code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.json'} _A = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _A = {'mgp-str': 27} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_="[GO]" , A_="[GO]" , A_="[s]" , A_="[GO]" , **A_ ) -> int: super().__init__( unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase =json.load(A_ ) __UpperCamelCase ={v: k for k, v in self.vocab.items()} @property def _a ( self ) -> List[Any]: return len(self.vocab ) def _a ( self ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _a ( self , A_ ) -> Dict: __UpperCamelCase =[] for s in text: char_tokens.extend(A_ ) return char_tokens def _a ( self , A_ ) -> Any: return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def _a ( self , A_ ) -> Union[str, Any]: return self.decoder.get(A_ ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
715
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
0
'''simple docstring''' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list ): __UpperCamelCase =0 while len(SCREAMING_SNAKE_CASE__ ) > 1: __UpperCamelCase =0 # Consider two files with minimum cost to be merged for _ in range(2 ): __UpperCamelCase =files.index(min(SCREAMING_SNAKE_CASE__ ) ) temp += files[min_index] files.pop(SCREAMING_SNAKE_CASE__ ) files.append(SCREAMING_SNAKE_CASE__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
716
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['projector.weight'] __UpperCamelCase =downstream_dict['projector.bias'] __UpperCamelCase =downstream_dict['model.post_net.linear.weight'] __UpperCamelCase =downstream_dict['model.post_net.linear.bias'] return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['model.linear.weight'] __UpperCamelCase =downstream_dict['model.linear.bias'] return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['connector.weight'] __UpperCamelCase =downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCamelCase =downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __UpperCamelCase =downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __UpperCamelCase =downstream_dict['objective.W'] return model @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __UpperCamelCase =checkpoint['Downstream'] __UpperCamelCase =UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __UpperCamelCase =convert_classification(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith('ForAudioFrameClassification' ): __UpperCamelCase =convert_diarization(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith('ForXVector' ): __UpperCamelCase =convert_xvector(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __UpperCamelCase =checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
717
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=10_24 ): __UpperCamelCase , __UpperCamelCase =[], [] __UpperCamelCase =list(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase , __UpperCamelCase =sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE__ : str ): return tok(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __UpperCamelCase =new_src + ' ' + src __UpperCamelCase =new_tgt + ' ' + tgt if is_too_big(SCREAMING_SNAKE_CASE__ ) or is_too_big(SCREAMING_SNAKE_CASE__ ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =src, tgt else: # can fit, keep adding __UpperCamelCase , __UpperCamelCase =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) return finished_src, finished_tgt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =Path(SCREAMING_SNAKE_CASE__ ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ["train"]: __UpperCamelCase , __UpperCamelCase =data_dir / F'{split}.source', data_dir / F'{split}.target' __UpperCamelCase =[x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] __UpperCamelCase =[x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] __UpperCamelCase , __UpperCamelCase =pack_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'packed {split} split from {len(SCREAMING_SNAKE_CASE__ )} examples -> {len(SCREAMING_SNAKE_CASE__ )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) for split in ["val", "test"]: __UpperCamelCase , __UpperCamelCase =data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / F'{split}.source' ) shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / F'{split}.target' ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--tok_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=SCREAMING_SNAKE_CASE__ , default=1_28 ) parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--save_path' , type=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =parser.parse_args() __UpperCamelCase =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
718
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
0
from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self ) -> List[str]: # test for the above condition self.test() def _a ( self ) -> Tuple: __UpperCamelCase =0 __UpperCamelCase =False while not completed: if counter == 1: self.reset() __UpperCamelCase =self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.update(A_ ) counter += 1 if counter > 10000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def _a ( self ) -> int: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _a ( self , A_ ) -> Dict: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _a ( self , A_ ) -> Dict: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _a ( self ) -> Optional[Any]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _a ( self ) -> str: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def _a ( self , A_=False ) -> Optional[Any]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> str: super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) __UpperCamelCase =token_ids __UpperCamelCase =len(self.token_ids ) __UpperCamelCase =-1 # the index of the currently fulfilled step __UpperCamelCase =False def _a ( self ) -> Tuple: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def _a ( self , A_ ) -> List[Any]: if not isinstance(A_ , A_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def _a ( self , A_ ) -> int: if not isinstance(A_ , A_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}' ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False if self.does_advance(A_ ): self.fulfilled_idx += 1 __UpperCamelCase =True if self.fulfilled_idx == (self.seqlen - 1): __UpperCamelCase =True __UpperCamelCase =completed else: # failed to make progress. __UpperCamelCase =True self.reset() return stepped, completed, reset def _a ( self ) -> Optional[Any]: __UpperCamelCase =False __UpperCamelCase =0 def _a ( self ) -> str: return self.seqlen - (self.fulfilled_idx + 1) def _a ( self , A_=False ) -> Optional[int]: __UpperCamelCase =PhrasalConstraint(self.token_ids ) if stateful: __UpperCamelCase =self.seqlen __UpperCamelCase =self.fulfilled_idx __UpperCamelCase =self.completed return new_constraint class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=True ) -> Union[str, Any]: __UpperCamelCase =max([len(A_ ) for one in nested_token_ids] ) __UpperCamelCase ={} for token_ids in nested_token_ids: __UpperCamelCase =root for tidx, token_id in enumerate(A_ ): if token_id not in level: __UpperCamelCase ={} __UpperCamelCase =level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f' {nested_token_ids}.' ) __UpperCamelCase =root def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =self.trie for current_token in current_seq: __UpperCamelCase =start[current_token] __UpperCamelCase =list(start.keys() ) return next_tokens def _a ( self , A_ ) -> Tuple: __UpperCamelCase =self.next_tokens(A_ ) return len(A_ ) == 0 def _a ( self , A_ ) -> int: __UpperCamelCase =list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def _a ( self , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =self.count_leaves(A_ ) return len(A_ ) != leaf_count class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> Tuple: super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) __UpperCamelCase =DisjunctiveTrie(A_ ) __UpperCamelCase =nested_token_ids __UpperCamelCase =self.trie.max_height __UpperCamelCase =[] __UpperCamelCase =False def _a ( self ) -> str: __UpperCamelCase =self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def _a ( self , A_ ) -> Union[str, Any]: if not isinstance(A_ , A_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}' ) __UpperCamelCase =self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def _a ( self , A_ ) -> Union[str, Any]: if not isinstance(A_ , A_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}' ) __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False if self.does_advance(A_ ): self.current_seq.append(A_ ) __UpperCamelCase =True else: __UpperCamelCase =True self.reset() __UpperCamelCase =self.trie.reached_leaf(self.current_seq ) __UpperCamelCase =completed return stepped, completed, reset def _a ( self ) -> Any: __UpperCamelCase =False __UpperCamelCase =[] def _a ( self ) -> Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def _a ( self , A_=False ) -> str: __UpperCamelCase =DisjunctiveConstraint(self.token_ids ) if stateful: __UpperCamelCase =self.seqlen __UpperCamelCase =self.current_seq __UpperCamelCase =self.completed return new_constraint class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> Optional[int]: __UpperCamelCase =constraints # max # of steps required to fulfill a given constraint __UpperCamelCase =max([c.seqlen for c in constraints] ) __UpperCamelCase =len(A_ ) __UpperCamelCase =False self.init_state() def _a ( self ) -> Optional[Any]: __UpperCamelCase =[] __UpperCamelCase =None __UpperCamelCase =[constraint.copy(stateful=A_ ) for constraint in self.constraints] def _a ( self ) -> int: __UpperCamelCase =0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def _a ( self ) -> Any: __UpperCamelCase =[] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __UpperCamelCase =constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: __UpperCamelCase =self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def _a ( self , A_ ) -> Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __UpperCamelCase , __UpperCamelCase =self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def _a ( self , A_ ) -> Tuple: if not isinstance(A_ , A_ ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) __UpperCamelCase , __UpperCamelCase =False, False if self.completed: __UpperCamelCase =True __UpperCamelCase =False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) __UpperCamelCase =None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __UpperCamelCase =None if len(self.pending_constraints ) == 0: # we're done! __UpperCamelCase =True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) __UpperCamelCase =None if not complete and stepped: __UpperCamelCase =pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __UpperCamelCase =( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __UpperCamelCase =True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def _a ( self , A_=True ) -> int: __UpperCamelCase =ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __UpperCamelCase =[ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __UpperCamelCase =self.inprogress_constraint.copy(stateful=A_ ) __UpperCamelCase =[constraint.copy() for constraint in self.pending_constraints] return new_state
719
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "big_bird" def __init__( self , A_=50358 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu_new" , A_=0.1 , A_=0.1 , A_=4096 , A_=2 , A_=0.02 , A_=1E-12 , A_=True , A_=0 , A_=1 , A_=2 , A_=66 , A_="block_sparse" , A_=True , A_=False , A_=64 , A_=3 , A_=None , **A_ , ) -> Tuple: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps __UpperCamelCase =use_cache __UpperCamelCase =rescale_embeddings __UpperCamelCase =attention_type __UpperCamelCase =use_bias __UpperCamelCase =block_size __UpperCamelCase =num_random_blocks __UpperCamelCase =classifier_dropout class UpperCAmelCase__ ( A_ ): """simple docstring""" @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
720
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A = get_tests_dir('fixtures') class UpperCAmelCase__ ( unittest.TestCase ): def _a ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __UpperCamelCase =mock.Mock() __UpperCamelCase =500 __UpperCamelCase ={} __UpperCamelCase =HTTPError __UpperCamelCase ={} # Download this model to make sure it's in the cache. __UpperCamelCase =ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: __UpperCamelCase =ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ) -> str: # This test is for deprecated behavior and can be removed in v5 __UpperCamelCase =ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _a ( self ) -> Any: with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCamelCase =AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) __UpperCamelCase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(A_ ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): @classmethod def _a ( cls ) -> List[str]: __UpperCamelCase =TOKEN HfFolder.save_token(A_ ) @classmethod def _a ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='test-image-processor' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def _a ( self ) -> Dict: __UpperCamelCase =ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='valid_org/test-image-processor-org' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def _a ( self ) -> Union[str, Any]: CustomImageProcessor.register_for_auto_class() __UpperCamelCase =CustomImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) __UpperCamelCase =AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
721
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase ( snake_case__): if isinstance(snake_case__ , collections.abc.Iterable): return x return (x, x) @require_flax class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' pass def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : np.ndarray ,lowerCAmelCase__ : np.ndarray ,lowerCAmelCase__ : float ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ ,lowerCAmelCase__ ,f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Union[str, Any]=None ,**lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase__ ,pixel_values=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], config.projection_dim) ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str]=None ,**lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.get_vision_text_model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = {"vision_model": vision_model, "text_model": text_model} lowerCAmelCase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) lowerCAmelCase_ : int = model(input_ids=lowerCAmelCase__ ,pixel_values=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Dict=None ,**lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = {"vision_model": vision_model, "text_model": text_model} lowerCAmelCase_ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = model(input_ids=lowerCAmelCase__ ,pixel_values=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) lowerCAmelCase_ : str = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : int = model(input_ids=lowerCAmelCase__ ,pixel_values=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ) lowerCAmelCase_ : int = after_output[0] lowerCAmelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ ,1e-3 ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict=None ,**lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.get_vision_text_model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = {"vision_model": vision_model, "text_model": text_model} lowerCAmelCase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = model( input_ids=lowerCAmelCase__ ,pixel_values=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,output_attentions=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase_ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase_ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase_ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase_ : Dict = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs lowerCAmelCase_ : Dict = inputs_dict lowerCAmelCase_ : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**lowerCAmelCase__ ).to_tuple() lowerCAmelCase_ : Optional[int] = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ ,pt_output.numpy() ,4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ,from_pt=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ ,pt_output.numpy() ,4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : str = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ,from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): lowerCAmelCase_ : Any = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ ,pt_output_loaded.numpy() ,4e-2 ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = VisionTextDualEncoderModel(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) lowerCAmelCase_ : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = VisionTextDualEncoderModel(lowerCAmelCase__ ) lowerCAmelCase_ : str = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = load_flax_weights_in_pytorch_model(lowerCAmelCase__ ,fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : int = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = config_inputs_dict.pop("vision_config" ) lowerCAmelCase_ : Tuple = config_inputs_dict.pop("text_config" ) lowerCAmelCase_ : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.get_pretrained_model_and_inputs() lowerCAmelCase_ : Dict = model_a(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = model_a(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = after_outputs[0] lowerCAmelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ ,1e-5 ) @require_flax class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=lowerCAmelCase__ ,text_from_pt=lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = 13 lowerCAmelCase_ : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase_ : Any = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowerCAmelCase_ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase_ : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = FlaxViTModel(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = FlaxViTModelTester(self ) lowerCAmelCase_ : Dict = FlaxBertModelTester(self ) lowerCAmelCase_ : Any = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase_ : int = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = vision_config_and_inputs lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=lowerCAmelCase__ ,text_from_pt=lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = 13 lowerCAmelCase_ : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCAmelCase_ : int = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) lowerCAmelCase_ : Optional[int] = random_attention_mask([batch_size, 4] ) lowerCAmelCase_ : List[str] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = FlaxCLIPVisionModel(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = FlaxCLIPVisionModelTester(self ) lowerCAmelCase_ : str = FlaxBertModelTester(self ) lowerCAmelCase_ : List[Any] = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase_ : Optional[int] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ : str = vision_config_and_inputs lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" ,logit_scale_init_value=1.0 ) lowerCAmelCase_ : Dict = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) lowerCAmelCase_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCAmelCase_ : List[str] = processor( text=["una foto di un gatto", "una foto di un cane"] ,images=lowerCAmelCase__ ,padding=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : int = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) lowerCAmelCase_ : Tuple = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,lowerCAmelCase__ ,atol=1e-3 ) )
