase__ : List[int] = [] ,lowerCAmelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCAmelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCAmelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCAmelCase__ : float = 0.25 ,lowerCAmelCase__ : str = "swish" ,lowerCAmelCase__ : int = 25_60 ,lowerCAmelCase__ : str = "mean" ,lowerCAmelCase__ : float = 0.02 ,lowerCAmelCase__ : float = 0.001 ,lowerCAmelCase__ : float = 0.99 ,lowerCAmelCase__ : float = 0.2 ,**lowerCAmelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' super().__init__(**__lowercase ) lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : str = width_coefficient lowerCAmelCase_ : Union[str, Any] = depth_coefficient lowerCAmelCase_ : int = depth_divisor lowerCAmelCase_ : Optional[int] = kernel_sizes lowerCAmelCase_ : Tuple = in_channels lowerCAmelCase_ : Dict = out_channels lowerCAmelCase_ : Dict = depthwise_padding lowerCAmelCase_ : Any = strides lowerCAmelCase_ : Dict = num_block_repeats lowerCAmelCase_ : Dict = expand_ratios lowerCAmelCase_ : Optional[Any] = squeeze_expansion_ratio lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : List[Any] = hidden_dim lowerCAmelCase_ : Union[str, Any] = pooling_type lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Tuple = batch_norm_eps lowerCAmelCase_ : str = batch_norm_momentum lowerCAmelCase_ : Optional[Any] = drop_connect_rate lowerCAmelCase_ : Any = sum(__lowercase ) * 4 @classmethod def UpperCAmelCase_ ( cls : Optional[Any] ,lowerCAmelCase__ : Union[str, os.PathLike] ,**lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' cls._set_token_in_kwargs(__lowercase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = cls.get_config_dict(__lowercase ,**__lowercase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCAmelCase_ : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowercase ,**__lowercase ) class __snake_case ( lowercase__ ): """simple docstring""" UpperCamelCase_ = """align""" UpperCamelCase_ = True def __init__( self : List[Any] ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : Any=6_40 ,lowerCAmelCase__ : Tuple=1.0 ,lowerCAmelCase__ : Optional[int]=0.02 ,**lowerCAmelCase__ : str ,) -> List[Any]: '''simple docstring''' super().__init__(**__lowercase ) if text_config is None: lowerCAmelCase_ : Optional[Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowerCAmelCase_ : List[str] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowerCAmelCase_ : Tuple = AlignTextConfig(**__lowercase ) lowerCAmelCase_ : int = AlignVisionConfig(**__lowercase ) lowerCAmelCase_ : Dict = projection_dim lowerCAmelCase_ : int = temperature_init_value lowerCAmelCase_ : List[str] = initializer_range @classmethod def UpperCAmelCase_ ( cls : Tuple ,lowerCAmelCase__ : AlignTextConfig ,lowerCAmelCase__ : AlignVisionConfig ,**lowerCAmelCase__ : int ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__lowercase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : List[str] = self.text_config.to_dict() lowerCAmelCase_ : Tuple = self.vision_config.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
0
def UpperCamelCase ( snake_case__): if not isinstance(_lowerCAmelCase , _lowerCAmelCase): raise TypeError("only integers accepted as input") else: lowerCAmelCase_ : Any = str(abs(_lowerCAmelCase)) lowerCAmelCase_ : Dict = [list(_lowerCAmelCase) for char in range(len(_lowerCAmelCase))] for index in range(len(_lowerCAmelCase)): num_transpositions[index].pop(_lowerCAmelCase) return max( int("".join(list(_lowerCAmelCase))) for transposition in num_transpositions) if __name__ == "__main__": __import__('''doctest''').testmod()
716
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __snake_case ( UpperCamelCase__ ): """simple docstring""" UpperCamelCase_ = """gpt_neox_japanese""" def __init__( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any]=3_20_00 ,lowerCAmelCase__ : str=25_60 ,lowerCAmelCase__ : Any=32 ,lowerCAmelCase__ : Dict=32 ,lowerCAmelCase__ : Union[str, Any]=4 ,lowerCAmelCase__ : Dict="gelu" ,lowerCAmelCase__ : List[Any]=1.00 ,lowerCAmelCase__ : int=1_00_00 ,lowerCAmelCase__ : List[str]=20_48 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : Dict=1e-5 ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Optional[int]=3_19_96 ,lowerCAmelCase__ : Any=3_19_99 ,lowerCAmelCase__ : Union[str, Any]=0.1 ,lowerCAmelCase__ : Optional[Any]=0.0 ,**lowerCAmelCase__ : List[str] ,) -> Any: '''simple docstring''' super().__init__(bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Optional[int] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Union[str, Any] = intermediate_multiple_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Dict = rotary_pct lowerCAmelCase_ : Tuple = rotary_emb_base lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Optional[int] = layer_norm_eps lowerCAmelCase_ : Union[str, Any] = use_cache lowerCAmelCase_ : List[Any] = attention_dropout lowerCAmelCase_ : List[str] = hidden_dropout
717
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } _lowercase = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off _lowercase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __snake_case ( UpperCAmelCase__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = ["input_ids", "attention_mask"] UpperCamelCase_ = MBartTokenizer UpperCamelCase_ = [] UpperCamelCase_ = [] def __init__( self : int ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : int="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Tuple="</s>" ,lowerCAmelCase__ : str="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Dict="<pad>" ,lowerCAmelCase__ : List[str]="<mask>" ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : List[str]=None ,**lowerCAmelCase__ : str ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else mask_token super().__init__( vocab_file=lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) lowerCAmelCase_ : Tuple = vocab_file lowerCAmelCase_ : str = False if not self.vocab_file else True lowerCAmelCase_ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCAmelCase_ : Union[str, Any] = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ : int = src_lang if src_lang is not None else "en_XX" lowerCAmelCase_ : List[str] = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' lowerCAmelCase_ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] ,lowerCAmelCase__ : Optional[str] ,**lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCAmelCase_ : List[str] = src_lang lowerCAmelCase_ : Any = self(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,**lowerCamelCase__ ) lowerCAmelCase_ : Any = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : List[str] = tgt_lang_id return inputs def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : str = "en_XX" ,lowerCAmelCase__ : Optional[List[str]] = None ,lowerCAmelCase__ : str = "ro_RO" ,**lowerCAmelCase__ : List[Any] ,) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : int = src_lang lowerCAmelCase_ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Tuple = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[Any] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str ,pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase__ ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : List[str] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str ,pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str ,special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str ,self.prefix_tokens + self.suffix_tokens ) ) ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return lowerCAmelCase_ : Dict = os.path.join( lowerCamelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file ,lowerCamelCase__ ) return (out_vocab_file,)
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowercase : Dict = logging.get_logger(__name__) class __snake_case ( __lowercase ): """simple docstring""" UpperCamelCase_ = ['''input_features''', '''attention_mask'''] def __init__( self : Optional[Any] ,lowerCAmelCase__ : Optional[Any]=80 ,lowerCAmelCase__ : Any=1_60_00 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : Any=10 ,lowerCAmelCase__ : List[Any]=25 ,lowerCAmelCase__ : Union[str, Any]="hamming_window" ,lowerCAmelCase__ : Optional[int]=3_27_68.0 ,lowerCAmelCase__ : Optional[Any]=0.97 ,lowerCAmelCase__ : List[str]=1.0 ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Tuple=False ,**lowerCAmelCase__ : Tuple ,) -> Optional[int]: '''simple docstring''' super().__init__(feature_size=__a ,sampling_rate=__a ,padding_value=__a ,**__a ) lowerCAmelCase_ : Union[str, Any] = feature_size lowerCAmelCase_ : Dict = sampling_rate lowerCAmelCase_ : int = padding_value lowerCAmelCase_ : Tuple = hop_length lowerCAmelCase_ : List[Any] = win_length lowerCAmelCase_ : Dict = frame_signal_scale lowerCAmelCase_ : Union[str, Any] = preemphasis_coeff lowerCAmelCase_ : Tuple = mel_floor lowerCAmelCase_ : Union[str, Any] = normalize_means lowerCAmelCase_ : Tuple = normalize_vars lowerCAmelCase_ : Dict = win_function lowerCAmelCase_ : Dict = return_attention_mask lowerCAmelCase_ : Any = win_length * sampling_rate // 10_00 lowerCAmelCase_ : Any = hop_length * sampling_rate // 10_00 lowerCAmelCase_ : Dict = optimal_fft_length(self.sample_size ) lowerCAmelCase_ : Any = (self.n_fft // 2) + 1 def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : np.array ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": lowerCAmelCase_ : str = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=__a ) else: lowerCAmelCase_ : Union[str, Any] = window_function(window_length=self.sample_size ,name=self.win_function ) lowerCAmelCase_ : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) lowerCAmelCase_ : Dict = spectrogram( one_waveform * self.frame_signal_scale ,window=__a ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=__a ,preemphasis=self.preemphasis_coeff ,mel_filters=__a ,mel_floor=self.mel_floor ,log_mel="log" ,) return msfc_features.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' if self.normalize_means: lowerCAmelCase_ : Optional[int] = x[:input_length].mean(axis=0 ) lowerCAmelCase_ : Union[str, Any] = np.subtract(__a ,__a ) if self.normalize_vars: lowerCAmelCase_ : int = x[:input_length].std(axis=0 ) lowerCAmelCase_ : List[str] = np.divide(__a ,__a ) if input_length < x.shape[0]: lowerCAmelCase_ : List[Any] = padding_value # make sure array is in float32 lowerCAmelCase_ : Optional[Any] = x.astype(np.floataa ) return x def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__a ,__a ,self.padding_value ) for x, n in zip(__a ,__a )] def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,lowerCAmelCase__ : Optional[int] = None ,**lowerCAmelCase__ : Any ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : str = isinstance(__a ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : int = is_batched_numpy or ( isinstance(__a ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : str = [np.asarray(__a ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__a ,np.ndarray ): lowerCAmelCase_ : str = np.asarray(__a ,dtype=np.floataa ) elif isinstance(__a ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : str = [raw_speech] # extract fbank features lowerCAmelCase_ : Optional[int] = [self._extract_mfsc_features(__a ) for one_waveform in raw_speech] # convert into correct format for padding lowerCAmelCase_ : Dict = BatchFeature({"input_features": features} ) lowerCAmelCase_ : Dict = self.pad( __a ,padding=__a ,max_length=__a ,truncation=__a ,pad_to_multiple_of=__a ,return_attention_mask=__a ,**__a ,) # make sure list is in array format lowerCAmelCase_ : int = padded_inputs.get("input_features" ) if isinstance(input_features[0] ,__a ): lowerCAmelCase_ : Optional[Any] = [np.asarray(__a ,dtype=np.floataa ) for feature in input_features] lowerCAmelCase_ : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowerCAmelCase_ : Optional[Any] = [np.asarray(__a ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowerCAmelCase_ : Tuple = ( np.array(__a ,dtype=np.intaa ) if self._get_padding_strategies(__a ,max_length=__a ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowerCAmelCase_ : Union[str, Any] = self.normalize( padded_inputs["input_features"] ,attention_mask=__a ) if return_tensors is not None: lowerCAmelCase_ : Optional[int] = padded_inputs.convert_to_tensors(__a ) return padded_inputs