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if height >= 1: move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__) move_disk(snake_case__ , snake_case__) move_tower(height - 1 , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): print("moving disk from" , snake_case__ , "to" , snake_case__) def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = int(input("Height of hanoi: ").strip()) move_tower(snake_case__ , "A" , "B" , "C") if __name__ == "__main__": main()
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
class __snake_case : """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : list ) -> None: '''simple docstring''' lowerCAmelCase_ : Optional[int] = set_counts lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase__ ) lowerCAmelCase_ : int = len(lowerCAmelCase__ ) lowerCAmelCase_ : str = [1] * num_sets lowerCAmelCase_ : List[str] = list(range(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> bool: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.get_parent(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_parent(lowerCAmelCase__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Any = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase_ : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = src_parent lowerCAmelCase_ : Tuple = self.set_counts[src_parent] lowerCAmelCase_ : Dict = max(self.max_set ,lowerCAmelCase__ ) return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase_ : List[Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _lowercase = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"]) def UpperCamelCase ( snake_case__ , snake_case__): inspect_dataset(snake_case__ , snake_case__) lowerCAmelCase_ : Tuple = path + ".py" assert script_name in os.listdir(snake_case__) assert "__pycache__" not in os.listdir(snake_case__) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning") @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning") @pytest.mark.parametrize("path" , ["accuracy"]) def UpperCamelCase ( snake_case__ , snake_case__): inspect_metric(snake_case__ , snake_case__) lowerCAmelCase_ : Any = path + ".py" assert script_name in os.listdir(snake_case__) assert "__pycache__" not in os.listdir(snake_case__) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = get_dataset_config_info(snake_case__ , config_name=snake_case__) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): with pytest.raises(snake_case__): get_dataset_config_info(snake_case__ , config_name=snake_case__) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = get_dataset_config_names(snake_case__) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = get_dataset_infos(snake_case__) assert list(infos.keys()) == expected_configs lowerCAmelCase_ : Optional[Any] = expected_configs[0] assert expected_config in infos lowerCAmelCase_ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = get_dataset_infos(snake_case__) assert expected_config in infos lowerCAmelCase_ : Tuple = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): with pytest.raises(snake_case__): get_dataset_split_names(snake_case__ , config_name=snake_case__)
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : str ,*lowerCAmelCase__ : Optional[int] ,**lowerCAmelCase__ : Any ) -> None: '''simple docstring''' warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." ,lowerCAmelCase__ ,) super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ )
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'ibert' def __init__( self : str ,lowerCAmelCase__ : Optional[int]=3_05_22 ,lowerCAmelCase__ : Optional[Any]=7_68 ,lowerCAmelCase__ : Any=12 ,lowerCAmelCase__ : List[Any]=12 ,lowerCAmelCase__ : Union[str, Any]=30_72 ,lowerCAmelCase__ : Tuple="gelu" ,lowerCAmelCase__ : List[Any]=0.1 ,lowerCAmelCase__ : int=0.1 ,lowerCAmelCase__ : Optional[Any]=5_12 ,lowerCAmelCase__ : List[str]=2 ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : Optional[Any]=1e-1_2 ,lowerCAmelCase__ : List[str]=1 ,lowerCAmelCase__ : Dict=0 ,lowerCAmelCase__ : Dict=2 ,lowerCAmelCase__ : Union[str, Any]="absolute" ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : Tuple="none" ,**lowerCAmelCase__ : Tuple ,) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Union[str, Any] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : List[Any] = quant_mode lowerCAmelCase_ : Optional[Any] = force_dequant class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : str = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'EncodecFeatureExtractor' UpperCamelCase_ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.feature_extractor lowerCAmelCase_ : List[str] = False def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Union[str, Any]=True ) -> Dict: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase__ ,language=lowerCAmelCase__ ,no_timestamps=lowerCAmelCase__ ) def __call__( self : int ,*lowerCAmelCase__ : int ,**lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("audio" ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = kwargs.pop("sampling_rate" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = kwargs.pop("text" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : Dict = args[0] lowerCAmelCase_ : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase_ : Union[str, Any] = self.tokenizer(lowerCAmelCase__ ,**lowerCAmelCase__ ) if audio is not None: lowerCAmelCase_ : int = self.feature_extractor(lowerCAmelCase__ ,*lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,**lowerCAmelCase__ ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase_ : Union[str, Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase_ : List[Any] = audio_inputs["padding_mask"] return inputs def UpperCAmelCase_ ( self : Dict ,*lowerCAmelCase__ : Optional[Any] ,**lowerCAmelCase__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = kwargs.pop("audio" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = kwargs.pop("padding_mask" ,lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowerCAmelCase_ : int = args[0] lowerCAmelCase_ : Union[str, Any] = args[1:] if audio_values is not None: return self._decode_audio(lowerCAmelCase__ ,padding_mask=lowerCAmelCase__ ) else: return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,*lowerCAmelCase__ : Union[str, Any] ,**lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional = None ) -> List[np.ndarray]: '''simple docstring''' lowerCAmelCase_ : int = to_numpy(lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = audio_values.shape if padding_mask is None: return list(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = to_numpy(lowerCAmelCase__ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase_ : int = seq_len - padding_mask.shape[-1] lowerCAmelCase_ : str = 1 - self.feature_extractor.padding_value lowerCAmelCase_ : str = np.pad(lowerCAmelCase__ ,((0, 0), (0, difference)) ,"constant" ,constant_values=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = audio_values.tolist() for i in range(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase_ : Dict = sliced_audio.reshape(lowerCAmelCase__ ,-1 ) return audio_values
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['pixel_values'] def __init__( self : Optional[int] ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : int = 32 ,lowerCAmelCase__ : Tuple=PILImageResampling.BILINEAR ,lowerCAmelCase__ : bool = True ,**lowerCAmelCase__ : Union[str, Any] ,) -> None: '''simple docstring''' lowerCAmelCase_ : Optional[int] = do_resize lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : Tuple = size_divisor lowerCAmelCase_ : str = resample super().__init__(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : np.ndarray ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[ChannelDimension] = None ,**lowerCAmelCase__ : Optional[int] ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_image_size(lowerCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase_ : Dict = height // size_divisor * size_divisor lowerCAmelCase_ : List[str] = width // size_divisor * size_divisor lowerCAmelCase_ : str = resize(lowerCAmelCase__ ,(new_h, new_w) ,resample=lowerCAmelCase__ ,data_format=lowerCAmelCase__ ,**lowerCAmelCase__ ) return image def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : np.ndarray ,lowerCAmelCase__ : float ,lowerCAmelCase__ : Optional[ChannelDimension] = None ,**lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray: '''simple docstring''' return rescale(image=lowerCAmelCase__ ,scale=lowerCAmelCase__ ,data_format=lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[Union[TensorType, str]] = None ,lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : str = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase_ : Optional[int] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) lowerCAmelCase_ : str = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. lowerCAmelCase_ : str = [to_numpy_array(lowerCAmelCase__ ) for img in images] if do_resize: lowerCAmelCase_ : int = [self.resize(lowerCAmelCase__ ,size_divisor=lowerCAmelCase__ ,resample=lowerCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ : Optional[int] = [self.rescale(lowerCAmelCase__ ,scale=1 / 2_55 ) for image in images] lowerCAmelCase_ : List[str] = [to_channel_dimension_format(lowerCAmelCase__ ,lowerCAmelCase__ ) for image in images] lowerCAmelCase_ : Any = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ ,tensor_type=lowerCAmelCase__ )
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
import numpy as np from PIL import Image def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Any = np.array(snake_case__) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix") lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = 0 # compute the shape of the output matrix lowerCAmelCase_ : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase_ : Optional[Any] = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase_ : str = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[str] = 0 return updated_arr def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = np.array(snake_case__) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix") lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : str = 0 # compute the shape of the output matrix lowerCAmelCase_ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase_ : Dict = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase_ : Optional[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image _lowercase = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase ( snake_case__ = 50_00): lowerCAmelCase_ : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__)] for i, pentagonal_i in enumerate(snake_case__): for j in range(snake_case__ , len(snake_case__)): lowerCAmelCase_ : int = pentagonal_nums[j] lowerCAmelCase_ : str = pentagonal_i + pentagonal_j lowerCAmelCase_ : str = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__) and is_pentagonal(snake_case__): return b return -1 if __name__ == "__main__": print(f"{solution() = }")
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = LxmertTokenizer UpperCamelCase_ = LxmertTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = True def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' super().setUp() lowerCAmelCase_ : Dict = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = "UNwant\u00E9d,running" lowerCAmelCase_ : str = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[7, 4, 5, 10, 8, 9] ) def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[str] = "I was born in 92000, and this is falsé." lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(lowerCAmelCase__ ) lowerCAmelCase_ : str = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ )
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = TextToVideoSDPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. UpperCamelCase_ = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") ,up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") ,cross_attention_dim=32 ,attention_head_dim=4 ,) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=lowerCAmelCase__ ,set_alpha_to_one=lowerCAmelCase__ ,) torch.manual_seed(0 ) lowerCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=5_12 ,) lowerCAmelCase_ : Dict = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : int = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str]=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : int = TextToVideoSDPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "np" lowerCAmelCase_ : Dict = sd_pipe(**lowerCAmelCase__ ).frames lowerCAmelCase_ : int = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) lowerCAmelCase_ : Optional[Any] = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) lowerCAmelCase_ : int = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Optional[Any] = pipe.to("cuda" ) lowerCAmelCase_ : List[str] = "Spiderman is surfing" lowerCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ : Any = pipe(lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=25 ,output_type="pt" ).frames lowerCAmelCase_ : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) lowerCAmelCase_ : Union[str, Any] = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) lowerCAmelCase_ : str = pipe.to("cuda" ) lowerCAmelCase_ : str = "Spiderman is surfing" lowerCAmelCase_ : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe(lowerCAmelCase__ ,generator=lowerCAmelCase__ ,num_inference_steps=2 ,output_type="pt" ).frames lowerCAmelCase_ : Optional[Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
from collections import defaultdict def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = first_str.lower().strip() lowerCAmelCase_ : Optional[Any] = second_str.lower().strip() # Remove whitespace lowerCAmelCase_ : Union[str, Any] = first_str.replace(" " , "") lowerCAmelCase_ : Union[str, Any] = second_str.replace(" " , "") # Strings of different lengths are not anagrams if len(snake_case__) != len(snake_case__): return False # Default values for count should be 0 lowerCAmelCase_ : defaultdict[str, int] = defaultdict(snake_case__) # For each character in input strings, # increment count in the corresponding for i in range(len(snake_case__)): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values()) if __name__ == "__main__": from doctest import testmod testmod() _lowercase = input('''Enter the first string ''').strip() _lowercase = input('''Enter the second string ''').strip() _lowercase = check_anagrams(input_a, input_b) print(f"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = "" for i in table: res += inp[i - 1] return res def UpperCamelCase ( snake_case__): return data[1:] + data[0] def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = "" for i in range(len(snake_case__)): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : int = int("0b" + data[0] + data[-1] , 2) lowerCAmelCase_ : Dict = int("0b" + data[1:3] , 2) return bin(s[row][col])[2:] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = message[:4] lowerCAmelCase_ : Tuple = message[4:] lowerCAmelCase_ : List[str] = apply_table(snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = xor(snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = apply_sbox(snake_case__ , temp[:4]) # noqa: E741 lowerCAmelCase_ : Tuple = apply_sbox(snake_case__ , temp[4:]) lowerCAmelCase_ : Union[str, Any] = "0" * (2 - len(snake_case__)) + l # noqa: E741 lowerCAmelCase_ : Dict = "0" * (2 - len(snake_case__)) + r lowerCAmelCase_ : Dict = apply_table(l + r , snake_case__) lowerCAmelCase_ : List[str] = xor(snake_case__ , snake_case__) return temp + right if __name__ == "__main__": _lowercase = input('''Enter 10 bit key: ''') _lowercase = input('''Enter 8 bit message: ''') _lowercase = [6, 3, 7, 4, 8, 5, 10, 9] _lowercase = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _lowercase = [2, 4, 3, 1] _lowercase = [2, 6, 3, 1, 4, 8, 5, 7] _lowercase = [4, 1, 3, 5, 7, 2, 8, 6] _lowercase = [4, 1, 2, 3, 2, 3, 4, 1] _lowercase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _lowercase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _lowercase = apply_table(key, paa_table) _lowercase = temp[:5] _lowercase = temp[5:] _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = apply_table(left + right, pa_table) _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = left_shift(left) _lowercase = left_shift(right) _lowercase = apply_table(left + right, pa_table) # encryption _lowercase = apply_table(message, IP) _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = temp[4:] + temp[:4] _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption _lowercase = apply_table(CT, IP) _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = temp[4:] + temp[:4] _lowercase = function(expansion, sa, sa, keya, temp) _lowercase = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = ['''model.decoder.embed_positions.weights'''] def UpperCamelCase ( snake_case__): if "emb" in name: lowerCAmelCase_ : int = name.replace("emb" , "model.decoder.embed_tokens") if "transformer" in name: lowerCAmelCase_ : Tuple = name.replace("transformer" , "model.decoder") if "cross_attention" in name: lowerCAmelCase_ : List[Any] = name.replace("cross_attention" , "encoder_attn") if "linear1" in name: lowerCAmelCase_ : int = name.replace("linear1" , "fc1") if "linear2" in name: lowerCAmelCase_ : str = name.replace("linear2" , "fc2") if "norm1" in name: lowerCAmelCase_ : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm") if "norm_cross" in name: lowerCAmelCase_ : Dict = name.replace("norm_cross" , "encoder_attn_layer_norm") if "norm2" in name: lowerCAmelCase_ : Optional[int] = name.replace("norm2" , "final_layer_norm") if "out_norm" in name: lowerCAmelCase_ : int = name.replace("out_norm" , "model.decoder.layer_norm") if "linears" in name: lowerCAmelCase_ : str = name.replace("linears" , "lm_heads") if "condition_provider.conditioners.description.output_proj" in name: lowerCAmelCase_ : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj") return name def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = list(state_dict.keys()) lowerCAmelCase_ : Dict = {} for key in keys: lowerCAmelCase_ : Any = state_dict.pop(snake_case__) lowerCAmelCase_ : Optional[int] = rename_keys(snake_case__) if "in_proj_weight" in key: # split fused qkv proj lowerCAmelCase_ : List[Any] = val[:hidden_size, :] lowerCAmelCase_ : List[str] = val[hidden_size : 2 * hidden_size, :] lowerCAmelCase_ : int = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCAmelCase_ : Union[str, Any] = val else: lowerCAmelCase_ : Optional[int] = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase ( snake_case__): if checkpoint == "small": # default config values lowerCAmelCase_ : int = 10_24 lowerCAmelCase_ : Optional[int] = 24 lowerCAmelCase_ : Optional[int] = 16 elif checkpoint == "medium": lowerCAmelCase_ : Dict = 15_36 lowerCAmelCase_ : Optional[Any] = 48 lowerCAmelCase_ : Optional[Any] = 24 elif checkpoint == "large": lowerCAmelCase_ : Optional[Any] = 20_48 lowerCAmelCase_ : Optional[Any] = 48 lowerCAmelCase_ : int = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''') lowerCAmelCase_ : Dict = MusicgenDecoderConfig( hidden_size=snake_case__ , ffn_dim=hidden_size * 4 , num_hidden_layers=snake_case__ , num_attention_heads=snake_case__ , ) return config @torch.no_grad() def UpperCamelCase ( snake_case__ , snake_case__=None , snake_case__=None , snake_case__="cpu"): lowerCAmelCase_ : List[Any] = MusicGen.get_pretrained(snake_case__ , device=snake_case__) lowerCAmelCase_ : Dict = decoder_config_from_checkpoint(snake_case__) lowerCAmelCase_ : Dict = fairseq_model.lm.state_dict() lowerCAmelCase_ , lowerCAmelCase_ : List[str] = rename_state_dict( snake_case__ , hidden_size=decoder_config.hidden_size) lowerCAmelCase_ : List[Any] = TaEncoderModel.from_pretrained("t5-base") lowerCAmelCase_ : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz") lowerCAmelCase_ : int = MusicgenForCausalLM(snake_case__).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = decoder.load_state_dict(snake_case__ , strict=snake_case__) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(snake_case__) if len(snake_case__) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''') if len(snake_case__) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''') # init the composite model lowerCAmelCase_ : List[str] = MusicgenForConditionalGeneration(text_encoder=snake_case__ , audio_encoder=snake_case__ , decoder=snake_case__) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(snake_case__) # check we can do a forward pass lowerCAmelCase_ : Tuple = torch.arange(0 , 8 , dtype=torch.long).reshape(2 , -1) lowerCAmelCase_ : List[str] = input_ids.reshape(2 * 4 , -1) with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(input_ids=snake_case__ , decoder_input_ids=snake_case__).logits if logits.shape != (8, 1, 20_48): raise ValueError("Incorrect shape for logits") # now construct the processor lowerCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained("t5-base") lowerCAmelCase_ : str = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left") lowerCAmelCase_ : Optional[Any] = MusicgenProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__) # set the appropriate bos/pad token ids lowerCAmelCase_ : Any = 20_48 lowerCAmelCase_ : str = 20_48 # set other default generation config params lowerCAmelCase_ : int = int(30 * audio_encoder.config.frame_rate) lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(snake_case__).mkdir(exist_ok=snake_case__) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''') model.save_pretrained(snake_case__) processor.save_pretrained(snake_case__) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''') model.push_to_hub(snake_case__) processor.push_to_hub(snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) _lowercase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
from collections import defaultdict class __snake_case : """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 lowerCAmelCase_ : Dict = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCAmelCase__ ) ) ] lowerCAmelCase_ : Any = defaultdict(lowerCAmelCase__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 lowerCAmelCase_ : Union[str, Any] = (1 << len(lowerCAmelCase__ )) - 1 def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement lowerCAmelCase_ : List[Any] = self.count_ways_until(lowerCAmelCase__ ,task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) ,task_no + 1 ) # save the value. lowerCAmelCase_ : Optional[int] = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Tuple ) -> int: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in task_performed[i]: self.task[j].append(lowerCAmelCase__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 ,1 ) if __name__ == "__main__": _lowercase = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase = 2 class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,*, # begin keyword-only arguments lowerCAmelCase__ : int="<s>" ,lowerCAmelCase__ : int="<pad>" ,lowerCAmelCase__ : Optional[Any]="</s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : int=None ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = bos, unk, pad, eos lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : str = {} lowerCAmelCase_ : Any = self.add_symbol(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.add_symbol(lowerCAmelCase__ ) lowerCAmelCase_ : int = self.add_symbol(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.add_symbol(lowerCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = len(self.symbols ) def __eq__( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return self.indices == other.indices def __getitem__( self : Union[str, Any] ,lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.symbols ) def __contains__( self : str ,lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' return sym in self.indices @classmethod def UpperCAmelCase_ ( cls : List[str] ,lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = cls() d.add_from_file(lowerCAmelCase__ ) return d def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Any=1 ,lowerCAmelCase__ : List[Any]=False ) -> int: '''simple docstring''' if word in self.indices and not overwrite: lowerCAmelCase_ : Union[str, Any] = self.indices[word] lowerCAmelCase_ : Any = self.count[idx] + n return idx else: lowerCAmelCase_ : Union[str, Any] = len(self.symbols ) lowerCAmelCase_ : List[str] = idx self.symbols.append(lowerCAmelCase__ ) self.count.append(lowerCAmelCase__ ) return idx def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[str] ) -> Tuple: '''simple docstring''' return 0 def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): try: with open(lowerCAmelCase__ ,"r" ,encoding="utf-8" ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowerCAmelCase__ ) ) return lowerCAmelCase_ : int = f.readlines() lowerCAmelCase_ : int = self._load_meta(lowerCAmelCase__ ) for line in lines[indices_start_line:]: try: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = line.rstrip().rsplit(" " ,1 ) if field == "#fairseq:overwrite": lowerCAmelCase_ : List[str] = True lowerCAmelCase_ , lowerCAmelCase_ : int = line.rsplit(" " ,1 ) else: lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = int(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(lowerCAmelCase__ ) ) self.add_symbol(lowerCAmelCase__ ,n=lowerCAmelCase__ ,overwrite=lowerCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def UpperCamelCase ( snake_case__): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCAmelCase_ : Optional[Any] = dict((re.sub(R"@@$" , "" , snake_case__), v) if k.endswith("@@") else (re.sub(R"$" , "</w>" , snake_case__), v) for k, v in d.items()) lowerCAmelCase_ : Dict = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] lowerCAmelCase_ : Optional[int] = d[k] # restore return da def UpperCamelCase ( snake_case__ , snake_case__): # prep if not os.path.exists(snake_case__): raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''') os.makedirs(snake_case__ , exist_ok=snake_case__) print(F'''Writing results to {pytorch_dump_folder_path}''') # handle various types of models lowerCAmelCase_ : List[str] = os.path.join(snake_case__ , "checkpoint.pt") if not os.path.isfile(snake_case__): raise ValueError(F'''path to the file {checkpoint_file} does not exist!''') lowerCAmelCase_ : Dict = torch.load(snake_case__ , map_location="cpu") lowerCAmelCase_ : Optional[Any] = chkpt["cfg"]["model"] # dicts lowerCAmelCase_ : Optional[Any] = os.path.join(snake_case__ , "dict.txt") if not os.path.isfile(snake_case__): raise ValueError(F'''path to the file {dict_file} does not exist!''') lowerCAmelCase_ : Optional[Any] = Dictionary.load(snake_case__) lowerCAmelCase_ : List[str] = rewrite_dict_keys(src_dict.indices) lowerCAmelCase_ : List[str] = len(snake_case__) lowerCAmelCase_ : Optional[Any] = os.path.join(snake_case__ , VOCAB_FILES_NAMES["vocab_file"]) print(F'''Generating {src_vocab_file} of {src_vocab_size} records''') with open(snake_case__ , "w" , encoding="utf-8") as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__)) # merges_file (bpecodes) lowerCAmelCase_ : Dict = os.path.join(snake_case__ , "bpecodes") if not os.path.isfile(snake_case__): raise ValueError(F'''path to the file {bpecodes_file} does not exist!''') lowerCAmelCase_ : int = os.path.join(snake_case__ , VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(snake_case__ , snake_case__) # model config lowerCAmelCase_ : Any = os.path.join(snake_case__ , "config.json") lowerCAmelCase_ : List[Any] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F'''Generating {biogpt_model_config_file}''') with open(snake_case__ , "w" , encoding="utf-8") as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__)) # tokenizer config lowerCAmelCase_ : List[str] = os.path.join(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 10_24, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F'''Generating {biogpt_tokenizer_config_file}''') with open(snake_case__ , "w" , encoding="utf-8") as f: f.write(json.dumps(snake_case__ , ensure_ascii=snake_case__ , indent=snake_case__)) # model lowerCAmelCase_ : int = chkpt["model"] # remove unneeded keys lowerCAmelCase_ : List[Any] = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): lowerCAmelCase_ : Optional[int] = model_state_dict.pop(snake_case__) else: lowerCAmelCase_ : Union[str, Any] = model_state_dict.pop(snake_case__) lowerCAmelCase_ : Dict = BioGptConfig.from_pretrained(snake_case__) lowerCAmelCase_ : Tuple = BioGptForCausalLM(snake_case__) # check that it loads ok model_new.load_state_dict(snake_case__) # save lowerCAmelCase_ : Dict = os.path.join(snake_case__ , snake_case__) print(F'''Generating {pytorch_weights_dump_path}''') torch.save(snake_case__ , snake_case__) print("Conversion is done!") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple=13 ,lowerCAmelCase__ : int=7 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : List[str]=99 ,lowerCAmelCase__ : Dict=[1, 1, 2] ,lowerCAmelCase__ : int=1 ,lowerCAmelCase__ : Tuple=32 ,lowerCAmelCase__ : List[str]=4 ,lowerCAmelCase__ : Optional[Any]=8 ,lowerCAmelCase__ : Dict=37 ,lowerCAmelCase__ : Optional[Any]="gelu_new" ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Union[str, Any]=0.1 ,lowerCAmelCase__ : Any=0.0 ,lowerCAmelCase__ : Optional[int]=5_12 ,lowerCAmelCase__ : List[Any]=3 ,lowerCAmelCase__ : Tuple=0.02 ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : List[str]=4 ,lowerCAmelCase__ : str=None ,lowerCAmelCase__ : List[Any]=False ,) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : str = seq_length lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : List[str] = use_token_type_ids lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : List[str] = block_sizes lowerCAmelCase_ : Dict = num_decoder_layers lowerCAmelCase_ : List[Any] = d_model lowerCAmelCase_ : Optional[Any] = n_head lowerCAmelCase_ : List[Any] = d_head lowerCAmelCase_ : List[str] = d_inner lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : str = hidden_dropout lowerCAmelCase_ : Any = attention_dropout lowerCAmelCase_ : Optional[Any] = activation_dropout lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : Optional[int] = 2 lowerCAmelCase_ : List[Any] = num_labels lowerCAmelCase_ : Optional[Any] = num_choices lowerCAmelCase_ : List[str] = scope lowerCAmelCase_ : int = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase_ : Optional[Any] = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase_ : Tuple = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase_ : List[Any] = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase_ : Tuple = self.num_hidden_layers + 2 def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[str] = None if self.use_token_type_ids: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase_ : int = None lowerCAmelCase_ : Any = None lowerCAmelCase_ : Tuple = None if self.use_labels: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase_ : str = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Any ,) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = TFFunnelModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : str = model(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = [input_ids, input_mask] lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Tuple = TFFunnelModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase_ : str = False lowerCAmelCase_ : int = TFFunnelModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Optional[int] ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = TFFunnelBaseModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) lowerCAmelCase_ : int = [input_ids, input_mask] lowerCAmelCase_ : str = model(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[str] = TFFunnelBaseModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : str = TFFunnelBaseModel(config=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Any ,) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = TFFunnelForPreTraining(config=lowerCAmelCase__ ) lowerCAmelCase_ : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Dict ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = TFFunnelForMaskedLM(config=lowerCAmelCase__ ) lowerCAmelCase_ : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : List[Any] ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.num_labels lowerCAmelCase_ : List[str] = TFFunnelForSequenceClassification(config=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Tuple ,) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = self.num_choices lowerCAmelCase_ : Optional[int] = TFFunnelForMultipleChoice(config=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = tf.tile(tf.expand_dims(lowerCAmelCase__ ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase_ : int = tf.tile(tf.expand_dims(lowerCAmelCase__ ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ ,1 ) ,(1, self.num_choices, 1) ) lowerCAmelCase_ : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[Any] ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.num_labels lowerCAmelCase_ : int = TFFunnelForTokenClassification(config=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = TFFunnelForQuestionAnswering(config=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : Tuple = config_and_inputs lowerCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase_ = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = TFFunnelModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self ,config_class=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) @require_tf class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = TFFunnelModelTester(self ,base=lowerCAmelCase__ ) lowerCAmelCase_ : str = ConfigTester(self ,config_class=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ )
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __snake_case ( snake_case__ ): """simple docstring""" @slow @require_torch def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" ,"prajjwal1/bert-tiny" ) lowerCAmelCase_ : Dict = BertTokenizer.from_pretrained("bert-base-uncased" ) lowerCAmelCase_ : List[Any] = bertabert.config.encoder.vocab_size lowerCAmelCase_ : Tuple = tokenizer.sep_token_id lowerCAmelCase_ : Any = tokenizer.cls_token_id lowerCAmelCase_ : Union[str, Any] = 1_28 lowerCAmelCase_ : List[Any] = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="train[:1%]" ) lowerCAmelCase_ : str = datasets.load_dataset("cnn_dailymail" ,"3.0.0" ,split="validation[:1%]" ) lowerCAmelCase_ : Optional[Any] = train_dataset.select(range(32 ) ) lowerCAmelCase_ : List[str] = val_dataset.select(range(16 ) ) lowerCAmelCase_ : Union[str, Any] = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__ : List[str] ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCAmelCase_ : str = tokenizer(batch["article"] ,padding="max_length" ,truncation=lowerCAmelCase__ ,max_length=5_12 ) lowerCAmelCase_ : Optional[int] = tokenizer(batch["highlights"] ,padding="max_length" ,truncation=lowerCAmelCase__ ,max_length=1_28 ) lowerCAmelCase_ : Any = inputs.input_ids lowerCAmelCase_ : str = inputs.attention_mask lowerCAmelCase_ : Tuple = outputs.input_ids lowerCAmelCase_ : Optional[int] = outputs.input_ids.copy() lowerCAmelCase_ : Any = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] lowerCAmelCase_ : int = outputs.attention_mask assert all(len(lowerCAmelCase__ ) == 5_12 for x in inputs.input_ids ) assert all(len(lowerCAmelCase__ ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : List[Any] = pred.label_ids lowerCAmelCase_ : Optional[Any] = pred.predictions # all unnecessary tokens are removed lowerCAmelCase_ : Tuple = tokenizer.batch_decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = tokenizer.batch_decode(lowerCAmelCase__ ,skip_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ ) return {"accuracy": accuracy} # map train dataset lowerCAmelCase_ : str = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,remove_columns=["article", "highlights"] ,) train_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) # same for validation dataset lowerCAmelCase_ : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=lowerCAmelCase__ ,batch_size=lowerCAmelCase__ ,remove_columns=["article", "highlights"] ,) val_dataset.set_format( type="torch" ,columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] ,) lowerCAmelCase_ : List[str] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Union[str, Any] = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ ,per_device_train_batch_size=lowerCAmelCase__ ,per_device_eval_batch_size=lowerCAmelCase__ ,predict_with_generate=lowerCAmelCase__ ,evaluation_strategy="steps" ,do_train=lowerCAmelCase__ ,do_eval=lowerCAmelCase__ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer lowerCAmelCase_ : List[str] = SeqaSeqTrainer( model=lowerCAmelCase__ ,args=lowerCAmelCase__ ,compute_metrics=_compute_metrics ,train_dataset=lowerCAmelCase__ ,eval_dataset=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,) # start training trainer.train()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : int=13 ,lowerCAmelCase__ : Union[str, Any]=7 ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : Any=99 ,lowerCAmelCase__ : Optional[Any]=32 ,lowerCAmelCase__ : Any=5 ,lowerCAmelCase__ : str=4 ,lowerCAmelCase__ : Any=37 ,lowerCAmelCase__ : Dict="gelu" ,lowerCAmelCase__ : Union[str, Any]=0.1 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Tuple=5_12 ,lowerCAmelCase__ : Optional[Any]=16 ,lowerCAmelCase__ : List[Any]=2 ,lowerCAmelCase__ : List[str]=0.02 ,lowerCAmelCase__ : List[Any]=4 ,) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = parent lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : int = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : Any = use_attention_mask lowerCAmelCase_ : List[Any] = use_token_type_ids lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = max_position_embeddings lowerCAmelCase_ : Tuple = type_vocab_size lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Dict = num_choices def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[Any] = None if self.use_attention_mask: lowerCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Tuple = None if self.use_token_type_ids: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase_ : Dict = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCAmelCase__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = config_and_inputs lowerCAmelCase_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Dict = True lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = FlaxBertModelTester(self ) @slow def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained("bert-base-cased" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ )
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): # Base Case if curr_ind == len(snake_case__): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case__)): if valid_connection(snake_case__ , snake_case__ , snake_case__ , snake_case__): # Insert current vertex into path as next transition lowerCAmelCase_ : List[Any] = next_ver # Validate created path if util_hamilton_cycle(snake_case__ , snake_case__ , curr_ind + 1): return True # Backtrack lowerCAmelCase_ : str = -1 return False def UpperCamelCase ( snake_case__ , snake_case__ = 0): lowerCAmelCase_ : Any = [-1] * (len(snake_case__) + 1) # initialize start and end of path with starting index lowerCAmelCase_ : Dict = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case__ , snake_case__ , 1) else []
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = 9 lowerCAmelCase_ : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowerCAmelCase_ : Union[str, Any] = kruskal(snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case__) == sorted(snake_case__)
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowercase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): for attribute in key.split("."): lowerCAmelCase_ : str = getattr(snake_case__ , snake_case__) if weight_type is not None: lowerCAmelCase_ : int = getattr(snake_case__ , snake_case__).shape else: lowerCAmelCase_ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase_ : int = value elif weight_type == "weight_g": lowerCAmelCase_ : int = value elif weight_type == "weight_v": lowerCAmelCase_ : Dict = value elif weight_type == "bias": lowerCAmelCase_ : Tuple = value else: lowerCAmelCase_ : int = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''') def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Optional[Any] = fairseq_model.state_dict() lowerCAmelCase_ : List[Any] = hf_model.feature_extractor lowerCAmelCase_ : Any = hf_model.adapter for name, value in fairseq_dict.items(): lowerCAmelCase_ : Any = False if "conv_layers" in name: load_conv_layer( snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase_ : Any = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."]): load_adapter(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: lowerCAmelCase_ : List[Any] = True if "*" in mapped_key: lowerCAmelCase_ : Optional[int] = name.split(snake_case__)[0].split(".")[-2] lowerCAmelCase_ : int = mapped_key.replace("*" , snake_case__) if "weight_g" in name: lowerCAmelCase_ : Any = "weight_g" elif "weight_v" in name: lowerCAmelCase_ : int = "weight_v" elif "bias" in name: lowerCAmelCase_ : Optional[int] = "bias" elif "weight" in name: lowerCAmelCase_ : str = "weight" else: lowerCAmelCase_ : Optional[Any] = None set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) continue if not is_used: unused_weights.append(snake_case__) logger.warning(F'''Unused weights: {unused_weights}''') def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = full_name.split("conv_layers.")[-1] lowerCAmelCase_ : Union[str, Any] = name.split(".") lowerCAmelCase_ : Any = int(items[0]) lowerCAmelCase_ : Any = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCAmelCase_ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCAmelCase_ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCAmelCase_ : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCAmelCase_ : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : int = full_name.split("adaptor.")[-1] lowerCAmelCase_ : Dict = name.split(".") if items[1].isdigit(): lowerCAmelCase_ : Any = int(items[1]) else: lowerCAmelCase_ : int = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' lowerCAmelCase_ : str = value logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''') if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' lowerCAmelCase_ : Union[str, Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' lowerCAmelCase_ : List[str] = value logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''') if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' lowerCAmelCase_ : str = value logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''') elif isinstance(snake_case__ , snake_case__): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' lowerCAmelCase_ : Dict = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''') elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' lowerCAmelCase_ : Dict = value logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''') else: unused_weights.append(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = emb.weight.shape lowerCAmelCase_ : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__) lowerCAmelCase_ : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase_ : List[Any] = WavaVecaConfig.from_pretrained( snake_case__ , add_adapter=snake_case__ , adapter_stride=snake_case__ , adapter_kernel_size=snake_case__ , use_auth_token=snake_case__ , output_hidden_size=snake_case__ , ) lowerCAmelCase_ : Dict = MBartConfig.from_pretrained(snake_case__) # load model lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowerCAmelCase_ : List[Any] = model[0].eval() # load feature extractor lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case__ , use_auth_token=snake_case__) # set weights for wav2vec2 encoder lowerCAmelCase_ : int = WavaVecaModel(snake_case__) recursively_load_weights_wavaveca(model.encoder , snake_case__) # load decoder weights lowerCAmelCase_ : Tuple = MBartForCausalLM(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=snake_case__) logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''') logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''') lowerCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=snake_case__ , decoder=snake_case__) lowerCAmelCase_ : int = False lowerCAmelCase_ : Optional[int] = MBartaaTokenizer(snake_case__) tokenizer.save_pretrained(snake_case__) lowerCAmelCase_ : int = hf_wavavec.config.to_dict() lowerCAmelCase_ : List[Any] = tokenizer.pad_token_id lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : Tuple = tokenizer.eos_token_id lowerCAmelCase_ : Tuple = "mbart50" lowerCAmelCase_ : Dict = "wav2vec2" lowerCAmelCase_ : Any = tokenizer.eos_token_id lowerCAmelCase_ : List[Any] = 25_00_04 lowerCAmelCase_ : Any = tokenizer.eos_token_id lowerCAmelCase_ : Dict = SpeechEncoderDecoderConfig.from_dict(snake_case__) hf_wavavec.save_pretrained(snake_case__) feature_extractor.save_pretrained(snake_case__) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250004, type=int, help='''`decoder_start_token_id` of model config''') _lowercase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DanceDiffusionPipeline UpperCamelCase_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCamelCase_ = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } UpperCamelCase_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=5_12 ,sample_rate=1_60_00 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCAmelCase__ ,use_timestep_embedding=lowerCAmelCase__ ,time_embedding_type="fourier" ,mid_block_type="UNetMidBlock1D" ,down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,) lowerCAmelCase_ : int = IPNDMScheduler() lowerCAmelCase_ : int = { "unet": unet, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Tuple=0 ) -> Optional[int]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : Any = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : int = DanceDiffusionPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = output.audios lowerCAmelCase_ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase_ : Dict = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = torch_device lowerCAmelCase_ : str = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowerCAmelCase_ : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : str = pipe(generator=lowerCAmelCase__ ,num_inference_steps=1_00 ,audio_length_in_s=4.096 ) lowerCAmelCase_ : Tuple = output.audios lowerCAmelCase_ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase_ : Dict = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[Any] = torch_device lowerCAmelCase_ : Tuple = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ,torch_dtype=torch.floataa ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : Any = pipe(generator=lowerCAmelCase__ ,num_inference_steps=1_00 ,audio_length_in_s=4.096 ) lowerCAmelCase_ : str = output.audios lowerCAmelCase_ : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase_ : Union[str, Any] = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = OpenAIGPTTokenizer UpperCamelCase_ = OpenAIGPTTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = False def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] lowerCAmelCase_ : Optional[int] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Optional[int] = ["#version: 0.2", "l o", "lo w", "e r</w>", ""] lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) ) with open(self.merges_file ,"w" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' return "lower newer", "lower newer" def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = OpenAIGPTTokenizer(self.vocab_file ,self.merges_file ) lowerCAmelCase_ : Union[str, Any] = "lower" lowerCAmelCase_ : List[str] = ["low", "er</w>"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = tokens + ["<unk>"] lowerCAmelCase_ : Tuple = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[str]=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Tuple = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class __snake_case ( snake_case__ ): """simple docstring""" pass
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''yjernite/retribert-base-uncased''': 512, } _lowercase = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = RetriBertTokenizer UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : int ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Dict="[UNK]" ,lowerCAmelCase__ : List[str]="[SEP]" ,lowerCAmelCase__ : Tuple="[PAD]" ,lowerCAmelCase__ : int="[CLS]" ,lowerCAmelCase__ : Dict="[MASK]" ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Dict=None ,**lowerCAmelCase__ : List[str] ,) -> Dict: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : List[Any] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : Tuple = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Any = do_lower_case def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : int=None ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=0 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = floats_tensor((1, 3, 1_28, 1_28) ,rng=random.Random(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = torch.manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[str] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Dict = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : str = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Any = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Union[str, Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="CPUExecutionProvider" ) lowerCAmelCase_ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.get_dummy_inputs() lowerCAmelCase_ : List[str] = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : int = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" @property def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = ort.SessionOptions() lowerCAmelCase_ : Union[str, Any] = False return options def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Optional[Any] = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default lowerCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Dict = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : Any = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : Any = init_image.resize((1_28, 1_28) ) lowerCAmelCase_ : Dict = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,subfolder="scheduler" ) lowerCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" ,scheduler=lowerCAmelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : List[Any] = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase_ : List[Any] = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _lowercase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _lowercase = TaTokenizerFast _lowercase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _lowercase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __snake_case ( snake_case__ , snake_case__ ): """simple docstring""" UpperCamelCase_ = 'focalnet' def __init__( self : int ,lowerCAmelCase__ : Dict=2_24 ,lowerCAmelCase__ : str=4 ,lowerCAmelCase__ : Optional[Any]=3 ,lowerCAmelCase__ : Optional[int]=96 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : List[str]=[1_92, 3_84, 7_68, 7_68] ,lowerCAmelCase__ : Any=[2, 2, 6, 2] ,lowerCAmelCase__ : Tuple=[2, 2, 2, 2] ,lowerCAmelCase__ : List[Any]=[3, 3, 3, 3] ,lowerCAmelCase__ : str="gelu" ,lowerCAmelCase__ : int=4.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[Any]=False ,lowerCAmelCase__ : str=1e-4 ,lowerCAmelCase__ : Optional[int]=False ,lowerCAmelCase__ : Dict=False ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : Any=0.02 ,lowerCAmelCase__ : List[Any]=1e-5 ,lowerCAmelCase__ : Tuple=32 ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : Optional[int] ,) -> List[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : Any = patch_size lowerCAmelCase_ : Optional[int] = num_channels lowerCAmelCase_ : Dict = embed_dim lowerCAmelCase_ : str = use_conv_embed lowerCAmelCase_ : Optional[int] = hidden_sizes lowerCAmelCase_ : str = depths lowerCAmelCase_ : Optional[int] = focal_levels lowerCAmelCase_ : List[str] = focal_windows lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[int] = mlp_ratio lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = drop_path_rate lowerCAmelCase_ : Optional[int] = use_layerscale lowerCAmelCase_ : Union[str, Any] = layerscale_value lowerCAmelCase_ : Any = use_post_layernorm lowerCAmelCase_ : List[str] = use_post_layernorm_in_modulation lowerCAmelCase_ : List[Any] = normalize_modulator lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : int = encoder_stride lowerCAmelCase_ : Optional[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ : Any = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ ,out_indices=lowerCAmelCase__ ,stage_names=self.stage_names )
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
from copy import deepcopy class __snake_case : """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : list[int] | None = None ,lowerCAmelCase__ : int | None = None ) -> None: '''simple docstring''' if arr is None and size is not None: lowerCAmelCase_ : List[Any] = size lowerCAmelCase_ : Optional[int] = [0] * size elif arr is not None: self.init(lowerCAmelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list[int] ) -> None: '''simple docstring''' lowerCAmelCase_ : Tuple = len(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = deepcopy(lowerCAmelCase__ ) for i in range(1 ,self.size ): lowerCAmelCase_ : Union[str, Any] = self.next_(lowerCAmelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase_ ( self : List[str] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = self.tree[:] for i in range(self.size - 1 ,0 ,-1 ): lowerCAmelCase_ : Any = self.next_(lowerCAmelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : int ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def UpperCAmelCase_ ( lowerCAmelCase__ : int ) -> int: '''simple docstring''' return index - (index & (-index)) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase_ : Optional[Any] = self.next_(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' self.add(lowerCAmelCase__ ,value - self.get(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' if right == 0: return 0 lowerCAmelCase_ : Optional[Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase_ : Tuple = self.prev(lowerCAmelCase__ ) return result def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' return self.query(lowerCAmelCase__ ,index + 1 ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 lowerCAmelCase_ : List[Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase_ : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