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]=13 ,lowerCAmelCase__ : List[str]=30 ,lowerCAmelCase__ : Dict=2 ,lowerCAmelCase__ : int=3 ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : Tuple=32 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Optional[Any]=4 ,lowerCAmelCase__ : Tuple=37 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Tuple=0.1 ,lowerCAmelCase__ : Optional[int]=0.1 ,lowerCAmelCase__ : Optional[int]=10 ,lowerCAmelCase__ : int=0.02 ,lowerCAmelCase__ : int=3 ,lowerCAmelCase__ : str=None ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ : int = (image_size // patch_size) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def UpperCAmelCase_ ( self : List[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : int = None if self.use_labels: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase__ ,initializer_range=self.initializer_range ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = TFViTModel(config=UpperCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(UpperCAmelCase__ ,training=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowerCAmelCase_ : Optional[Any] = self.image_size // 2 lowerCAmelCase_ : Optional[int] = pixel_values[:, :, :image_size, :image_size] lowerCAmelCase_ : List[str] = model(UpperCAmelCase__ ,interpolate_pos_encoding=UpperCAmelCase__ ,training=UpperCAmelCase__ ) lowerCAmelCase_ : Dict = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.type_sequence_label_size lowerCAmelCase_ : Optional[int] = TFViTForImageClassification(UpperCAmelCase__ ) lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase__ ,labels=UpperCAmelCase__ ,training=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowerCAmelCase_ : Dict = self.image_size // 2 lowerCAmelCase_ : int = pixel_values[:, :, :image_size, :image_size] lowerCAmelCase_ : Tuple = model(UpperCAmelCase__ ,interpolate_pos_encoding=UpperCAmelCase__ ,training=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : Any = TFViTForImageClassification(UpperCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : str = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase_ = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = TFViTModelTester(self ) lowerCAmelCase_ : Any = ConfigTester(self ,config_class=UpperCAmelCase__ ,has_text_modality=UpperCAmelCase__ ,hidden_size=37 ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) lowerCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ ,tf.keras.layers.Layer ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(UpperCAmelCase__ ) lowerCAmelCase_ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : List[Any] = prepare_img() lowerCAmelCase_ : int = image_processor(images=UpperCAmelCase__ ,return_tensors="tf" ) # forward pass lowerCAmelCase_ : List[str] = model(**UpperCAmelCase__ ) # verify the logits lowerCAmelCase_ : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase__ ) lowerCAmelCase_ : List[Any] = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] ,UpperCAmelCase__ ,atol=1e-4 )
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''OwlViTFeatureExtractor'''] _lowercase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = (KDPMaDiscreteScheduler,) UpperCamelCase_ = 1_0 def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = { "num_train_timesteps": 11_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] ,[0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ ,beta_end=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Dict = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase_ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : Union[str, Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Any = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2 assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if torch_device == "mps": return lowerCAmelCase_ : List[str] = self.scheduler_classes[0] lowerCAmelCase_ : Any = self.get_scheduler_config() lowerCAmelCase_ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ : List[str] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Any = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = output.prev_sample lowerCAmelCase_ : Any = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[int] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return lowerCAmelCase_ : int = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ,device=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : List[Any] = self.dummy_sample_deter.to(lowerCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase_ : List[str] = scheduler.scale_model_input(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = output.prev_sample lowerCAmelCase_ : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) if str(lowerCAmelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __snake_case ( __snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ShapEImgaImgPipeline UpperCamelCase_ = ['image'] UpperCamelCase_ = ['image'] UpperCamelCase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return 8 @property def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) lowerCAmelCase_ : Any = CLIPVisionModel(__UpperCamelCase ) return model @property def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = CLIPImageProcessor( crop_size=2_24 ,do_center_crop=__UpperCamelCase ,do_normalize=__UpperCamelCase ,do_resize=__UpperCamelCase ,image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] ,image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] ,resample=3 ,size=2_24 ,) return image_processor @property def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCAmelCase_ : Dict = PriorTransformer(**__UpperCamelCase ) return model @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase_ : Optional[Any] = ShapERenderer(**__UpperCamelCase ) return model def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Dict = self.dummy_prior lowerCAmelCase_ : List[str] = self.dummy_image_encoder lowerCAmelCase_ : Optional[int] = self.dummy_image_processor lowerCAmelCase_ : Optional[Any] = self.dummy_renderer lowerCAmelCase_ : Any = HeunDiscreteScheduler( beta_schedule="exp" ,num_train_timesteps=10_24 ,prediction_type="sample" ,use_karras_sigmas=__UpperCamelCase ,clip_sample=__UpperCamelCase ,clip_sample_range=1.0 ,) lowerCAmelCase_ : Optional[int] = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[int]=0 ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("mps" ): lowerCAmelCase_ : str = torch.manual_seed(__UpperCamelCase ) else: lowerCAmelCase_ : Optional[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = "cpu" lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**__UpperCamelCase ) lowerCAmelCase_ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = output.images[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase_ : Dict = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[Any] ) -> List[str]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = torch_device == "cpu" lowerCAmelCase_ : List[str] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=__UpperCamelCase ,relax_max_difference=__UpperCamelCase ,) def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : Tuple = self.pipeline_class(**__UpperCamelCase ) lowerCAmelCase_ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : int = 2 lowerCAmelCase_ : int = self.get_dummy_inputs(__UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase_ : Tuple = batch_size * [inputs[key]] lowerCAmelCase_ : Tuple = pipe(**__UpperCamelCase ,num_images_per_prompt=__UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) lowerCAmelCase_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) lowerCAmelCase_ : Optional[Any] = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) lowerCAmelCase_ : List[Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = pipe( __UpperCamelCase ,generator=__UpperCamelCase ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCamelCase ,__UpperCamelCase )
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right _lowercase = 50003 _lowercase = 50002 @require_sentencepiece @require_tokenizers class __snake_case ( a__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = PLBartTokenizer UpperCamelCase_ = None UpperCamelCase_ = False def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Dict = PLBartTokenizer(lowercase__ ,language_codes="base" ,keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = PLBartTokenizer(lowercase__ ,language_codes="base" ,keep_accents=lowercase__ ) lowerCAmelCase_ : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase_ : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) lowerCAmelCase_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowerCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) lowerCAmelCase_ : Any = tokenizer.vocab_size lowerCAmelCase_ : int = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 4 ,lowercase__ )] self.assertListEqual(lowercase__ ,["__java__", "__python__", "__en_XX__", "<mask>"] ) lowerCAmelCase_ : Tuple = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCAmelCase_ : Dict = tokenizer(lowercase__ ).input_ids self.assertEqual( tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ,clean_up_tokenization_spaces=lowercase__ ) ,lowercase__ ,) def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = PLBartTokenizer(lowercase__ ,language_codes="multi" ,keep_accents=lowercase__ ) lowerCAmelCase_ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase_ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) lowerCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowerCAmelCase_ : Any = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) lowerCAmelCase_ : List[Any] = tokenizer.vocab_size lowerCAmelCase_ : Any = [tokenizer.convert_ids_to_tokens(lowercase__ ) for x in range(end - 7 ,lowercase__ )] self.assertListEqual( lowercase__ ,["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowerCAmelCase_ : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCAmelCase_ : str = tokenizer(lowercase__ ).input_ids self.assertEqual( tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ,clean_up_tokenization_spaces=lowercase__ ) ,lowercase__ ,) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = """uclanlp/plbart-python-en_XX""" UpperCamelCase_ = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] UpperCamelCase_ = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] UpperCamelCase_ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name ,language_codes="base" ,src_lang="python" ,tgt_lang="en_XX" ) lowerCAmelCase_ : Optional[Any] = 1 return cls def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] ,5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] ,5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] ,5_00_03 ) def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,lowercase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertIn(lowercase__ ,self.tokenizer.all_special_ids ) lowerCAmelCase_ : Optional[Any] = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] lowerCAmelCase_ : Any = self.tokenizer.decode(lowercase__ ,skip_special_tokens=lowercase__ ) lowerCAmelCase_ : Tuple = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.assertNotIn(self.tokenizer.eos_token ,lowercase__ ) def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] ,lowercase__ ) lowerCAmelCase_ : int = 10 lowerCAmelCase_ : int = self.tokenizer(lowercase__ ,max_length=lowercase__ ,truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,lowercase__ ) self.assertEqual(len(lowercase__ ) ,lowercase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) ,[5_00_04, 5_00_01] ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = tempfile.mkdtemp() lowerCAmelCase_ : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) lowerCAmelCase_ : List[Any] = PLBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,lowercase__ ) @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=lowercase__ ,return_tensors="pt" ) lowerCAmelCase_ : Any = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() ,[2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] ,lowercase__ ) self.assertEqual(batch.decoder_input_ids[1][-1] ,2 ) self.assertEqual(batch.labels[1][-2:].tolist() ,[2, EN_CODE] ) @require_torch def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=len(self.expected_src_tokens ) ,return_tensors="pt" ,) lowerCAmelCase_ : List[str] = shift_tokens_right(batch["labels"] ,self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ ,lowercase__ ) self.assertEqual((2, 26) ,batch.input_ids.shape ) self.assertEqual((2, 26) ,batch.attention_mask.shape ) lowerCAmelCase_ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,lowercase__ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Dict = self.tokenizer(self.src_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=3 ,return_tensors="pt" ) lowerCAmelCase_ : Tuple = self.tokenizer( text_target=self.tgt_text ,padding=lowercase__ ,truncation=lowercase__ ,max_length=10 ,return_tensors="pt" ) lowerCAmelCase_ : Optional[int] = targets['''input_ids'''] lowerCAmelCase_ : Optional[Any] = shift_tokens_right(lowercase__ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.tokenizer._build_translation_inputs( "A test" ,return_tensors="pt" ,src_lang="en_XX" ,tgt_lang="java" ) self.assertEqual( nested_simplify(lowercase__ ) ,{ # A, test, EOS, en_XX "input_ids": [[1_50, 2_42, 2, 5_00_03]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_00_01, } ,)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : Optional[Any] = job["""started_at"""] lowerCAmelCase_ : Tuple = job["""completed_at"""] lowerCAmelCase_ : Tuple = date_parser.parse(SCREAMING_SNAKE_CASE__) lowerCAmelCase_ : Union[str, Any] = date_parser.parse(SCREAMING_SNAKE_CASE__) lowerCAmelCase_ : Any = round((end_datetime - start_datetime).total_seconds() / 60.0) lowerCAmelCase_ : int = start lowerCAmelCase_ : str = end lowerCAmelCase_ : Optional[Any] = duration_in_min return job_info def UpperCamelCase ( snake_case__ , snake_case__=None): lowerCAmelCase_ : List[str] = None if token is not None: lowerCAmelCase_ : Optional[int] = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} lowerCAmelCase_ : Optional[int] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowerCAmelCase_ : Optional[Any] = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__).json() lowerCAmelCase_ : Optional[int] = {} try: job_time.update({job["name"]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__) for job in result["jobs"]}) lowerCAmelCase_ : Optional[int] = math.ceil((result["total_count"] - 1_00) / 1_00) for i in range(SCREAMING_SNAKE_CASE__): lowerCAmelCase_ : Optional[int] = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE__).json() job_time.update({job["name"]: extract_time_from_single_job(SCREAMING_SNAKE_CASE__) for job in result["jobs"]}) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''') return {} if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') _lowercase = parser.parse_args() _lowercase = get_job_time(args.workflow_run_id) _lowercase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"{k}: {v['duration']}")
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase_ : Any = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__snake_case ) ,torch_builtin(__snake_case ) ) ) self.assertFalse(torch.allclose(gelu_python(__snake_case ) ,gelu_new(__snake_case ) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase_ : List[Any] = get_activation("gelu" ) lowerCAmelCase_ : Any = get_activation("gelu_10" ) lowerCAmelCase_ : int = torch_builtin(__snake_case ) lowerCAmelCase_ : Any = geluaa(__snake_case ) lowerCAmelCase_ : Dict = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__snake_case ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__snake_case ): get_activation("bogus" ) with self.assertRaises(__snake_case ): get_activation(__snake_case ) def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_activation("gelu" ) lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : List[str] = get_activation("gelu" ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__snake_case ): lowerCAmelCase_ : Dict = acta.a
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : int=7 ,lowerCAmelCase__ : List[str]=3 ,lowerCAmelCase__ : Optional[int]=18 ,lowerCAmelCase__ : Union[str, Any]=30 ,lowerCAmelCase__ : List[Any]=4_00 ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : int=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : Optional[Any]=False ,) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = size if size is not None else {"height": 20, "width": 20} lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Union[str, Any] = image_size lowerCAmelCase_ : Any = min_resolution lowerCAmelCase_ : Tuple = max_resolution lowerCAmelCase_ : int = do_resize lowerCAmelCase_ : int = size lowerCAmelCase_ : str = do_center_crop lowerCAmelCase_ : int = crop_size lowerCAmelCase_ : Any = do_normalize lowerCAmelCase_ : str = image_mean lowerCAmelCase_ : Tuple = image_std lowerCAmelCase_ : Dict = do_reduce_labels def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test") lowerCAmelCase_ : Dict = Image.open(dataset[0]["file"]) lowerCAmelCase_ : List[str] = Image.open(dataset[1]["file"]) return image, map def UpperCamelCase ( ): lowerCAmelCase_ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test") lowerCAmelCase_ : int = Image.open(ds[0]["file"]) lowerCAmelCase_ : Dict = Image.open(ds[1]["file"]) lowerCAmelCase_ : Optional[int] = Image.open(ds[2]["file"]) lowerCAmelCase_ : Optional[int] = Image.open(ds[3]["file"]) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : str = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_std" ) ) def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,crop_size=84 ,reduce_labels=lowerCAmelCase__ ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,Image.Image ) # Test not batched input lowerCAmelCase_ : List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : Optional[int] = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,np.ndarray ) # Test not batched input lowerCAmelCase_ : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : Tuple = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : Dict = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,torchify=lowerCAmelCase__ ) lowerCAmelCase_ : str = [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input lowerCAmelCase_ : Dict = image_processing(image_inputs[0] ,maps[0] ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched lowerCAmelCase_ : Any = image_processing(lowerCAmelCase__ ,lowerCAmelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = prepare_semantic_single_inputs() lowerCAmelCase_ : int = image_processing(lowerCAmelCase__ ,lowerCAmelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = prepare_semantic_batch_inputs() lowerCAmelCase_ : Any = image_processing(lowerCAmelCase__ ,lowerCAmelCase__ ,return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape ,( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual( encoding["labels"].shape ,( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) self.assertEqual(encoding["labels"].dtype ,torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 lowerCAmelCase_ , lowerCAmelCase_ : Tuple = prepare_semantic_single_inputs() lowerCAmelCase_ : str = image_processing(lowerCAmelCase__ ,lowerCAmelCase__ ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) lowerCAmelCase_ : int = True lowerCAmelCase_ : Union[str, Any] = image_processing(lowerCAmelCase__ ,lowerCAmelCase__ ,return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="attention"): lowerCAmelCase_ : List[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :]) lowerCAmelCase_ : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2]) lowerCAmelCase_ : Optional[Any] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :]) lowerCAmelCase_ : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2]) lowerCAmelCase_ : str = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :]) lowerCAmelCase_ : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2]) lowerCAmelCase_ : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :]) lowerCAmelCase_ : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2]) return k, o, q, v def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False): if split_mlp_wi: lowerCAmelCase_ : Dict = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] lowerCAmelCase_ : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] lowerCAmelCase_ : Union[str, Any] = (wi_a, wi_a) else: lowerCAmelCase_ : Optional[Any] = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] lowerCAmelCase_ : int = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def UpperCamelCase ( snake_case__ , *, snake_case__ , snake_case__ , snake_case__ = False): lowerCAmelCase_ : int = traverse_util.flatten_dict(variables["target"]) lowerCAmelCase_ : str = {"/".join(lowercase_): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Union[str, Any] = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , lowercase_) lowerCAmelCase_ : List[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : str = old["token_embedder/embedding"] # Encoder. for i in range(lowercase_): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase_ , lowercase_ , "encoder" , "pre_attention_layer_norm") lowerCAmelCase_ : str = tax_attention_lookup(lowercase_ , lowercase_ , "encoder" , "attention") lowerCAmelCase_ : List[Any] = layer_norm lowerCAmelCase_ : str = k.T lowerCAmelCase_ : Optional[Any] = o.T lowerCAmelCase_ : List[str] = q.T lowerCAmelCase_ : int = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , "encoder" , "pre_mlp_layer_norm") lowerCAmelCase_ : int = tax_mlp_lookup(lowercase_ , lowercase_ , "encoder" , lowercase_) lowerCAmelCase_ : int = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : Any = wi.T lowerCAmelCase_ : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ : Optional[int] = tax_relpos_bias_lookup( lowercase_ , lowercase_ , "encoder").T lowerCAmelCase_ : str = old["encoder/encoder_norm/scale"] if not scalable_attention: lowerCAmelCase_ : Any = tax_relpos_bias_lookup( lowercase_ , 0 , "encoder").T lowerCAmelCase_ : str = tax_relpos_bias_lookup( lowercase_ , 0 , "decoder").T if not is_encoder_only: # Decoder. for i in range(lowercase_): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : List[Any] = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_self_attention_layer_norm") lowerCAmelCase_ : Any = tax_attention_lookup(lowercase_ , lowercase_ , "decoder" , "self_attention") lowerCAmelCase_ : List[str] = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : str = o.T lowerCAmelCase_ : List[str] = q.T lowerCAmelCase_ : Union[str, Any] = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Dict = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_cross_attention_layer_norm") lowerCAmelCase_ : int = tax_attention_lookup(lowercase_ , lowercase_ , "decoder" , "encoder_decoder_attention") lowerCAmelCase_ : List[str] = layer_norm lowerCAmelCase_ : str = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : int = q.T lowerCAmelCase_ : List[Any] = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : Tuple = tax_layer_norm_lookup(lowercase_ , lowercase_ , "decoder" , "pre_mlp_layer_norm") lowerCAmelCase_ : Tuple = tax_mlp_lookup(lowercase_ , lowercase_ , "decoder" , lowercase_) lowerCAmelCase_ : Optional[int] = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[Any] = wi[0].T lowerCAmelCase_ : Optional[int] = wi[1].T else: lowerCAmelCase_ : str = wi.T lowerCAmelCase_ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ : Optional[int] = tax_relpos_bias_lookup(lowercase_ , lowercase_ , "decoder").T lowerCAmelCase_ : Tuple = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Any = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()]) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : str = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head.") lowerCAmelCase_ : int = state_dict["shared.weight"] return state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : int = checkpoints.load_tax_checkpoint(lowercase_) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch( lowercase_ , num_layers=config.num_layers , is_encoder_only=lowercase_ , scalable_attention=lowercase_) lowerCAmelCase_ : Union[str, Any] = make_state_dict(lowercase_ , lowercase_) model.load_state_dict(lowercase_ , strict=lowercase_) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , snake_case__ = False , ): lowerCAmelCase_ : int = MTaConfig.from_json_file(lowercase_) print(F'''Building PyTorch model from configuration: {config}''') # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = UMTaEncoderModel(lowercase_) else: lowerCAmelCase_ : Optional[int] = UMTaForConditionalGeneration(lowercase_) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') model.save_pretrained(lowercase_) # Verify that we can load the checkpoint. model.from_pretrained(lowercase_) print("Done") if __name__ == "__main__": _lowercase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _lowercase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
707
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _lowercase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _lowercase = logging.getLogger() def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("-f") lowerCAmelCase_ : Any = parser.parse_args() return args.f def UpperCamelCase ( snake_case__ , snake_case__="eval"): lowerCAmelCase_ : Optional[Any] = os.path.join(__UpperCamelCase , F'''{split}_results.json''') if os.path.exists(__UpperCamelCase): with open(__UpperCamelCase , "r") as f: return json.load(__UpperCamelCase) raise ValueError(F'''can\'t find {path}''') _lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __snake_case ( UpperCAmelCase_ ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_flax_glue.main() lowerCAmelCase_ : int = get_results(_snake_case ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[int] = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_clm_flax.main() lowerCAmelCase_ : Any = get_results(_snake_case ) self.assertLess(result["eval_perplexity"] ,1_00 ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Any = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_summarization_flax.main() lowerCAmelCase_ : Tuple = get_results(_snake_case ,split="test" ) self.assertGreaterEqual(result["test_rouge1"] ,10 ) self.assertGreaterEqual(result["test_rouge2"] ,2 ) self.assertGreaterEqual(result["test_rougeL"] ,7 ) self.assertGreaterEqual(result["test_rougeLsum"] ,7 ) @slow def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : List[Any] = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_mlm_flax.main() lowerCAmelCase_ : Union[str, Any] = get_results(_snake_case ) self.assertLess(result["eval_perplexity"] ,42 ) @slow def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Dict = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_ta_mlm_flax.main() lowerCAmelCase_ : int = get_results(_snake_case ) self.assertGreaterEqual(result["eval_accuracy"] ,0.42 ) @slow def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_flax_ner.main() lowerCAmelCase_ : Tuple = get_results(_snake_case ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) self.assertGreaterEqual(result["eval_f1"] ,0.3 ) @slow def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : str = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_snake_case ,"argv" ,_snake_case ): run_qa.main() lowerCAmelCase_ : List[Any] = get_results(_snake_case ) self.assertGreaterEqual(result["eval_f1"] ,30 ) self.assertGreaterEqual(result["eval_exact"] ,30 )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __snake_case : """simple docstring""" def __init__( self : int ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : int = 13 ,lowerCAmelCase__ : int = 64 ,lowerCAmelCase__ : int = 2 ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : int = 1_28 ,lowerCAmelCase__ : Optional[int]=[16, 32, 64, 1_28] ,lowerCAmelCase__ : int = 7 ,lowerCAmelCase__ : int = 4 ,lowerCAmelCase__ : int = 37 ,lowerCAmelCase__ : str = "gelu" ,lowerCAmelCase__ : float = 0.1 ,lowerCAmelCase__ : float = 0.1 ,lowerCAmelCase__ : int = 10 ,lowerCAmelCase__ : float = 0.02 ,lowerCAmelCase__ : int = 2 ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : int = 1_28 ,lowerCAmelCase__ : List[int] = [2, 2, 2, 2] ,lowerCAmelCase__ : int = 2 ,lowerCAmelCase__ : int = 2 ,) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : List[str] = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[int] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Optional[Any] = encoder_stride lowerCAmelCase_ : Optional[int] = num_attention_outputs lowerCAmelCase_ : Dict = embed_dim lowerCAmelCase_ : Dict = embed_dim + 1 lowerCAmelCase_ : List[str] = resolution lowerCAmelCase_ : List[Any] = depths lowerCAmelCase_ : List[Any] = hidden_sizes lowerCAmelCase_ : List[Any] = dim lowerCAmelCase_ : int = mlp_expansion_ratio def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[str] = None if self.use_labels: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_lowerCAmelCase ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = TFEfficientFormerModel(config=_lowerCAmelCase ) lowerCAmelCase_ : str = model(_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = self.type_sequence_label_size lowerCAmelCase_ : Dict = TFEfficientFormerForImageClassification(_lowerCAmelCase ) lowerCAmelCase_ : List[Any] = model(_lowerCAmelCase ,labels=_lowerCAmelCase ,training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ : int = 1 lowerCAmelCase_ : List[str] = TFEfficientFormerForImageClassification(_lowerCAmelCase ) lowerCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : str = model(_lowerCAmelCase ,labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __snake_case ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCamelCase_ = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = TFEfficientFormerModelTester(self ) lowerCAmelCase_ : Any = ConfigTester( self ,config_class=_lowerCAmelCase ,has_text_modality=_lowerCAmelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(_lowerCAmelCase ) lowerCAmelCase_ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,_lowerCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : int ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : str = model_class(_lowerCAmelCase ) lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ,training=_lowerCAmelCase ) lowerCAmelCase_ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Union[str, Any] = getattr( self.model_tester ,"expected_num_hidden_layers" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) if hasattr(self.model_tester ,"encoder_seq_length" ): lowerCAmelCase_ : Dict = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,"chunk_length" ) and self.model_tester.chunk_length > 1: lowerCAmelCase_ : Tuple = seq_length * self.model_tester.chunk_length else: lowerCAmelCase_ : Union[str, Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: lowerCAmelCase_ : List[str] = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase ,(list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) ,_lowerCAmelCase ) lowerCAmelCase_ : Dict = getattr(self.model_tester ,"seq_length" ,_lowerCAmelCase ) lowerCAmelCase_ : Any = getattr(self.model_tester ,"decoder_seq_length" ,_lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[Any] = True check_hidden_states_output(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[Any]=False ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = super()._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ,return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = getattr(self.model_tester ,"seq_length" ,_lowerCAmelCase ) lowerCAmelCase_ : List[str] = getattr(self.model_tester ,"encoder_seq_length" ,_lowerCAmelCase ) lowerCAmelCase_ : List[str] = getattr(self.model_tester ,"key_length" ,_lowerCAmelCase ) lowerCAmelCase_ : str = getattr(self.model_tester ,"chunk_length" ,_lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester ,"num_hashes" ): lowerCAmelCase_ : str = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Union[str, Any] = model_class(_lowerCAmelCase ) lowerCAmelCase_ : List[str] = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ,training=_lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[Any] = model_class(_lowerCAmelCase ) lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(_lowerCAmelCase ,_lowerCAmelCase ) ,training=_lowerCAmelCase ) lowerCAmelCase_ : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCAmelCase_ : List[Any] = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCAmelCase_ : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCAmelCase_ : Optional[int] = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCAmelCase_ : List[Any] = self.default_image_processor lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : int = image_processor(images=_lowerCAmelCase ,return_tensors="tf" ) # forward pass lowerCAmelCase_ : Dict = model(**_lowerCAmelCase ,training=_lowerCAmelCase ) # verify the logits lowerCAmelCase_ : Any = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCAmelCase_ : Any = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCAmelCase_ : List[Any] = self.default_image_processor lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=_lowerCAmelCase ,return_tensors="tf" ) # forward pass lowerCAmelCase_ : Dict = model(**_lowerCAmelCase ,training=_lowerCAmelCase ) # verify the logits lowerCAmelCase_ : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,_lowerCAmelCase ) lowerCAmelCase_ : Dict = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,_lowerCAmelCase ,atol=1e-4 ) )
709
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
0
'''simple docstring''' def UpperCamelCase ( snake_case__): if len(snake_case_) <= 1: return [tuple(snake_case_)] lowerCAmelCase_ : str = [] def generate(snake_case__ , snake_case__): if k == 1: res.append(tuple(arr[:])) return generate(k - 1 , snake_case_) for i in range(k - 1): if k % 2 == 0: # k is even lowerCAmelCase_ : Optional[Any] = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase_ : Dict = arr[k - 1], arr[0] generate(k - 1 , snake_case_) generate(len(snake_case_) , snake_case_) return res if __name__ == "__main__": _lowercase = input('''Enter numbers separated by a comma:\n''').strip() _lowercase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
710
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCamelCase ( snake_case__): return EnvironmentCommand() def UpperCamelCase ( snake_case__): return EnvironmentCommand(args.accelerate_config_file) class __snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = parser.add_parser("env" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( "--accelerate-config_file" ,default=UpperCamelCase__ ,help="The accelerate config file to use for the default values in the launching script." ,) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self : List[Any] ,lowerCAmelCase__ : Tuple ,*lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = accelerate_config_file def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' lowerCAmelCase_ : Any = '''not installed''' if is_safetensors_available(): import safetensors lowerCAmelCase_ : str = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors lowerCAmelCase_ : int = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' lowerCAmelCase_ : List[Any] = '''not installed''' lowerCAmelCase_ : Union[str, Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file lowerCAmelCase_ : Union[str, Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): lowerCAmelCase_ : Dict = load_config_from_file(self._accelerate_config_file ).to_dict() lowerCAmelCase_ : Optional[Any] = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ ,UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) lowerCAmelCase_ : List[str] = '''not installed''' lowerCAmelCase_ : List[str] = '''NA''' if is_torch_available(): import torch lowerCAmelCase_ : Optional[Any] = torch.__version__ lowerCAmelCase_ : List[str] = torch.cuda.is_available() lowerCAmelCase_ : int = '''not installed''' lowerCAmelCase_ : str = '''NA''' if is_tf_available(): import tensorflow as tf lowerCAmelCase_ : Dict = tf.__version__ try: # deprecated in v2.1 lowerCAmelCase_ : List[str] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool lowerCAmelCase_ : str = bool(tf.config.list_physical_devices("GPU" ) ) lowerCAmelCase_ : int = '''not installed''' lowerCAmelCase_ : Tuple = '''not installed''' lowerCAmelCase_ : str = '''not installed''' lowerCAmelCase_ : Optional[int] = '''NA''' if is_flax_available(): import flax import jax import jaxlib lowerCAmelCase_ : Optional[Any] = flax.__version__ lowerCAmelCase_ : int = jax.__version__ lowerCAmelCase_ : Any = jaxlib.__version__ lowerCAmelCase_ : List[Any] = jax.lib.xla_bridge.get_backend().platform lowerCAmelCase_ : Tuple = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f'''{safetensors_version}''', '''Accelerate version''': f'''{accelerate_version}''', '''Accelerate config''': f'''{accelerate_config_str}''', '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''Tensorflow version (GPU?)''': f'''{tf_version} ({tf_cuda_available})''', '''Flax version (CPU?/GPU?/TPU?)''': f'''{flax_version} ({jax_backend})''', '''Jax version''': f'''{jax_version}''', '''JaxLib version''': f'''{jaxlib_version}''', '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