from math import pow, sqrt def UpperCamelCase ( *snake_case__): lowerCAmelCase_ : str = len(snake_case__) > 0 and all(value > 0.0 for value in values) return result def UpperCamelCase ( snake_case__ , snake_case__): return ( round(sqrt(molar_mass_a / molar_mass_a) , 6) if validate(snake_case__ , snake_case__) else ValueError("Input Error: Molar mass values must greater than 0.") ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a) , 6) if validate(snake_case__ , snake_case__ , snake_case__) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a) , 6) if validate(snake_case__ , snake_case__ , snake_case__) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2) , 6) if validate(snake_case__ , snake_case__ , snake_case__) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): return ( round(pow(effusion_rate_a / effusion_rate_a , 2) / molar_mass , 6) if validate(snake_case__ , snake_case__ , snake_case__) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") )
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import numpy as np def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = 1e-12 , snake_case__ = 1_00 , ): assert np.shape(snake_case__)[0] == np.shape(snake_case__)[1] # Ensure proper dimensionality. assert np.shape(snake_case__)[0] == np.shape(snake_case__)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__) == np.iscomplexobj(snake_case__) lowerCAmelCase_ : List[Any] = np.iscomplexobj(snake_case__) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCAmelCase_ : Tuple = False lowerCAmelCase_ : int = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[int] = 1e12 while not convergence: # Multiple matrix by the vector. lowerCAmelCase_ : Union[str, Any] = np.dot(snake_case__ , snake_case__) # Normalize the resulting output vector. lowerCAmelCase_ : str = w / np.linalg.norm(snake_case__) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCAmelCase_ : Any = vector.conj().T if is_complex else vector.T lowerCAmelCase_ : Optional[int] = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__)) # Check convergence. lowerCAmelCase_ : Union[str, Any] = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCAmelCase_ : Dict = True lowerCAmelCase_ : str = lambda_ if is_complex: lowerCAmelCase_ : Optional[Any] = np.real(lambda_) return lambda_, vector def UpperCamelCase ( ): lowerCAmelCase_ : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) lowerCAmelCase_ : str = np.array([41, 4, 20]) lowerCAmelCase_ : Tuple = real_input_matrix.astype(np.complexaaa) lowerCAmelCase_ : Union[str, Any] = np.triu(1j * complex_input_matrix , 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCAmelCase_ : Optional[int] = np.array([41, 4, 20]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCAmelCase_ : int = real_input_matrix lowerCAmelCase_ : str = real_vector elif problem_type == "complex": lowerCAmelCase_ : Dict = complex_input_matrix lowerCAmelCase_ : List[Any] = complex_vector # Our implementation. lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = power_iteration(snake_case__ , snake_case__) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCAmelCase_ , lowerCAmelCase_ : Any = np.linalg.eigh(snake_case__) # Last eigenvalue is the maximum one. lowerCAmelCase_ : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCAmelCase_ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__) - np.abs(snake_case__)) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
from collections.abc import Sequence def UpperCamelCase ( snake_case__ , snake_case__ = False): if not arr: return 0 lowerCAmelCase_ : Dict = 0 if allow_empty_subarrays else float("-inf") lowerCAmelCase_ : Optional[int] = 0.0 for num in arr: lowerCAmelCase_ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num) lowerCAmelCase_ : Optional[int] = max(snake_case__ , snake_case__) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _lowercase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 42 UpperCamelCase_ = 42 def __init__( self : Optional[Any] ,lowerCAmelCase__ : UNetaDModel ,lowerCAmelCase__ : ScoreSdeVeScheduler ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self : List[str] ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : int = 20_00 ,lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,lowerCAmelCase__ : Optional[str] = "pil" ,lowerCAmelCase__ : bool = True ,**lowerCAmelCase__ : Optional[Any] ,) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' lowerCAmelCase_ : int = self.unet.config.sample_size lowerCAmelCase_ : List[Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase_ : int = self.unet lowerCAmelCase_ : List[str] = randn_tensor(lowerCAmelCase__ ,generator=lowerCAmelCase__ ) * self.scheduler.init_noise_sigma lowerCAmelCase_ : Dict = sample.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase__ ) self.scheduler.set_sigmas(lowerCAmelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase_ : List[str] = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase_ : int = self.unet(lowerCAmelCase__ ,lowerCAmelCase__ ).sample lowerCAmelCase_ : Tuple = self.scheduler.step_correct(lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ).prev_sample # prediction step lowerCAmelCase_ : Optional[Any] = model(lowerCAmelCase__ ,lowerCAmelCase__ ).sample lowerCAmelCase_ : List[str] = self.scheduler.step_pred(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,generator=lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = output.prev_sample, output.prev_sample_mean lowerCAmelCase_ : Optional[Any] = sample_mean.clamp(0 ,1 ) lowerCAmelCase_ : str = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Tuple = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCAmelCase__ )
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
from __future__ import annotations from functools import lru_cache from math import ceil _lowercase = 100 _lowercase = set(range(3, NUM_PRIMES, 2)) primes.add(2) _lowercase = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00) def UpperCamelCase ( snake_case__): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ : set[int] = set() lowerCAmelCase_ : int lowerCAmelCase_ : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def UpperCamelCase ( snake_case__ = 50_00): for number_to_partition in range(1 , snake_case__): if len(partition(snake_case__)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
from __future__ import annotations from collections import namedtuple def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = namedtuple("result" , "name value") if (voltage, current, power).count(0) != 1: raise ValueError("Only one argument must be 0") elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system") elif voltage == 0: return result("voltage" , power / current) elif current == 0: return result("current" , power / voltage) elif power == 0: return result("power" , float(round(abs(voltage * current) , 2))) else: raise ValueError("Exactly one argument must be 0") if __name__ == "__main__": import doctest doctest.testmod()
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : str = 1 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : List[Any] = (32, 32) lowerCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) return model @property def UpperCAmelCase_ ( self : Tuple ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) return model @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = RobertaSeriesConfig( hidden_size=32 ,project_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=50_06 ,) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' def extract(*lowerCAmelCase__ : Optional[Any] ,**lowerCAmelCase__ : str ): class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = torch.ones([0] ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[Any] = self.dummy_cond_unet lowerCAmelCase_ : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : str = self.dummy_vae lowerCAmelCase_ : List[Any] = self.dummy_text_encoder lowerCAmelCase_ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCAmelCase_ : List[Any] = 77 lowerCAmelCase_ : Union[str, Any] = self.dummy_image.to(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase_ : str = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) lowerCAmelCase_ : Any = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) lowerCAmelCase_ : Dict = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=lowerCAmelCase__ ,) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="np" ,image=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ,)[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : List[Any] = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.dummy_cond_unet lowerCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = self.dummy_vae lowerCAmelCase_ : Any = self.dummy_text_encoder lowerCAmelCase_ : Any = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCAmelCase_ : Tuple = 77 lowerCAmelCase_ : Optional[int] = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 lowerCAmelCase_ : Dict = unet.half() lowerCAmelCase_ : Any = vae.half() lowerCAmelCase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ : List[str] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,vae=lowerCAmelCase__ ,text_encoder=lowerCAmelCase__ ,tokenizer=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,feature_extractor=self.dummy_extractor ,) lowerCAmelCase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor ,do_normalize=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "A painting of a squirrel eating a burger" lowerCAmelCase_ : str = torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = alt_pipe( [prompt] ,generator=lowerCAmelCase__ ,num_inference_steps=2 ,output_type="np" ,image=lowerCAmelCase__ ,).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" ,"This test requires a GPU" ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase_ : Dict = init_image.resize((7_60, 5_04) ) lowerCAmelCase_ : Union[str, Any] = "BAAI/AltDiffusion" lowerCAmelCase_ : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : Tuple = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : str = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : Union[str, Any] = output.images[0] lowerCAmelCase_ : int = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) lowerCAmelCase_ : Tuple = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCAmelCase_ : str = init_image.resize((7_68, 5_12) ) lowerCAmelCase_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowerCAmelCase_ : List[Any] = "BAAI/AltDiffusion" lowerCAmelCase_ : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ,) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : List[str] = "A fantasy landscape, trending on artstation" lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = pipe( prompt=lowerCAmelCase__ ,image=lowerCAmelCase__ ,strength=0.75 ,guidance_scale=7.5 ,generator=lowerCAmelCase__ ,output_type="np" ,) lowerCAmelCase_ : Any = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
from manim import * class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = Rectangle(height=0.5 ,width=0.5 ) lowerCAmelCase_ : int = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) lowerCAmelCase_ : str = Rectangle(height=0.25 ,width=0.25 ) lowerCAmelCase_ : Optional[Any] = [mem.copy() for i in range(6 )] lowerCAmelCase_ : int = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : int = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Union[str, Any] = VGroup(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : int = Text("CPU" ,font_size=24 ) lowerCAmelCase_ : Dict = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = [mem.copy() for i in range(4 )] lowerCAmelCase_ : Optional[int] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : List[Any] = Text("GPU" ,font_size=24 ) lowerCAmelCase_ : Tuple = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : Any = [mem.copy() for i in range(6 )] lowerCAmelCase_ : Dict = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Optional[int] = Text("Model" ,font_size=24 ) lowerCAmelCase_ : str = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : str = [] lowerCAmelCase_ : Tuple = [] for i, rect in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = fill.copy().set_fill(lowerCAmelCase__ ,opacity=0.8 ) target.move_to(lowerCAmelCase__ ) model_arr.append(lowerCAmelCase__ ) lowerCAmelCase_ : str = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ ,*lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = [meta_mem.copy() for i in range(6 )] lowerCAmelCase_ : Tuple = [meta_mem.copy() for i in range(6 )] lowerCAmelCase_ : List[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Dict = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : str = VGroup(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0 ) lowerCAmelCase_ : Any = Text("Disk" ,font_size=24 ) lowerCAmelCase_ : Tuple = Group(lowerCAmelCase__ ,lowerCAmelCase__ ).arrange(lowerCAmelCase__ ,buff=0.5 ,aligned_edge=lowerCAmelCase__ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase_ : Optional[int] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' ,font_size=18 ,) blue_text.next_to(lowerCAmelCase__ ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) lowerCAmelCase_ : int = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = Square(0.3 ) input.set_fill(lowerCAmelCase__ ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,lowerCAmelCase__ ,buff=0.5 ) self.play(Write(lowerCAmelCase__ ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=lowerCAmelCase__ ,buff=0.02 ) self.play(MoveToTarget(lowerCAmelCase__ ) ) self.play(FadeOut(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = Arrow(start=lowerCAmelCase__ ,end=lowerCAmelCase__ ,color=lowerCAmelCase__ ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,lowerCAmelCase__ ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowerCAmelCase_ : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ,run_time=3 ) ) lowerCAmelCase_ : Any = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(lowerCAmelCase__ ) ,Circumscribe(model_arr[0] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(model_cpu_arr[0] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(gpu_rect[0] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowerCAmelCase_ : Tuple = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,lowerCAmelCase__ ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowerCAmelCase_ : Optional[int] = AnimationGroup( FadeOut(lowerCAmelCase__ ,run_time=0.5 ) ,MoveToTarget(lowerCAmelCase__ ,run_time=0.5 ) ,FadeIn(lowerCAmelCase__ ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(lowerCAmelCase__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowerCAmelCase_ : Any = 0.7 self.play( Circumscribe(model_arr[i] ,**lowerCAmelCase__ ) ,Circumscribe(cpu_left_col_base[i] ,**lowerCAmelCase__ ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(gpu_rect[0] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(model_arr[i + 1] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(cpu_left_col_base[-1] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,Circumscribe(gpu_rect[0] ,color=lowerCAmelCase__ ,**lowerCAmelCase__ ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowerCAmelCase_ : Any = a_c lowerCAmelCase_ : Dict = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(lowerCAmelCase__ ) ,FadeOut(lowerCAmelCase__ ,run_time=0.5 ) ,) lowerCAmelCase_ : Union[str, Any] = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ ,run_time=3 ) ,MoveToTarget(lowerCAmelCase__ ) ) self.wait()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
from typing import Dict, Optional import numpy as np import datasets _lowercase = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' _lowercase = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' _lowercase = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , ): if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase_ : Optional[int] = new_id # turn into Numpy arrays lowerCAmelCase_ : str = np.array(snake_case__) lowerCAmelCase_ : Tuple = np.array(snake_case__) if reduce_labels: lowerCAmelCase_ : Tuple = 2_55 lowerCAmelCase_ : Dict = label - 1 lowerCAmelCase_ : Any = 2_55 lowerCAmelCase_ : Optional[Any] = label != ignore_index lowerCAmelCase_ : Union[str, Any] = np.not_equal(snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = pred_label[mask] lowerCAmelCase_ : Any = np.array(snake_case__)[mask] lowerCAmelCase_ : Optional[int] = pred_label[pred_label == label] lowerCAmelCase_ : List[str] = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : Tuple = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : Optional[Any] = np.histogram(snake_case__ , bins=snake_case__ , range=(0, num_labels - 1))[0] lowerCAmelCase_ : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : Tuple = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : str = np.zeros((num_labels,) , dtype=np.floataa) lowerCAmelCase_ : Any = np.zeros((num_labels,) , dtype=np.floataa) for result, gt_seg_map in zip(snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = intersect_and_union( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = total_intersect_and_union( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) # compute metrics lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Any = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase_ : Any = total_area_intersect / total_area_union lowerCAmelCase_ : Optional[int] = total_area_intersect / total_area_label lowerCAmelCase_ : List[str] = np.nanmean(snake_case__) lowerCAmelCase_ : Union[str, Any] = np.nanmean(snake_case__) lowerCAmelCase_ : Tuple = all_acc lowerCAmelCase_ : List[str] = iou lowerCAmelCase_ : List[Any] = acc if nan_to_num is not None: lowerCAmelCase_ : List[str] = {metric: np.nan_to_num(snake_case__ , nan=snake_case__) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ), } ) ,reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] ,) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : int ,lowerCAmelCase__ : bool ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Dict[int, int]] = None ,lowerCAmelCase__ : bool = False ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = mean_iou( results=lowerCAmelCase__ ,gt_seg_maps=lowerCAmelCase__ ,num_labels=lowerCAmelCase__ ,ignore_index=lowerCAmelCase__ ,nan_to_num=lowerCAmelCase__ ,label_map=lowerCAmelCase__ ,reduce_labels=lowerCAmelCase__ ,) return iou_result
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
import os import jsonlines import numpy as np from tqdm import tqdm _lowercase = 2048 _lowercase = 4096 _lowercase = 42 _lowercase = os.environ.pop('''PROCESS_TRAIN''', '''false''') _lowercase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def UpperCamelCase ( snake_case__): def choose_first(snake_case__ , snake_case__=False): assert isinstance(snake_case__ , snake_case__) if len(snake_case__) == 1: lowerCAmelCase_ : Tuple = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCAmelCase_ : Tuple = {k: [a[k]] for k in a} if len(a["start_token"]) > 0: break return a lowerCAmelCase_ : Union[str, Any] = {"id": example["id"]} lowerCAmelCase_ : Optional[int] = example["annotations"] lowerCAmelCase_ : Union[str, Any] = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCAmelCase_ : Any = ["yes"] if 1 in yes_no_answer else ["no"] lowerCAmelCase_ : str = [] lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Tuple = ["<cls>"] else: lowerCAmelCase_ : Tuple = ["short"] lowerCAmelCase_ : Dict = choose_first(annotation["short_answers"]) if len(out["start_token"]) == 0: # answer will be long if short is not available lowerCAmelCase_ : str = ["long"] lowerCAmelCase_ : Union[str, Any] = choose_first(annotation["long_answer"] , is_long_answer=snake_case__) lowerCAmelCase_ : Any = [] answer.update(snake_case__) # disregard some samples if len(answer["start_token"]) > 1 or answer["start_token"] == answer["end_token"]: lowerCAmelCase_ : Optional[Any] = True else: lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : str = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , snake_case__) for k in cols): raise ValueError("Issue in ID" , example["id"]) return answer def UpperCamelCase ( snake_case__ , snake_case__=False): lowerCAmelCase_ : int = _get_single_answer(snake_case__) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase_ : Dict = example["document"]["tokens"] lowerCAmelCase_ : str = [] for i in range(len(doc["token"])): if not doc["is_html"][i]: context.append(doc["token"][i]) return { "context": " ".join(snake_case__), "answer": { "start_token": -1_00, # ignore index in cross-entropy "end_token": -1_00, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCAmelCase_ : Optional[int] = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k]) > 0 else answer[k] for k in cols}) # e.g. [10] == 10 lowerCAmelCase_ : List[str] = example["document"]["tokens"] lowerCAmelCase_ : int = answer["start_token"] lowerCAmelCase_ : Union[str, Any] = answer["end_token"] lowerCAmelCase_ : str = [] for i in range(len(doc["token"])): if not doc["is_html"][i]: context.append(doc["token"][i]) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCAmelCase_ : Any = " ".join(context[start_token:end_token]) # checking above code if assertion: lowerCAmelCase_ : List[Any] = doc["is_html"][answer["start_token"] : answer["end_token"]] lowerCAmelCase_ : Any = doc["token"][answer["start_token"] : answer["end_token"]] lowerCAmelCase_ : Optional[int] = " ".join([old[i] for i in range(len(snake_case__)) if not is_html[i]]) if new != old: print("ID:" , example["id"]) print("New:" , snake_case__ , end="\n") print("Old:" , snake_case__ , end="\n\n") return { "context": " ".join(snake_case__), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=20_48 , snake_case__=40_96 , snake_case__=True): # overlap will be of doc_stride - q_len lowerCAmelCase_ : Any = get_context_and_ans(snake_case__ , assertion=snake_case__) lowerCAmelCase_ : Union[str, Any] = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCAmelCase_ : Dict = tokenizer(example["question"]["text"] , out["context"]).input_ids lowerCAmelCase_ : Optional[Any] = input_ids.index(tokenizer.sep_token_id) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Any = [] lowerCAmelCase_ : List[str] = input_ids[:q_len] lowerCAmelCase_ : Union[str, Any] = range(snake_case__ , len(snake_case__) , max_length - doc_stride) for i in doc_start_indices: lowerCAmelCase_ : List[str] = i + max_length - q_len lowerCAmelCase_ : int = input_ids[i:end_index] inputs.append(q_indices + slice) category.append(answer["category"][0]) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_00] * len(snake_case__), "end_token": [-1_00] * len(snake_case__), "category": category, }, } lowerCAmelCase_ : Optional[Any] = out["context"].split() lowerCAmelCase_ : List[str] = splitted_context[answer["end_token"]] lowerCAmelCase_ : Optional[int] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]]) , add_special_tokens=snake_case__ , ).input_ids) lowerCAmelCase_ : int = len( tokenizer(" ".join(splitted_context[: answer["end_token"]]) , add_special_tokens=snake_case__).input_ids) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCAmelCase_ : Union[str, Any] = len(tokenizer(snake_case__ , add_special_tokens=snake_case__).input_ids) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCAmelCase_ : Dict = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowerCAmelCase_ : Any = answer["start_token"] lowerCAmelCase_ : List[Any] = answer["end_token"] if assertion: lowerCAmelCase_ : Optional[int] = tokenizer.decode(snake_case__) if answer["span"] != new: print("ISSUE IN TOKENIZATION") print("OLD:" , answer["span"]) print("NEW:" , snake_case__ , end="\n\n") if len(snake_case__) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCAmelCase_ : str = input_ids[:q_len] lowerCAmelCase_ : int = range(snake_case__ , len(snake_case__) , max_length - doc_stride) lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : str = [] lowerCAmelCase_ : Optional[Any] = [] # null, yes, no, long, short for i in doc_start_indices: lowerCAmelCase_ : List[Any] = i + max_length - q_len lowerCAmelCase_ : Any = input_ids[i:end_index] inputs.append(q_indices + slice) assert len(inputs[-1]) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCAmelCase_ : List[str] = start_token - i + q_len lowerCAmelCase_ : Dict = end_token - i + q_len answers_category.append(answer["category"][0]) # ["short"] -> "short" else: lowerCAmelCase_ : Optional[int] = -1_00 lowerCAmelCase_ : str = -1_00 answers_category.append("null") lowerCAmelCase_ : Any = inputs[-1][start_token : end_token + 1] answers_start_token.append(snake_case__) answers_end_token.append(snake_case__) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"]) print("New:" , tokenizer.decode(snake_case__)) print("Old:" , tokenizer.decode(snake_case__) , end="\n\n") if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=20_48 , snake_case__=40_96 , snake_case__=False): lowerCAmelCase_ : Union[str, Any] = get_strided_contexts_and_ans( snake_case__ , snake_case__ , doc_stride=snake_case__ , max_length=snake_case__ , assertion=snake_case__ , ) return example def UpperCamelCase ( snake_case__ , snake_case__): with jsonlines.open(snake_case__ , "a") as writer: for example in tqdm(snake_case__ , total=len(snake_case__) , desc="Saving samples ... "): lowerCAmelCase_ : List[str] = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], }) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer _lowercase = load_dataset('''natural_questions''') _lowercase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _lowercase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] _lowercase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } _lowercase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) _lowercase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) _lowercase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'convbert' def __init__( self : Optional[Any] ,lowerCAmelCase__ : List[str]=3_05_22 ,lowerCAmelCase__ : Optional[Any]=7_68 ,lowerCAmelCase__ : Any=12 ,lowerCAmelCase__ : int=12 ,lowerCAmelCase__ : int=30_72 ,lowerCAmelCase__ : Optional[int]="gelu" ,lowerCAmelCase__ : Any=0.1 ,lowerCAmelCase__ : List[str]=0.1 ,lowerCAmelCase__ : Optional[Any]=5_12 ,lowerCAmelCase__ : List[str]=2 ,lowerCAmelCase__ : Union[str, Any]=0.02 ,lowerCAmelCase__ : str=1e-1_2 ,lowerCAmelCase__ : Union[str, Any]=1 ,lowerCAmelCase__ : Optional[Any]=0 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : int=7_68 ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Optional[Any]=9 ,lowerCAmelCase__ : str=1 ,lowerCAmelCase__ : List[Any]=None ,**lowerCAmelCase__ : List[str] ,) -> List[str]: '''simple docstring''' super().__init__( pad_token_id=lowerCAmelCase__ ,bos_token_id=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Tuple = embedding_size lowerCAmelCase_ : Tuple = head_ratio lowerCAmelCase_ : Any = conv_kernel_size lowerCAmelCase_ : int = num_groups lowerCAmelCase_ : Tuple = classifier_dropout class __snake_case ( snake_case__ ): """simple docstring""" @property def UpperCAmelCase_ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase_ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__): if len(snake_case__) < k or k < 0: raise ValueError("Invalid Input") lowerCAmelCase_ : Tuple = sum(array[:k]) for i in range(len(snake_case__) - k): lowerCAmelCase_ : Any = current_sum - array[i] + array[i + k] lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _lowercase = [randint(-1000, 1000) for i in range(100)] _lowercase = randint(0, 110) print(f"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } _lowercase = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } _lowercase = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = DistilBertTokenizer def __init__( self : Optional[int] ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : Any="[UNK]" ,lowerCAmelCase__ : int="[SEP]" ,lowerCAmelCase__ : str="[PAD]" ,lowerCAmelCase__ : List[Any]="[CLS]" ,lowerCAmelCase__ : Dict="[MASK]" ,lowerCAmelCase__ : Any=True ,lowerCAmelCase__ : Any=None ,**lowerCAmelCase__ : Tuple ,) -> List[str]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : List[Any] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : Optional[int] = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = do_lower_case def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : int = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __snake_case ( snake_case__ , snake_case__ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] ,lowerCAmelCase__ : int = 1_28 ,lowerCAmelCase__ : int = 2_56 ,lowerCAmelCase__ : float = 2_000.0 ,lowerCAmelCase__ : int = 7_68 ,lowerCAmelCase__ : int = 12 ,lowerCAmelCase__ : int = 12 ,lowerCAmelCase__ : int = 64 ,lowerCAmelCase__ : int = 20_48 ,lowerCAmelCase__ : float = 0.1 ,) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : int = nn.Sequential( nn.Linear(lowerCAmelCase__ ,d_model * 4 ,bias=lowerCAmelCase__ ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=lowerCAmelCase__ ) ,nn.SiLU() ,) lowerCAmelCase_ : List[str] = nn.Embedding(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : str = False lowerCAmelCase_ : List[Any] = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = nn.Dropout(p=lowerCAmelCase__ ) lowerCAmelCase_ : Any = nn.ModuleList() for lyr_num in range(lowerCAmelCase__ ): # FiLM conditional T5 decoder lowerCAmelCase_ : Optional[int] = DecoderLayer(d_model=lowerCAmelCase__ ,d_kv=lowerCAmelCase__ ,num_heads=lowerCAmelCase__ ,d_ff=lowerCAmelCase__ ,dropout_rate=lowerCAmelCase__ ) self.decoders.append(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = TaLayerNorm(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = nn.Dropout(p=lowerCAmelCase__ ) lowerCAmelCase_ : int = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase_ : List[str] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) lowerCAmelCase_ : Dict = self.conditioning_emb(lowerCAmelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase_ : str = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase_ : List[Any] = torch.broadcast_to( torch.arange(lowerCAmelCase__ ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) lowerCAmelCase_ : str = self.position_encoding(lowerCAmelCase__ ) lowerCAmelCase_ : int = self.continuous_inputs_projection(lowerCAmelCase__ ) inputs += position_encodings lowerCAmelCase_ : Optional[Any] = self.dropout(lowerCAmelCase__ ) # decoder: No padding present. lowerCAmelCase_ : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase_ : Optional[Any] = [(x, self.encoder_decoder_mask(lowerCAmelCase__ ,lowerCAmelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase_ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) lowerCAmelCase_ : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: lowerCAmelCase_ : Dict = lyr( lowerCAmelCase__ ,conditioning_emb=lowerCAmelCase__ ,encoder_hidden_states=lowerCAmelCase__ ,encoder_attention_mask=lowerCAmelCase__ ,)[0] lowerCAmelCase_ : int = self.decoder_norm(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.post_dropout(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.spec_out(lowerCAmelCase__ ) return spec_out class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Optional[Any]=1e-6 ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase__ ,d_kv=lowerCAmelCase__ ,num_heads=lowerCAmelCase__ ,dropout_rate=lowerCAmelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase__ ,d_kv=lowerCAmelCase__ ,num_heads=lowerCAmelCase__ ,dropout_rate=lowerCAmelCase__ ,layer_norm_epsilon=lowerCAmelCase__ ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase__ ,d_ff=lowerCAmelCase__ ,dropout_rate=lowerCAmelCase__ ,layer_norm_epsilon=lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[int]=None ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = self.layer[0]( lowerCAmelCase__ ,conditioning_emb=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,) if encoder_hidden_states is not None: lowerCAmelCase_ : List[Any] = torch.where(encoder_attention_mask > 0 ,0 ,-1e1_0 ).to( encoder_hidden_states.dtype ) lowerCAmelCase_ : Tuple = self.layer[1]( lowerCAmelCase__ ,key_value_states=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,) # Apply Film Conditional Feed Forward layer lowerCAmelCase_ : Optional[Any] = self.layer[-1](lowerCAmelCase__ ,lowerCAmelCase__ ) return (hidden_states,) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Optional[Any] = TaLayerNorm(lowerCAmelCase__ ) lowerCAmelCase_ : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = Attention(query_dim=lowerCAmelCase__ ,heads=lowerCAmelCase__ ,dim_head=lowerCAmelCase__ ,out_bias=lowerCAmelCase__ ,scale_qk=lowerCAmelCase__ ) lowerCAmelCase_ : str = nn.Dropout(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : List[Any]=None ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: lowerCAmelCase_ : Optional[int] = self.FiLMLayer(lowerCAmelCase__ ,lowerCAmelCase__ ) # Self-attention block lowerCAmelCase_ : Any = self.attention(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ : Tuple = Attention(query_dim=lowerCAmelCase__ ,heads=lowerCAmelCase__ ,dim_head=lowerCAmelCase__ ,out_bias=lowerCAmelCase__ ,scale_qk=lowerCAmelCase__ ) lowerCAmelCase_ : str = TaLayerNorm(lowerCAmelCase__ ,eps=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = nn.Dropout(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[str]=None ,lowerCAmelCase__ : int=None ,) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.layer_norm(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.attention( lowerCAmelCase__ ,encoder_hidden_states=lowerCAmelCase__ ,attention_mask=attention_mask.squeeze(1 ) ,) lowerCAmelCase_ : int = hidden_states + self.dropout(lowerCAmelCase__ ) return layer_output class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[str] = TaDenseGatedActDense(d_model=lowerCAmelCase__ ,d_ff=lowerCAmelCase__ ,dropout_rate=lowerCAmelCase__ ) lowerCAmelCase_ : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = TaLayerNorm(lowerCAmelCase__ ,eps=lowerCAmelCase__ ) lowerCAmelCase_ : Any = nn.Dropout(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[Any]=None ) -> Any: '''simple docstring''' lowerCAmelCase_ : str = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: lowerCAmelCase_ : Optional[int] = self.film(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.DenseReluDense(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Optional[int] = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : Any = nn.Linear(lowerCAmelCase__ ,lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : str = nn.Dropout(lowerCAmelCase__ ) lowerCAmelCase_ : int = NewGELUActivation() def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = self.act(self.wi_a(lowerCAmelCase__ ) ) lowerCAmelCase_ : Any = self.wi_a(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = hidden_gelu * hidden_linear lowerCAmelCase_ : Optional[Any] = self.dropout(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.wo(lowerCAmelCase__ ) return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Union[str, Any]=1e-6 ) -> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[str] = nn.Parameter(torch.ones(lowerCAmelCase__ ) ) lowerCAmelCase_ : str = eps def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=lowerCAmelCase__ ) lowerCAmelCase_ : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase_ : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __snake_case ( nn.Module ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(lowerCAmelCase__ ,3.0 )) )) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Dict ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Linear(lowerCAmelCase__ ,out_features * 2 ,bias=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = self.scale_bias(lowerCAmelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ : int = torch.chunk(lowerCAmelCase__ ,2 ,-1 ) lowerCAmelCase_ : str = x * (1 + scale) + shift return x
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import math def UpperCamelCase ( snake_case__ , snake_case__): return math.pow(snake_case__ , 2) - a def UpperCamelCase ( snake_case__): return 2 * x def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = 2.0 while start <= a: lowerCAmelCase_ : Optional[int] = math.pow(snake_case__ , 2) return start def UpperCamelCase ( snake_case__ , snake_case__ = 99_99 , snake_case__ = 0.00_000_000_000_001): if a < 0: raise ValueError("math domain error") lowerCAmelCase_ : Dict = get_initial_point(snake_case__) for _ in range(snake_case__): lowerCAmelCase_ : Optional[Any] = value lowerCAmelCase_ : List[Any] = value - fx(snake_case__ , snake_case__) / fx_derivative(snake_case__) if abs(prev_value - value) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : float ) -> float: '''simple docstring''' return 0.0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])]) lowerCAmelCase_ : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1])]) return lowest, highest def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = 5_12 lowerCAmelCase_ : Union[str, Any] = [1] + [0] * (size - 1) lowerCAmelCase_ : Any = [filter_type.process(snake_case__) for item in inputs] lowerCAmelCase_ : Optional[int] = [0] * (samplerate - size) # zero-padding outputs += filler lowerCAmelCase_ : Optional[Any] = np.abs(np.fft.fft(snake_case__)) lowerCAmelCase_ : Any = 20 * np.logaa(snake_case__) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") # Display within reasonable bounds lowerCAmelCase_ : Optional[Any] = get_bounds(snake_case__ , snake_case__) plt.ylim(max([-80, bounds[0]]) , min([80, bounds[1]])) plt.ylabel("Gain (dB)") plt.plot(snake_case__) plt.show() def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = 5_12 lowerCAmelCase_ : Tuple = [1] + [0] * (size - 1) lowerCAmelCase_ : Optional[Any] = [filter_type.process(snake_case__) for item in inputs] lowerCAmelCase_ : str = [0] * (samplerate - size) # zero-padding outputs += filler lowerCAmelCase_ : str = np.angle(np.fft.fft(snake_case__)) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") plt.ylim(-2 * pi , 2 * pi) plt.ylabel("Phase shift (Radians)") plt.plot(np.unwrap(snake_case__ , -2 * pi)) plt.show()