711
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowercase = '''pt''' elif is_tf_available(): _lowercase = '''tf''' else: _lowercase = '''jax''' class __snake_case ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ByTaTokenizer UpperCamelCase_ = False def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' super().setUp() lowerCAmelCase_ : Dict = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def UpperCAmelCase_ ( self : Dict ,**lowerCAmelCase__ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : Dict=20 ,lowerCAmelCase__ : List[Any]=5 ) -> Tuple[str, list]: '''simple docstring''' lowerCAmelCase_ : List[Any] = [] for i in range(len(_lowerCamelCase ) ): try: lowerCAmelCase_ : List[Any] = tokenizer.decode([i] ,clean_up_tokenization_spaces=_lowerCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ : List[Any] = list(filter(lambda lowerCAmelCase__ : re.match(R"^[ a-zA-Z]+$" ,t[1] ) ,_lowerCamelCase ) ) lowerCAmelCase_ : Optional[int] = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] ,add_special_tokens=_lowerCamelCase ) ,_lowerCamelCase ) ) if max_length is not None and len(_lowerCamelCase ) > max_length: lowerCAmelCase_ : Union[str, Any] = toks[:max_length] if min_length is not None and len(_lowerCamelCase ) < min_length and len(_lowerCamelCase ) > 0: while len(_lowerCamelCase ) < min_length: lowerCAmelCase_ : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ : Tuple = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ : Optional[Any] = tokenizer.decode(_lowerCamelCase ,clean_up_tokenization_spaces=_lowerCamelCase ) if " " not in output_txt and len(_lowerCamelCase ) > 1: lowerCAmelCase_ : int = ( tokenizer.decode([toks_ids[0]] ,clean_up_tokenization_spaces=_lowerCamelCase ) + " " + tokenizer.decode(toks_ids[1:] ,clean_up_tokenization_spaces=_lowerCamelCase ) ) if with_prefix_space: lowerCAmelCase_ : Union[str, Any] = " " + output_txt lowerCAmelCase_ : Optional[int] = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) return output_txt, output_ids def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = self.ta_base_tokenizer lowerCAmelCase_ : Optional[int] = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowerCAmelCase_ : int = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] ,batch_without_eos_added["input_ids"] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.ta_base_tokenizer lowerCAmelCase_ : List[str] = "Unicode €." lowerCAmelCase_ : Tuple = tokenizer(_lowerCamelCase ) lowerCAmelCase_ : Dict = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["input_ids"] ,_lowerCamelCase ) # decoding lowerCAmelCase_ : Tuple = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,"Unicode €.</s>" ) lowerCAmelCase_ : Tuple = tokenizer("e è é ê ë" ) lowerCAmelCase_ : Union[str, Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["input_ids"] ,_lowerCamelCase ) # decoding lowerCAmelCase_ : List[str] = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,"e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) ,"e è é ê ë</s>" ) def UpperCAmelCase_ ( self : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.ta_base_tokenizer lowerCAmelCase_ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowerCAmelCase_ : List[str] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on lowerCAmelCase_ : int = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) if FRAMEWORK != "jax": lowerCAmelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ : Tuple = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 37) ,batch.input_ids.shape ) self.assertEqual((2, 37) ,batch.attention_mask.shape ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.ta_base_tokenizer lowerCAmelCase_ : Optional[Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCAmelCase_ : Optional[Any] = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors=_lowerCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" ,_lowerCamelCase ) self.assertIn("attention_mask" ,_lowerCamelCase ) self.assertNotIn("decoder_input_ids" ,_lowerCamelCase ) self.assertNotIn("decoder_attention_mask" ,_lowerCamelCase ) def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = self.ta_base_tokenizer lowerCAmelCase_ : Any = [ "Summary of the text.", "Another summary.", ] lowerCAmelCase_ : str = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding="max_length" ,truncation=_lowerCamelCase ,return_tensors=_lowerCamelCase ) self.assertEqual(32 ,targets["input_ids"].shape[1] ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = self.ta_base_tokenizer lowerCAmelCase_ : Dict = ["A long paragraph for summarization. </s>"] lowerCAmelCase_ : Tuple = ["Summary of the text. </s>"] # fmt: off lowerCAmelCase_ : Tuple = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] lowerCAmelCase_ : str = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on lowerCAmelCase_ : Optional[int] = tokenizer(_lowerCamelCase ,text_target=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,batch["input_ids"][0] ) self.assertEqual(_lowerCamelCase ,batch["labels"][0] ) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test lowerCAmelCase_ : List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : str = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = " He is very happy, UNwant\u00E9d,running" lowerCAmelCase_ : List[Any] = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCAmelCase_ : List[Any] = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ : List[str] = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) lowerCAmelCase_ : Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ : Optional[Any] = tempfile.mkdtemp() lowerCAmelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowerCAmelCase_ : List[Any] = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCAmelCase_ : int = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ : Tuple = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn("new_additional_special_token" ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) lowerCAmelCase_ : Any = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' lowerCAmelCase_ : Any = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,"special_tokens_map.json" ) ,encoding="utf-8" ) as json_file: lowerCAmelCase_ : List[Any] = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,"tokenizer_config.json" ) ,encoding="utf-8" ) as json_file: lowerCAmelCase_ : List[str] = json.load(_lowerCamelCase ) lowerCAmelCase_ : List[str] = [f'''<extra_id_{i}>''' for i in range(1_25 )] lowerCAmelCase_ : str = added_tokens_extra_ids + [ "an_additional_special_token" ] lowerCAmelCase_ : Dict = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_lowerCamelCase ,"special_tokens_map.json" ) ,"w" ,encoding="utf-8" ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,"tokenizer_config.json" ) ,"w" ,encoding="utf-8" ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ : Tuple = tokenizer_class.from_pretrained( _lowerCamelCase ,) self.assertIn( "an_additional_special_token" ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) ,) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ : Any = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" ,lstrip=_lowerCamelCase )] lowerCAmelCase_ : Any = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,) self.assertIn("a_new_additional_special_token" ,tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] ,tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) ,) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) lowerCAmelCase_ : Tuple = tokenizer_class.from_pretrained(_lowerCamelCase ) self.assertTrue(tokenizer.decode([2_55] ) == "" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = self.get_tokenizers(fast=_lowerCamelCase ,do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Optional[int] = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowerCAmelCase_ : List[str] = tokenizer.convert_tokens_to_string(_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Optional[int] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens( _lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + "_id" ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + "_id" ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + "_id" ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + "_id" ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,"additional_special_tokens_ids" ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,"additional_special_tokens" ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,"additional_special_tokens_ids" ) ,[] ) setattr(_lowerCamelCase ,"additional_special_tokens_ids" ,[token_id_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase ,"additional_special_tokens" ) ,[token_to_test_setters] ) self.assertListEqual(getattr(_lowerCamelCase ,"additional_special_tokens_ids" ) ,[token_id_to_test_setters] )
712
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
0
def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Dict = "" for i in table: res += inp[i - 1] return res def UpperCamelCase ( snake_case__): return data[1:] + data[0] def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Union[str, Any] = "" for i in range(len(__snake_case)): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : int = int("0b" + data[0] + data[-1] , 2) lowerCAmelCase_ : Union[str, Any] = int("0b" + data[1:3] , 2) return bin(s[row][col])[2:] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = message[:4] lowerCAmelCase_ : int = message[4:] lowerCAmelCase_ : int = apply_table(__snake_case , __snake_case) lowerCAmelCase_ : Union[str, Any] = xor(__snake_case , __snake_case) lowerCAmelCase_ : Tuple = apply_sbox(__snake_case , temp[:4]) # noqa: E741 lowerCAmelCase_ : List[str] = apply_sbox(__snake_case , temp[4:]) lowerCAmelCase_ : int = "0" * (2 - len(__snake_case)) + l # noqa: E741 lowerCAmelCase_ : int = "0" * (2 - len(__snake_case)) + r lowerCAmelCase_ : Optional[Any] = apply_table(l + r , __snake_case) lowerCAmelCase_ : Tuple = xor(__snake_case , __snake_case) return temp + right if __name__ == "__main__": _lowercase = input('''Enter 10 bit key: ''') _lowercase = input('''Enter 8 bit message: ''') _lowercase = [6, 3, 7, 4, 8, 5, 10, 9] _lowercase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _lowercase = [2, 4, 3, 1] _lowercase = [2, 6, 3, 1, 4, 8, 5, 7] _lowercase = [4, 1, 3, 5, 7, 2, 8, 6] _lowercase = [4, 1, 2, 3, 2, 3, 4, 1] _lowercase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _lowercase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _lowercase = apply_table(key, paa_table) _lowercase = temp[:5] _lowercase = temp[5:] _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = apply_table(left + right, pa_table) _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = apply_table(left + right, pa_table) # encryption _lowercase = apply_table(message, IP) _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = temp[4:] + temp[:4] _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption _lowercase = apply_table(CT, IP) _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = temp[4:] + temp[:4] _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