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase_ = Features({'text': Value('string' )} ) UpperCamelCase_ = Features({'summary': Value('string' )} ) UpperCamelCase_ = "text" UpperCamelCase_ = "summary" @property def UpperCAmelCase_ ( self : Optional[int] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = '''RegNetConfig''' # Base docstring _lowercase = '''facebook/regnet-y-040''' _lowercase = [1, 1088, 7, 7] # Image classification docstring _lowercase = '''facebook/regnet-y-040''' _lowercase = '''tabby, tabby cat''' _lowercase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 3 ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : int = 1 ,lowerCAmelCase__ : Optional[str] = "relu" ,) -> str: '''simple docstring''' super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Convad( lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=lowerCAmelCase__ ,stride=lowerCAmelCase__ ,padding=kernel_size // 2 ,groups=lowerCAmelCase__ ,bias=lowerCAmelCase__ ,) lowerCAmelCase_ : str = nn.BatchNormad(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.convolution(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.normalization(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : RegNetConfig ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[str] = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) lowerCAmelCase_ : Optional[int] = config.num_channels def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCAmelCase_ : Dict = self.embedder(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 2 ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,stride=lowerCAmelCase__ ,bias=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = nn.BatchNormad(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.convolution(lowerCAmelCase__ ) lowerCAmelCase_ : str = self.normalization(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> Any: '''simple docstring''' super().__init__() lowerCAmelCase_ : str = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase_ : Optional[int] = nn.Sequential( nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.pooler(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.attention(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = hidden_state * attention return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 1 ) -> Optional[Any]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Any = in_channels != out_channels or stride != 1 lowerCAmelCase_ : str = max(1 ,out_channels // config.groups_width ) lowerCAmelCase_ : List[Any] = ( RegNetShortCut(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,groups=lowerCAmelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=lowerCAmelCase__ ) ,) lowerCAmelCase_ : Union[str, Any] = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = hidden_state lowerCAmelCase_ : str = self.layer(lowerCAmelCase__ ) lowerCAmelCase_ : str = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowerCAmelCase_ : Optional[int] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : int ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCAmelCase_ : Optional[int] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : Union[str, Any] = max(1 ,out_channels // config.groups_width ) lowerCAmelCase_ : Optional[int] = ( RegNetShortCut(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : Union[str, Any] = nn.Sequential( RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,groups=lowerCAmelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCAmelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCAmelCase__ ,lowerCAmelCase__ ,kernel_size=1 ,activation=lowerCAmelCase__ ) ,) lowerCAmelCase_ : Dict = ACTaFN[config.hidden_act] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = hidden_state lowerCAmelCase_ : List[str] = self.layer(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.shortcut(lowerCAmelCase__ ) hidden_state += residual lowerCAmelCase_ : List[str] = self.activation(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : RegNetConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int = 2 ,lowerCAmelCase__ : int = 2 ,) -> int: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[Any] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer lowerCAmelCase_ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,stride=lowerCAmelCase__ ,) ,*[layer(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for _ in range(depth - 1 )] ,) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.layers(lowerCAmelCase__ ) return hidden_state class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : List[str] ,lowerCAmelCase__ : RegNetConfig ) -> Dict: '''simple docstring''' super().__init__() lowerCAmelCase_ : List[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCAmelCase_ : List[Any] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,depth=lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tensor ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' lowerCAmelCase_ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ : Optional[Any] = hidden_states + (hidden_state,) lowerCAmelCase_ : int = stage_module(lowerCAmelCase__ ) if output_hidden_states: lowerCAmelCase_ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ ,hidden_states=lowerCAmelCase__ ) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = RegNetConfig UpperCamelCase_ = 'regnet' UpperCamelCase_ = 'pixel_values' UpperCamelCase_ = True def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="fan_out" ,nonlinearity="relu" ) elif isinstance(lowerCAmelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str]=False ) -> str: '''simple docstring''' if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = value _lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = config lowerCAmelCase_ : Union[str, Any] = RegNetEmbeddings(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = RegNetEncoder(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tensor ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowerCAmelCase_ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Optional[int] = self.embedder(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.encoder( lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : str = encoder_outputs[0] lowerCAmelCase_ : int = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ ,pooler_output=lowerCAmelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : str = config.num_labels lowerCAmelCase_ : Dict = RegNetModel(lowerCAmelCase__ ) # classification head lowerCAmelCase_ : Optional[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCAmelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Optional[torch.FloatTensor] = None ,lowerCAmelCase__ : Optional[torch.LongTensor] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : int = self.regnet(lowerCAmelCase__ ,output_hidden_states=lowerCAmelCase__ ,return_dict=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : Tuple = self.classifier(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : List[str] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : Dict = "single_label_classification" else: lowerCAmelCase_ : str = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase_ : Dict = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : str = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase_ : List[Any] = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : Tuple = CrossEntropyLoss() lowerCAmelCase_ : List[Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : int = BCEWithLogitsLoss() lowerCAmelCase_ : Optional[int] = loss_fct(lowerCAmelCase__ ,lowerCAmelCase__ ) if not return_dict: lowerCAmelCase_ : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ ,logits=lowerCAmelCase__ ,hidden_states=outputs.hidden_states )
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = len(snake_case__) lowerCAmelCase_ : str = len(matrix[0]) lowerCAmelCase_ : Dict = min(snake_case__ , snake_case__) for row in range(snake_case__): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , snake_case__): lowerCAmelCase_ : Tuple = matrix[col][row] / matrix[row][row] for i in range(snake_case__ , snake_case__): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase_ : Union[str, Any] = True for i in range(row + 1 , snake_case__): if matrix[i][row] != 0: lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = matrix[i], matrix[row] lowerCAmelCase_ : Union[str, Any] = False break if reduce: rank -= 1 for i in range(snake_case__): lowerCAmelCase_ : List[str] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''.''' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _lowercase = [ '''Assert''', '''AssignVariableOp''', '''EmptyTensorList''', '''MergeV2Checkpoints''', '''ReadVariableOp''', '''ResourceGather''', '''RestoreV2''', '''SaveV2''', '''ShardedFilename''', '''StatefulPartitionedCall''', '''StaticRegexFullMatch''', '''VarHandleOp''', ] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = SavedModel() lowerCAmelCase_ : List[Any] = [] with open(os.path.join(snake_case__ , "utils" , "tf_ops" , "onnx.json")) as f: lowerCAmelCase_ : List[Any] = json.load(snake_case__)["opsets"] for i in range(1 , opset + 1): onnx_ops.extend(onnx_opsets[str(snake_case__)]) with open(snake_case__ , "rb") as f: saved_model.ParseFromString(f.read()) lowerCAmelCase_ : Tuple = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def) # Convert to list, sorted if you want lowerCAmelCase_ : Optional[Any] = sorted(snake_case__) lowerCAmelCase_ : List[str] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(snake_case__) if strict and len(snake_case__) > 0: raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops) elif len(snake_case__) > 0: print(F'''Found the following incompatible ops for the opset {opset}:''') print(*snake_case__ , sep="\n") else: print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''') if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--saved_model_path''', help='''Path of the saved model to check (the .pb file).''') parser.add_argument( '''--opset''', default=12, type=int, help='''The ONNX opset against which the model has to be tested.''' ) parser.add_argument( '''--framework''', choices=['''onnx'''], default='''onnx''', help='''Frameworks against which to test the saved model.''' ) parser.add_argument( '''--strict''', action='''store_true''', help='''Whether make the checking strict (raise errors) or not (raise warnings)''' ) _lowercase = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Tuple=2 ,lowerCAmelCase__ : Dict=56 ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : str=99 ,lowerCAmelCase__ : List[Any]=32 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : Tuple=7 ,lowerCAmelCase__ : List[str]="gelu_new" ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[int]=0.1 ,lowerCAmelCase__ : List[str]=5_12 ,lowerCAmelCase__ : Tuple=16 ,lowerCAmelCase__ : Union[str, Any]=2 ,lowerCAmelCase__ : Optional[Any]=0.02 ,lowerCAmelCase__ : int=4 ,lowerCAmelCase__ : int="block_sparse" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : str=2 ,lowerCAmelCase__ : Dict=3 ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : Tuple = seq_length lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : List[Any] = use_attention_mask lowerCAmelCase_ : Any = use_token_type_ids lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Any = num_choices lowerCAmelCase_ : Tuple = rescale_embeddings lowerCAmelCase_ : str = attention_type lowerCAmelCase_ : Optional[int] = use_bias lowerCAmelCase_ : Any = block_size lowerCAmelCase_ : int = num_random_blocks def UpperCAmelCase_ ( self : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_attention_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase_ : Tuple = BigBirdConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCAmelCase__ ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,block_size=self.block_size ,num_random_blocks=self.num_random_blocks ,use_bias=self.use_bias ,rescale_embeddings=self.rescale_embeddings ,) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = config_and_inputs lowerCAmelCase_ : Optional[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCamelCase_ = False UpperCamelCase_ = False def UpperCAmelCase_ ( self : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase_ : int = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[int]=None ,**lowerCAmelCase__ : Optional[int] ): return model(input_ids=lowerCAmelCase__ ,attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase_ : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_ : Union[str, Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ ,lowerCAmelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[Any]=1e-5 ,lowerCAmelCase__ : int="outputs" ,lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
def UpperCamelCase ( snake_case__ , snake_case__): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase_ : Optional[int] = (boundary[1] - boundary[0]) / steps lowerCAmelCase_ : Optional[int] = boundary[0] lowerCAmelCase_ : List[str] = boundary[1] lowerCAmelCase_ : Union[str, Any] = make_points(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Union[str, Any] = 0.0 y += (h / 2.0) * f(snake_case__) for i in x_i: # print(i) y += h * f(snake_case__) y += (h / 2.0) * f(snake_case__) return y def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : int = a + h while x < (b - h): yield x lowerCAmelCase_ : Optional[Any] = x + h def UpperCamelCase ( snake_case__): # enter your function here lowerCAmelCase_ : Any = (x - 0) * (x - 0) return y def UpperCamelCase ( ): lowerCAmelCase_ : Union[str, Any] = 0.0 # Lower bound of integration lowerCAmelCase_ : List[str] = 1.0 # Upper bound of integration lowerCAmelCase_ : List[Any] = 10.0 # define number of steps or resolution lowerCAmelCase_ : Union[str, Any] = [a, b] # define boundary of integration lowerCAmelCase_ : Any = method_a(snake_case__ , snake_case__) print(F'''y = {y}''') if __name__ == "__main__": main()
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCamelCase ( snake_case__ , snake_case__ , **snake_case__): lowerCAmelCase_ : int = AutoConfig.from_pretrained(snake_case__ , **snake_case__) lowerCAmelCase_ : Any = AutoModelForSeqaSeqLM.from_config(snake_case__) model.save_pretrained(snake_case__) AutoTokenizer.from_pretrained(snake_case__).save_pretrained(snake_case__) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } _lowercase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } _lowercase = '''▁''' # Segments (not really needed) _lowercase = 0 _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 'left' UpperCamelCase_ = XLNetTokenizer def __init__( self : Dict ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : int=False ,lowerCAmelCase__ : str="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Dict="<unk>" ,lowerCAmelCase__ : Optional[int]="<sep>" ,lowerCAmelCase__ : int="<pad>" ,lowerCAmelCase__ : Optional[Any]="<cls>" ,lowerCAmelCase__ : Union[str, Any]="<mask>" ,lowerCAmelCase__ : Tuple=["<eop>", "<eod>"] ,**lowerCAmelCase__ : Dict ,) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( vocab_file=lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,remove_space=lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,additional_special_tokens=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Union[str, Any] = 3 lowerCAmelCase_ : List[str] = do_lower_case lowerCAmelCase_ : Tuple = remove_space lowerCAmelCase_ : List[str] = keep_accents lowerCAmelCase_ : Optional[Any] = vocab_file lowerCAmelCase_ : Tuple = False if not self.vocab_file else True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Any = [self.sep_token_id] lowerCAmelCase_ : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file ,lowerCAmelCase__ ) return (out_vocab_file,)
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import functools def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = len(snake_case__) lowerCAmelCase_ : Tuple = len(snake_case__) @functools.cache def min_distance(snake_case__ , snake_case__) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ : int = int(worda[indexa] != worda[indexa]) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case__) , 1 + min_distance(snake_case__ , indexa + 1) , diff + min_distance(indexa + 1 , indexa + 1) , ) return min_distance(0 , 0) if __name__ == "__main__": import doctest doctest.testmod()