713
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : str ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : List[str]=7 ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : List[Any]=18 ,lowerCAmelCase__ : int=30 ,lowerCAmelCase__ : Union[str, Any]=4_00 ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : List[str]=None ,): '''simple docstring''' lowerCAmelCase_ : int = size if size is not None else {"shortest_edge": 20} lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : Union[str, Any] = min_resolution lowerCAmelCase_ : Any = max_resolution lowerCAmelCase_ : Union[str, Any] = do_resize lowerCAmelCase_ : int = size lowerCAmelCase_ : Any = do_center_crop lowerCAmelCase_ : int = crop_size def UpperCAmelCase_ ( self : Dict ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __snake_case ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MobileNetVaImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : Any ): '''simple docstring''' lowerCAmelCase_ : List[Any] = MobileNetVaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : str ): '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A ,"do_resize" ) ) self.assertTrue(hasattr(__A ,"size" ) ) self.assertTrue(hasattr(__A ,"do_center_crop" ) ) self.assertTrue(hasattr(__A ,"crop_size" ) ) def UpperCAmelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) lowerCAmelCase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCAmelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCAmelCase_ ( self : Any ): '''simple docstring''' lowerCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A ,Image.Image ) # Test not batched input lowerCAmelCase_ : Dict = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : Union[str, Any] = image_processing(__A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCAmelCase_ ( self : int ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A ,np.ndarray ) # Test not batched input lowerCAmelCase_ : Dict = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : int = image_processing(__A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCAmelCase_ ( self : str ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A ,torch.Tensor ) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched lowerCAmelCase_ : List[Any] = image_processing(__A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def UpperCamelCase ( snake_case__): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2] , unknown_args[1::2])} def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=UpperCamelCase__) lowerCAmelCase_ : Optional[int] = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCamelCase__) EnvironmentCommand.register_subcommand(UpperCamelCase__) TestCommand.register_subcommand(UpperCamelCase__) RunBeamCommand.register_subcommand(UpperCamelCase__) DummyDataCommand.register_subcommand(UpperCamelCase__) # Parse args lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = parser.parse_known_args() if not hasattr(UpperCamelCase__ , "func"): parser.print_help() exit(1) lowerCAmelCase_ : Union[str, Any] = parse_unknown_args(UpperCamelCase__) # Run lowerCAmelCase_ : List[str] = args.func(UpperCamelCase__ , **UpperCamelCase__) service.run() if __name__ == "__main__": main()
715
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
0
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : int ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = value lowerCAmelCase_ : Dict = None # Added in order to delete a node easier lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Tuple = None def __repr__( self : str ) -> Any: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = root def __str__( self : Union[str, Any] ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> Optional[Any]: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(__SCREAMING_SNAKE_CASE ): # If it is the right children lowerCAmelCase_ : Union[str, Any] = new_children else: lowerCAmelCase_ : Optional[int] = new_children else: lowerCAmelCase_ : Tuple = new_children def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node ) -> List[str]: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[Any] ) -> str: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = Node(__SCREAMING_SNAKE_CASE ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : str = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : Optional[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : str = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : int = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Optional[int] = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[Any] = parent_node def UpperCAmelCase_ ( self : List[str] ,*lowerCAmelCase__ : str ) -> int: '''simple docstring''' for value in values: self.__insert(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ) -> int: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : List[str] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Dict = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None = None ) -> Tuple: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : int = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : str = node.right return node def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node | None = None ) -> List[Any]: '''simple docstring''' if node is None: lowerCAmelCase_ : Any = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Dict = node.left return node def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = self.search(__SCREAMING_SNAKE_CASE ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) elif node.left is None: # Has only right children self.__reassign_nodes(__SCREAMING_SNAKE_CASE ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__SCREAMING_SNAKE_CASE ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Dict = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Node | None ) -> Any: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Dict=None ) -> List[str]: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> Any: '''simple docstring''' if node: self.inorder(__SCREAMING_SNAKE_CASE ,node.left ) arr.append(node.value ) self.inorder(__SCREAMING_SNAKE_CASE ,node.right ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = [] self.inorder(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = [] if curr_node is not None: lowerCAmelCase_ : str = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : List[Any] = BinarySearchTree() for i in testlist: t.insert(_UpperCAmelCase) # Prints all the elements of the list in order traversal print(_UpperCAmelCase) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn\'t exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn\'t exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(_UpperCAmelCase) print(_UpperCAmelCase) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
716
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
0
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Any = list(range(len(snake_case__))) lowerCAmelCase_ : Optional[int] = [v / w for v, w in zip(snake_case__ , snake_case__)] index.sort(key=lambda snake_case__: ratio[i] , reverse=snake_case__) lowerCAmelCase_ : float = 0 lowerCAmelCase_ : list[float] = [0] * len(snake_case__) for i in index: if weight[i] <= capacity: lowerCAmelCase_ : Union[str, Any] = 1 max_value += value[i] capacity -= weight[i] else: lowerCAmelCase_ : Optional[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
717
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
import math import flax.linen as nn import jax.numpy as jnp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = 1 , snake_case__ = 1 , snake_case__ = 1.0e4 , snake_case__ = False , snake_case__ = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' lowerCAmelCase_ : List[str] = float(embedding_dim // 2) lowerCAmelCase_ : int = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift) lowerCAmelCase_ : str = min_timescale * jnp.exp(jnp.arange(_lowercase , dtype=jnp.floataa) * -log_timescale_increment) lowerCAmelCase_ : Optional[int] = jnp.expand_dims(_lowercase , 1) * jnp.expand_dims(_lowercase , 0) # scale embeddings lowerCAmelCase_ : str = scale * emb if flip_sin_to_cos: lowerCAmelCase_ : Optional[int] = jnp.concatenate([jnp.cos(_lowercase), jnp.sin(_lowercase)] , axis=1) else: lowerCAmelCase_ : str = jnp.concatenate([jnp.sin(_lowercase), jnp.cos(_lowercase)] , axis=1) lowerCAmelCase_ : Any = jnp.reshape(_lowercase , [jnp.shape(_lowercase)[0], embedding_dim]) return signal class __snake_case ( nn.Module ): """simple docstring""" UpperCamelCase_ = 3_2 UpperCamelCase_ = jnp.floataa @nn.compact def __call__( self : List[Any] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = nn.Dense(self.time_embed_dim ,dtype=self.dtype ,name="linear_1" )(__A ) lowerCAmelCase_ : Dict = nn.silu(__A ) lowerCAmelCase_ : Union[str, Any] = nn.Dense(self.time_embed_dim ,dtype=self.dtype ,name="linear_2" )(__A ) return temb class __snake_case ( nn.Module ): """simple docstring""" UpperCamelCase_ = 3_2 UpperCamelCase_ = False UpperCamelCase_ = 1 @nn.compact def __call__( self : Union[str, Any] ,lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' return get_sinusoidal_embeddings( __A ,embedding_dim=self.dim ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.freq_shift )
718
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowercase = logging.get_logger(__name__) _lowercase = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) _lowercase = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowercase = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) _lowercase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) _lowercase = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) _lowercase = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) _lowercase = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) _lowercase = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) _lowercase = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) _lowercase = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) _lowercase = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) _lowercase = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) _lowercase = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) _lowercase = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowercase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowercase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_MAPPING _lowercase = auto_class_update(FlaxAutoModel) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowercase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowercase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowercase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowercase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowercase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowercase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowercase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowercase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class __snake_case ( _BaseAutoModelClass ): """simple docstring""" UpperCamelCase_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowercase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
719
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_activation("swish" ) self.assertIsInstance(A__ ,nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = get_activation("silu" ) self.assertIsInstance(A__ ,nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = get_activation("mish" ) self.assertIsInstance(A__ ,nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = get_activation("gelu" ) self.assertIsInstance(A__ ,nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 ,dtype=torch.floataa ) ).item() ,0 ) self.assertNotEqual(act(torch.tensor(-1 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(0 ,dtype=torch.floataa ) ).item() ,0 ) self.assertEqual(act(torch.tensor(20 ,dtype=torch.floataa ) ).item() ,20 )
720
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class __snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = 'lxmert' UpperCamelCase_ = {} def __init__( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any]=3_05_22 ,lowerCAmelCase__ : Any=7_68 ,lowerCAmelCase__ : Union[str, Any]=12 ,lowerCAmelCase__ : Optional[Any]=95_00 ,lowerCAmelCase__ : Optional[Any]=16_00 ,lowerCAmelCase__ : Optional[Any]=4_00 ,lowerCAmelCase__ : str=30_72 ,lowerCAmelCase__ : List[Any]="gelu" ,lowerCAmelCase__ : int=0.1 ,lowerCAmelCase__ : Optional[int]=0.1 ,lowerCAmelCase__ : Optional[int]=5_12 ,lowerCAmelCase__ : str=2 ,lowerCAmelCase__ : Tuple=0.02 ,lowerCAmelCase__ : int=1e-1_2 ,lowerCAmelCase__ : Optional[int]=9 ,lowerCAmelCase__ : List[Any]=5 ,lowerCAmelCase__ : Any=5 ,lowerCAmelCase__ : Optional[int]=20_48 ,lowerCAmelCase__ : Tuple=4 ,lowerCAmelCase__ : str=6.67 ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Any=True ,**lowerCAmelCase__ : List[str] ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Union[str, Any] = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Tuple = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Tuple = num_qa_labels lowerCAmelCase_ : List[Any] = num_object_labels lowerCAmelCase_ : Tuple = num_attr_labels lowerCAmelCase_ : List[Any] = l_layers lowerCAmelCase_ : Tuple = x_layers lowerCAmelCase_ : Union[str, Any] = r_layers lowerCAmelCase_ : int = visual_feat_dim lowerCAmelCase_ : List[Any] = visual_pos_dim lowerCAmelCase_ : Tuple = visual_loss_normalizer lowerCAmelCase_ : Tuple = task_matched lowerCAmelCase_ : int = task_mask_lm lowerCAmelCase_ : List[Any] = task_obj_predict lowerCAmelCase_ : List[str] = task_qa lowerCAmelCase_ : str = visual_obj_loss lowerCAmelCase_ : Dict = visual_attr_loss lowerCAmelCase_ : Dict = visual_feat_loss lowerCAmelCase_ : List[Any] = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**_a )
721
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = JukeboxTokenizer UpperCamelCase_ = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' import torch lowerCAmelCase_ : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) lowerCAmelCase_ : int = tokenizer(**self.metas )["input_ids"] # fmt: off lowerCAmelCase_ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' import torch lowerCAmelCase_ : int = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) lowerCAmelCase_ : List[str] = tokenizer(**self.metas )["input_ids"] # fmt: off lowerCAmelCase_ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
700
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _lowercase = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case_ ): """simple docstring""" UpperCamelCase_ = """maskformer""" UpperCamelCase_ = {"""hidden_size""": """mask_feature_size"""} UpperCamelCase_ = ["""resnet""", """swin"""] UpperCamelCase_ = ["""detr"""] def __init__( self : List[Any] ,lowerCAmelCase__ : List[str] = 2_56 ,lowerCAmelCase__ : Optional[int] = 2_56 ,lowerCAmelCase__ : Tuple = 0.1 ,lowerCAmelCase__ : Dict = False ,lowerCAmelCase__ : List[Any] = None ,lowerCAmelCase__ : Dict = None ,lowerCAmelCase__ : Tuple = 0.02 ,lowerCAmelCase__ : Any = 1.0 ,lowerCAmelCase__ : str = 1.0 ,lowerCAmelCase__ : int = 1.0 ,lowerCAmelCase__ : Any = 20.0 ,lowerCAmelCase__ : List[str] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowerCAmelCase_ : Optional[int] = SwinConfig( image_size=3_84 ,in_channels=3 ,patch_size=4 ,embed_dim=1_28 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=["stage1", "stage2", "stage3", "stage4"] ,) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = backbone_config.pop("model_type" ) lowerCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : Optional[Any] = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowerCAmelCase_ : Optional[Any] = DetrConfig() else: # verify that the decoder is supported lowerCAmelCase_ : Union[str, Any] = ( decoder_config.pop("model_type" ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : List[Any] = CONFIG_MAPPING[decoder_type] lowerCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = backbone_config lowerCAmelCase_ : str = decoder_config # main feature dimension for the model lowerCAmelCase_ : Dict = fpn_feature_size lowerCAmelCase_ : Dict = mask_feature_size # initializer lowerCAmelCase_ : Dict = init_std lowerCAmelCase_ : Tuple = init_xavier_std # Hungarian matcher && loss lowerCAmelCase_ : Dict = cross_entropy_weight lowerCAmelCase_ : List[str] = dice_weight lowerCAmelCase_ : Dict = mask_weight lowerCAmelCase_ : Tuple = use_auxiliary_loss lowerCAmelCase_ : str = no_object_weight lowerCAmelCase_ : Union[str, Any] = output_auxiliary_logits lowerCAmelCase_ : List[str] = self.decoder_config.encoder_attention_heads lowerCAmelCase_ : int = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def UpperCAmelCase_ ( cls : int ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[Any] ,**lowerCAmelCase__ : int ) -> int: '''simple docstring''' return cls( backbone_config=lowerCAmelCase__ ,decoder_config=lowerCAmelCase__ ,**lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : List[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Dict = self.decoder_config.to_dict() lowerCAmelCase_ : Tuple = self.__class__.model_type return output
701
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
0
import argparse from collections import defaultdict import yaml _lowercase = '''docs/source/en/_toctree.yml''' def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = defaultdict(SCREAMING_SNAKE_CASE_) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase_ : str = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ : Any = [] for duplicate_key in duplicates: lowerCAmelCase_ : Any = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key}) if len(SCREAMING_SNAKE_CASE_) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others.") # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE_ , key=lambda snake_case__: s["title"].lower()) def UpperCamelCase ( snake_case__=False): with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8") as f: lowerCAmelCase_ : List[str] = yaml.safe_load(f.read()) # Get to the API doc lowerCAmelCase_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ : Dict = content[api_idx]["sections"] # Then to the model doc lowerCAmelCase_ : int = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase_ : List[Any] = api_doc[model_idx]["sections"] lowerCAmelCase_ : Union[str, Any] = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE_) if "sections" in section] lowerCAmelCase_ : Tuple = False for idx, modality_doc in modalities_docs: lowerCAmelCase_ : str = modality_doc["sections"] lowerCAmelCase_ : int = clean_model_doc_toc(SCREAMING_SNAKE_CASE_) if old_modality_doc != new_modality_doc: lowerCAmelCase_ : List[Any] = True if overwrite: lowerCAmelCase_ : Optional[int] = new_modality_doc if diff: if overwrite: lowerCAmelCase_ : Optional[int] = model_doc lowerCAmelCase_ : List[Any] = api_doc with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8") as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE_ , allow_unicode=SCREAMING_SNAKE_CASE_)) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this.") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_model_doc(args.fix_and_overwrite)
702
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
0
# Imports import numpy as np class __snake_case : """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : str=None ) -> str: '''simple docstring''' self.set_matricies(red=lowerCAmelCase__ ,green=lowerCAmelCase__ ,blue=lowerCAmelCase__ ,red_edge=lowerCAmelCase__ ,nir=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : str=None ,lowerCAmelCase__ : List[Any]=None ) -> Optional[Any]: '''simple docstring''' if red is not None: lowerCAmelCase_ : int = red if green is not None: lowerCAmelCase_ : Optional[int] = green if blue is not None: lowerCAmelCase_ : Optional[Any] = blue if red_edge is not None: lowerCAmelCase_ : int = red_edge if nir is not None: lowerCAmelCase_ : List[str] = nir return True def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Optional[int]="" ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Dict=None ) -> str: '''simple docstring''' self.set_matricies(red=lowerCAmelCase__ ,green=lowerCAmelCase__ ,blue=lowerCAmelCase__ ,red_edge=lowerCAmelCase__ ,nir=lowerCAmelCase__ ) lowerCAmelCase_ : Any = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Union[str, Any]=0.08 ,lowerCAmelCase__ : str=1.22 ,lowerCAmelCase__ : Any=0.03 ) -> Any: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' return (self.nir / self.green) - 1 def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' return (self.nir / self.redEdge) - 1 def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' return (self.red - self.blue) / self.red def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' return self.nir - self.green def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int=0.16 ) -> Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[str]=0.5 ) -> Optional[int]: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase_ ( self : str ) -> List[Any]: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Optional[int]=None ) -> List[Any]: '''simple docstring''' return (self.nir - b) / (a * self.red) def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.nir / self.red def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase_ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCAmelCase_ : List[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.nir / self.red def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __snake_case ( __A , __A , __A ): """simple docstring""" UpperCamelCase_ = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : List[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Union[str, Any] = None ,lowerCAmelCase__ : List[Any] = 5_02_57 ,lowerCAmelCase__ : Tuple = 10_24 ,lowerCAmelCase__ : List[Any] = 7_68 ,lowerCAmelCase__ : Dict = 12 ,lowerCAmelCase__ : Tuple = 12 ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : str = "gelu_new" ,lowerCAmelCase__ : Optional[Any] = 0.1 ,lowerCAmelCase__ : Tuple = 0.1 ,lowerCAmelCase__ : Optional[int] = 0.1 ,lowerCAmelCase__ : Tuple = 1e-5 ,lowerCAmelCase__ : int = 0.02 ,lowerCAmelCase__ : Any = True ,lowerCAmelCase__ : List[str] = True ,lowerCAmelCase__ : Optional[int] = False ,lowerCAmelCase__ : Tuple = False ,) -> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Tuple = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) lowerCAmelCase_ : Optional[Any] = prefix_inner_dim lowerCAmelCase_ : Any = prefix_hidden_dim lowerCAmelCase_ : Any = ( nn.Linear(self.prefix_inner_dim ,self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ : List[Any] = ( nn.Linear(self.prefix_hidden_dim ,lowerCAmelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ : str = GPTaConfig( vocab_size=lowerCAmelCase__ ,n_positions=lowerCAmelCase__ ,n_embd=lowerCAmelCase__ ,n_layer=lowerCAmelCase__ ,n_head=lowerCAmelCase__ ,n_inner=lowerCAmelCase__ ,activation_function=lowerCAmelCase__ ,resid_pdrop=lowerCAmelCase__ ,embd_pdrop=lowerCAmelCase__ ,attn_pdrop=lowerCAmelCase__ ,layer_norm_epsilon=lowerCAmelCase__ ,initializer_range=lowerCAmelCase__ ,scale_attn_weights=lowerCAmelCase__ ,use_cache=lowerCAmelCase__ ,scale_attn_by_inverse_layer_idx=lowerCAmelCase__ ,reorder_and_upcast_attn=lowerCAmelCase__ ,) lowerCAmelCase_ : List[Any] = GPTaLMHeadModel(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str] = None ,lowerCAmelCase__ : List[str] = None ,) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = self.transformer.transformer.wte(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.encode_prefix(lowerCAmelCase__ ) lowerCAmelCase_ : str = self.decode_prefix(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = torch.cat((prefix_embeds, embedding_text) ,dim=1 ) if labels is not None: lowerCAmelCase_ : Tuple = self.get_dummy_token(input_ids.shape[0] ,input_ids.device ) lowerCAmelCase_ : Optional[Any] = torch.cat((dummy_token, input_ids) ,dim=1 ) lowerCAmelCase_ : List[str] = self.transformer(inputs_embeds=lowerCAmelCase__ ,labels=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' return torch.zeros(lowerCAmelCase__ ,self.prefix_length ,dtype=torch.intaa ,device=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' return self.encode_prefix(lowerCAmelCase__ ) @torch.no_grad() def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = torch.split(lowerCAmelCase__ ,1 ,dim=0 ) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[Any] = [] for feature in features: lowerCAmelCase_ : Optional[int] = self.decode_prefix(feature.to(lowerCAmelCase__ ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase_ : Dict = self.generate_beam( input_embeds=lowerCAmelCase__ ,device=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase_ : Any = torch.stack(lowerCAmelCase__ ) lowerCAmelCase_ : int = torch.stack(lowerCAmelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[Any] = 5 ,lowerCAmelCase__ : Union[str, Any] = 67 ,lowerCAmelCase__ : Optional[int] = 1.0 ,lowerCAmelCase__ : List[Any] = None ,) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = eos_token_id lowerCAmelCase_ : Optional[Any] = None lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Union[str, Any] = torch.ones(lowerCAmelCase__ ,device=lowerCAmelCase__ ,dtype=torch.int ) lowerCAmelCase_ : int = torch.zeros(lowerCAmelCase__ ,device=lowerCAmelCase__ ,dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase_ : Optional[Any] = input_embeds else: lowerCAmelCase_ : Dict = self.transformer.transformer.wte(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = self.transformer(inputs_embeds=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = outputs.logits lowerCAmelCase_ : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase_ : List[str] = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase_ : int = logits.topk(lowerCAmelCase__ ,-1 ) lowerCAmelCase_ : Any = generated.expand(lowerCAmelCase__ ,*generated.shape[1:] ) lowerCAmelCase_ : Tuple = next_tokens.permute(1 ,0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase_ : Tuple = next_tokens else: lowerCAmelCase_ : int = tokens.expand(lowerCAmelCase__ ,*tokens.shape[1:] ) lowerCAmelCase_ : List[Any] = torch.cat((tokens, next_tokens) ,dim=1 ) else: lowerCAmelCase_ : Tuple = -float(np.inf ) lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Any = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase_ : Union[str, Any] = scores_sum / seq_lengths[:, None] lowerCAmelCase_ : List[Any] = scores_sum_average.view(-1 ).topk(lowerCAmelCase__ ,-1 ) lowerCAmelCase_ : Optional[Any] = next_tokens // scores_sum.shape[1] lowerCAmelCase_ : str = seq_lengths[next_tokens_source] lowerCAmelCase_ : List[str] = next_tokens % scores_sum.shape[1] lowerCAmelCase_ : Dict = next_tokens.unsqueeze(1 ) lowerCAmelCase_ : Dict = tokens[next_tokens_source] lowerCAmelCase_ : int = torch.cat((tokens, next_tokens) ,dim=1 ) lowerCAmelCase_ : Dict = generated[next_tokens_source] lowerCAmelCase_ : Dict = scores_sum_average * seq_lengths lowerCAmelCase_ : str = is_stopped[next_tokens_source] lowerCAmelCase_ : Optional[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] ,1 ,-1 ) lowerCAmelCase_ : Dict = torch.cat((generated, next_token_embed) ,dim=1 ) lowerCAmelCase_ : Optional[int] = is_stopped + next_tokens.eq(lowerCAmelCase__ ).squeeze() if is_stopped.all(): break lowerCAmelCase_ : List[str] = scores / seq_lengths lowerCAmelCase_ : List[str] = scores.argsort(descending=lowerCAmelCase__ ) # tokens tensors are already padded to max_seq_length lowerCAmelCase_ : Union[str, Any] = [tokens[i] for i in order] lowerCAmelCase_ : Union[str, Any] = torch.stack(lowerCAmelCase__ ,dim=0 ) lowerCAmelCase_ : Any = torch.tensor([seq_lengths[i] for i in order] ,dtype=seq_lengths.dtype ) return output_texts, seq_lengths
704
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( __lowercase ): """simple docstring""" UpperCamelCase_ = (DEISMultistepScheduler,) UpperCamelCase_ = (('num_inference_steps', 2_5),) def UpperCAmelCase_ ( self : Tuple ,**lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**_A ) return config def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str=0 ,**lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Any = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Any = kwargs.pop("num_inference_steps" ,_A ) lowerCAmelCase_ : Any = self.dummy_sample lowerCAmelCase_ : Optional[Any] = 0.1 * sample lowerCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config(**_A ) lowerCAmelCase_ : Any = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals lowerCAmelCase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowerCAmelCase_ : str = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals lowerCAmelCase_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ , lowerCAmelCase_ : Any = sample, sample for t in range(_A ,time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase_ : Union[str, Any] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample lowerCAmelCase_ : int = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str=0 ,**lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Tuple = kwargs.pop("num_inference_steps" ,_A ) lowerCAmelCase_ : Optional[int] = self.dummy_sample lowerCAmelCase_ : Dict = 0.1 * sample lowerCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : int = self.get_scheduler_config() lowerCAmelCase_ : str = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) lowerCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Any = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : str = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample lowerCAmelCase_ : List[str] = new_scheduler.step(_A ,_A ,_A ,**_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Any=None ,**lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if scheduler is None: lowerCAmelCase_ : Any = self.scheduler_classes[0] lowerCAmelCase_ : str = self.get_scheduler_config(**_A ) lowerCAmelCase_ : str = scheduler_class(**_A ) lowerCAmelCase_ : Tuple = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config(**_A ) lowerCAmelCase_ : Tuple = scheduler_class(**_A ) lowerCAmelCase_ : int = 10 lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Any = model(_A ,_A ) lowerCAmelCase_ : Dict = scheduler.step(_A ,_A ,_A ).prev_sample return sample def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" ,_A ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : str = self.get_scheduler_config() lowerCAmelCase_ : Optional[Any] = scheduler_class(**_A ) lowerCAmelCase_ : Optional[Any] = self.dummy_sample lowerCAmelCase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A ,"set_timesteps" ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A ,"set_timesteps" ): lowerCAmelCase_ : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase_ : Dict = scheduler.timesteps[5] lowerCAmelCase_ : str = scheduler.timesteps[6] lowerCAmelCase_ : Optional[Any] = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample lowerCAmelCase_ : int = scheduler.step(_A ,_A ,_A ,**_A ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : List[Any] = self.full_loop(scheduler=_A ) lowerCAmelCase_ : str = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 lowerCAmelCase_ : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Any = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Any = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[Any] = self.full_loop(scheduler=_A ) lowerCAmelCase_ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_A ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A ,prediction_type=_A ,sample_max_value=_A ,algorithm_type="deis" ,solver_order=_A ,solver_type=_A ,) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A ,solver_type=_A ,prediction_type=_A ,algorithm_type=_A ,) lowerCAmelCase_ : str = self.full_loop( solver_order=_A ,solver_type=_A ,prediction_type=_A ,algorithm_type=_A ,) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_A ,time_step=0 ) def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.full_loop() lowerCAmelCase_ : str = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase_ : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config(thresholding=_A ,dynamic_thresholding_ratio=0 ) lowerCAmelCase_ : List[Any] = scheduler_class(**_A ) lowerCAmelCase_ : Union[str, Any] = 10 lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(_A ,_A ) lowerCAmelCase_ : int = scheduler.step(_A ,_A ,_A ).prev_sample assert sample.dtype == torch.floataa
705
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = {} state_dict.pop("pixel_mean" , lowerCAmelCase__) state_dict.pop("pixel_std" , lowerCAmelCase__) lowerCAmelCase_ : Any = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase_ : List[str] = key.replace(lowerCAmelCase__ , lowerCAmelCase__) if re.match(lowerCAmelCase__ , lowerCAmelCase__): lowerCAmelCase_ : Tuple = int(re.match(lowerCAmelCase__ , lowerCAmelCase__).group(2)) if layer_nb == 0: lowerCAmelCase_ : Union[str, Any] = key.replace("layers.0" , "proj_in") elif layer_nb == 1: lowerCAmelCase_ : Tuple = key.replace("layers.1" , "layers.0") elif layer_nb == 2: lowerCAmelCase_ : Union[str, Any] = key.replace("layers.2" , "proj_out") lowerCAmelCase_ : Any = value lowerCAmelCase_ : Dict = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__="ybelkada/segment-anything"): lowerCAmelCase_ : Union[str, Any] = hf_hub_download(lowerCAmelCase__ , F'''checkpoints/{model_name}.pth''') if "sam_vit_b" in model_name: lowerCAmelCase_ : List[str] = SamConfig() elif "sam_vit_l" in model_name: lowerCAmelCase_ : Dict = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCAmelCase_ : List[str] = SamConfig( vision_config=lowerCAmelCase__ , ) elif "sam_vit_h" in model_name: lowerCAmelCase_ : List[Any] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCAmelCase_ : int = SamConfig( vision_config=lowerCAmelCase__ , ) lowerCAmelCase_ : List[Any] = torch.load(lowerCAmelCase__ , map_location="cpu") lowerCAmelCase_ : Tuple = replace_keys(lowerCAmelCase__) lowerCAmelCase_ : Union[str, Any] = SamImageProcessor() lowerCAmelCase_ : Optional[Any] = SamProcessor(image_processor=lowerCAmelCase__) lowerCAmelCase_ : Tuple = SamModel(lowerCAmelCase__) hf_model.load_state_dict(lowerCAmelCase__) lowerCAmelCase_ : Tuple = hf_model.to("cuda") lowerCAmelCase_ : str = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCAmelCase_ : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__).raw).convert("RGB") lowerCAmelCase_ : List[Any] = [[[4_00, 6_50]]] lowerCAmelCase_ : Tuple = [[1]] lowerCAmelCase_ : List[Any] = processor(images=np.array(lowerCAmelCase__) , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Any = hf_model(**lowerCAmelCase__) lowerCAmelCase_ : List[Any] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 lowerCAmelCase_ : Union[str, Any] = processor( images=np.array(lowerCAmelCase__) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Any = hf_model(**lowerCAmelCase__) lowerCAmelCase_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 lowerCAmelCase_ : int = ((75, 2_75, 17_25, 8_50),) lowerCAmelCase_ : Any = processor(images=np.array(lowerCAmelCase__) , input_boxes=lowerCAmelCase__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = hf_model(**lowerCAmelCase__) lowerCAmelCase_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. lowerCAmelCase_ : List[Any] = [[[4_00, 6_50], [8_00, 6_50]]] lowerCAmelCase_ : List[str] = [[1, 1]] lowerCAmelCase_ : List[Any] = processor( images=np.array(lowerCAmelCase__) , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , return_tensors="pt").to("cuda") with torch.no_grad(): lowerCAmelCase_ : str = hf_model(**lowerCAmelCase__) lowerCAmelCase_ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": _lowercase = argparse.ArgumentParser() _lowercase = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) _lowercase = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
706
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
0