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = iter(snake_case__) while True: lowerCAmelCase_ : List[str] = tuple(itertools.islice(snake_case__ , snake_case__)) if not chunk: return yield chunk def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = "".join([c.upper() for c in dirty if c in string.ascii_letters]) lowerCAmelCase_ : str = "" if len(snake_case__) < 2: return dirty for i in range(len(snake_case__) - 1): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(snake_case__) & 1: clean += "X" return clean def UpperCamelCase ( snake_case__): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase_ : Tuple = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase_ : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(snake_case__) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(snake_case__) return table def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = generate_table(snake_case__) lowerCAmelCase_ : List[Any] = prepare_input(snake_case__) lowerCAmelCase_ : Optional[int] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case__ , 2): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = divmod(table.index(snake_case__) , 5) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = divmod(table.index(snake_case__) , 5) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = generate_table(snake_case__) lowerCAmelCase_ : Dict = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(snake_case__ , 2): lowerCAmelCase_ , lowerCAmelCase_ : str = divmod(table.index(snake_case__) , 5) lowerCAmelCase_ , lowerCAmelCase_ : int = divmod(table.index(snake_case__) , 5) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = XGLMTokenizer UpperCamelCase_ = XGLMTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = True def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Dict = XGLMTokenizer(lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = "<pad>" lowerCAmelCase_ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) ,lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) ,10_08 ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,10_08 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : str = XGLMTokenizer(lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase__ ,["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] ,) lowerCAmelCase_ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] ,) lowerCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ ,[ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] ,) @cached_property def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase__ ,f.name ) lowerCAmelCase_ : str = XGLMTokenizer(f.name ,keep_accents=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = pickle.dumps(lowerCAmelCase__ ) pickle.loads(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : List[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Tuple = "I was born in 92000, and this is falsé." lowerCAmelCase_ : Dict = tokenizer.tokenize(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) @slow def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = "Hello World!" lowerCAmelCase_ : Tuple = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase__ ,self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off lowerCAmelCase_ : Dict = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase__ ,self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCAmelCase_ ( self : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = { "input_ids": [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ ,model_name="facebook/xglm-564M" ,padding=lowerCAmelCase__ ,)
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
def UpperCamelCase ( snake_case__ , snake_case__): return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = (IPNDMScheduler,) UpperCamelCase_ = (('num_inference_steps', 5_0),) def UpperCAmelCase_ ( self : List[str] ,**lowerCAmelCase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = {"num_train_timesteps": 10_00} config.update(**lowerCAmelCase__ ) return config def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Tuple=0 ,**lowerCAmelCase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : str = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Any = kwargs.pop("num_inference_steps" ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.dummy_sample lowerCAmelCase_ : int = 0.1 * sample lowerCAmelCase_ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : int = self.get_scheduler_config(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals lowerCAmelCase_ : Any = dummy_past_residuals[:] lowerCAmelCase_ : List[Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : Optional[Any] = new_scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase_ : Any = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : Union[str, Any] = new_scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any]=0 ,**lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop("num_inference_steps" ,lowerCAmelCase__ ) lowerCAmelCase_ : str = self.dummy_sample lowerCAmelCase_ : List[str] = 0.1 * sample lowerCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[str] = self.get_scheduler_config() lowerCAmelCase_ : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : List[Any] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : str = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Any = dummy_past_residuals[:] lowerCAmelCase_ : Optional[int] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : List[str] = new_scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase_ : Union[str, Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : Optional[int] = new_scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : int ,**lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) lowerCAmelCase_ : str = 10 lowerCAmelCase_ : int = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Any = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : int = model(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ).prev_sample return sample def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Tuple = kwargs.pop("num_inference_steps" ,lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config() lowerCAmelCase_ : List[Any] = scheduler_class(**lowerCAmelCase__ ) lowerCAmelCase_ : str = self.dummy_sample lowerCAmelCase_ : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ ,"set_timesteps" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ ,"set_timesteps" ): lowerCAmelCase_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase_ : List[Any] = dummy_past_residuals[:] lowerCAmelCase_ : Optional[int] = scheduler.timesteps[5] lowerCAmelCase_ : List[str] = scheduler.timesteps[6] lowerCAmelCase_ : List[str] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : Union[str, Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) lowerCAmelCase_ : int = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample lowerCAmelCase_ : List[Any] = scheduler.step(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ,time_step=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ,time_step=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.full_loop() lowerCAmelCase_ : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCamelCase ( snake_case__ = 1_00): lowerCAmelCase_ : str = 1 lowerCAmelCase_ : Tuple = 2 for i in range(2 , max_n + 1): lowerCAmelCase_ : Union[str, Any] = pre_numerator lowerCAmelCase_ : int = 2 * i // 3 if i % 3 == 0 else 1 lowerCAmelCase_ : Union[str, Any] = cur_numerator lowerCAmelCase_ : List[Any] = e_cont * pre_numerator + temp return sum_digits(snake_case__) if __name__ == "__main__": print(f"{solution() = }")
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase = None _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } _lowercase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowercase = '''▁''' class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = AlbertTokenizer def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : str=None ,lowerCAmelCase__ : Union[str, Any]=True ,lowerCAmelCase__ : Dict=True ,lowerCAmelCase__ : List[Any]=False ,lowerCAmelCase__ : Optional[int]="[CLS]" ,lowerCAmelCase__ : List[Any]="[SEP]" ,lowerCAmelCase__ : Dict="<unk>" ,lowerCAmelCase__ : int="[SEP]" ,lowerCAmelCase__ : Optional[Any]="<pad>" ,lowerCAmelCase__ : List[str]="[CLS]" ,lowerCAmelCase__ : Optional[Any]="[MASK]" ,**lowerCAmelCase__ : Optional[int] ,) -> int: '''simple docstring''' lowerCAmelCase_ : int = ( AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ,normalized=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token ) super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,remove_space=lowerCAmelCase__ ,keep_accents=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : List[str] = remove_space lowerCAmelCase_ : Any = keep_accents lowerCAmelCase_ : Optional[Any] = vocab_file lowerCAmelCase_ : Optional[int] = False if not self.vocab_file else True def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : List[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file ,lowerCAmelCase__ ) return (out_vocab_file,)
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ShapEPipeline UpperCamelCase_ = ['prompt'] UpperCamelCase_ = ['prompt'] UpperCamelCase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCamelCase_ = False @property def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self : str ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' return 8 @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : List[Any] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCAmelCase_ : Optional[int] = PriorTransformer(**lowerCAmelCase__ ) return model @property def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase_ : Any = ShapERenderer(**lowerCAmelCase__ ) return model def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = self.dummy_prior lowerCAmelCase_ : Optional[int] = self.dummy_text_encoder lowerCAmelCase_ : Tuple = self.dummy_tokenizer lowerCAmelCase_ : Any = self.dummy_renderer lowerCAmelCase_ : List[Any] = HeunDiscreteScheduler( beta_schedule="exp" ,num_train_timesteps=10_24 ,prediction_type="sample" ,use_karras_sigmas=lowerCAmelCase__ ,clip_sample=lowerCAmelCase__ ,clip_sample_range=1.0 ,) lowerCAmelCase_ : Union[str, Any] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : str=0 ) -> Union[str, Any]: '''simple docstring''' if str(lowerCAmelCase__ ).startswith("mps" ): lowerCAmelCase_ : int = torch.manual_seed(lowerCAmelCase__ ) else: lowerCAmelCase_ : List[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = "cpu" lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : str = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : str = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = output.images[0] lowerCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase_ : List[str] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Dict ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = torch_device == "cpu" lowerCAmelCase_ : List[str] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=lowerCAmelCase__ ,relax_max_difference=lowerCAmelCase__ ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ : Dict = self.pipeline_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : str = self.get_dummy_inputs(lowerCAmelCase__ ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase_ : List[str] = batch_size * [inputs[key]] lowerCAmelCase_ : List[str] = pipe(**lowerCAmelCase__ ,num_images_per_prompt=lowerCAmelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) lowerCAmelCase_ : Optional[int] = ShapEPipeline.from_pretrained("openai/shap-e" ) lowerCAmelCase_ : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) lowerCAmelCase_ : List[str] = pipe( "a shark" ,generator=lowerCAmelCase__ ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="np" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ ,lowerCAmelCase__ )
683
from collections.abc import Iterable from typing import Any class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : int | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Node | None = None # Added in order to delete a node easier lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} ,indent=1 ) class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : Node | None = None ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = root def __str__( self : Dict ) -> str: '''simple docstring''' return str(self.root ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Node ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase_ : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCAmelCase__ ): # If it is the right children lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : List[Any] = new_children else: lowerCAmelCase_ : Any = new_children def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Node ) -> bool: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.root is None def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' lowerCAmelCase_ : str = Node(lowerCAmelCase__ ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase_ : Optional[int] = new_node # set its root else: # Tree is not empty lowerCAmelCase_ : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase_ : Dict = new_node # We insert the new node in a leaf break else: lowerCAmelCase_ : List[str] = parent_node.left else: if parent_node.right is None: lowerCAmelCase_ : Dict = new_node break else: lowerCAmelCase_ : str = parent_node.right lowerCAmelCase_ : Optional[int] = parent_node def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ) -> None: '''simple docstring''' for value in values: self.__insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ) -> Node | None: '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowerCAmelCase_ : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase_ : Union[str, Any] = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase_ : Dict = self.root if not self.empty(): while node.right is not None: lowerCAmelCase_ : Union[str, Any] = node.right return node def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Node | None = None ) -> Node | None: '''simple docstring''' if node is None: lowerCAmelCase_ : Dict = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase_ : Dict = self.root while node.left is not None: lowerCAmelCase_ : Union[str, Any] = node.left return node def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = self.search(lowerCAmelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCAmelCase__ ,lowerCAmelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCAmelCase__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCAmelCase__ ,node.left ) else: lowerCAmelCase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase_ : Any = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Node | None ) -> Iterable: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Dict=None ) -> Any: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : list ,lowerCAmelCase__ : Node | None ) -> None: '''simple docstring''' if node: self.inorder(lowerCAmelCase__ ,node.left ) arr.append(node.value ) self.inorder(lowerCAmelCase__ ,node.right ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Node ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [] self.inorder(lowerCAmelCase__ ,lowerCAmelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = [] if curr_node is not None: lowerCAmelCase_ : Dict = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node] return node_list def UpperCamelCase ( ): lowerCAmelCase_ : Tuple = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase_ : Tuple = BinarySearchTree() for i in testlist: t.insert(snake_case__) # Prints all the elements of the list in order traversal print(snake_case__) if t.search(6) is not None: print("The value 6 exists") else: print("The value 6 doesn't exist") if t.search(-1) is not None: print("The value -1 exists") else: print("The value -1 doesn't exist") if not t.empty(): print("Max Value: " , t.get_max().value) # type: ignore print("Min Value: " , t.get_min().value) # type: ignore for i in testlist: t.remove(snake_case__) print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
683
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = jnp.ones((batch_size, length) ) / length return scores def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = None lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(batch_size=2 ,length=lowerCAmelCase__ ) # tweak scores to not be uniform anymore lowerCAmelCase_ : List[str] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase_ : Union[str, Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(lowerCAmelCase__ ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : str = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase_ : int = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) lowerCAmelCase_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ ,scores.copy() ,cur_len=lowerCAmelCase__ ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Tuple = 2 # create ramp distribution lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() lowerCAmelCase_ : int = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase_ : str = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : Any = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase_ : List[Any] = 5 lowerCAmelCase_ : Dict = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCAmelCase_ : List[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, length) ).copy() lowerCAmelCase_ : List[Any] = top_k_warp_safety_check(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : List[str] = 10 lowerCAmelCase_ : Optional[int] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase_ : Optional[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase_ : Any = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase_ : Union[str, Any] = np.exp(top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase_ : Optional[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase_ : Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__ )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase_ : Optional[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase_ : Tuple = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 20 lowerCAmelCase_ : List[str] = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) # check that min length is applied at length 5 lowerCAmelCase_ : Any = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCAmelCase_ : Dict = 5 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase_ : Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = 15 lowerCAmelCase_ : Optional[int] = min_dist_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = 20 lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase_ : Any = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : int = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase_ : List[str] = 3 lowerCAmelCase_ : Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = 20 lowerCAmelCase_ : int = 4 lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Any = 5 lowerCAmelCase_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase_ : Optional[Any] = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCAmelCase_ : Union[str, Any] = 4 lowerCAmelCase_ : Any = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase_ : Union[str, Any] = 3 lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = logits_processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) self.assertFalse(jnp.isinf(lowerCAmelCase__ ).any() ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = 4 lowerCAmelCase_ : Union[str, Any] = 10 lowerCAmelCase_ : List[Any] = 15 lowerCAmelCase_ : Tuple = 2 lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Dict = 15 # dummy input_ids and scores lowerCAmelCase_ : List[Any] = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = input_ids.copy() lowerCAmelCase_ : str = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : int = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : str = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : Any = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = 10 # no processor list lowerCAmelCase_ : int = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # with processor list lowerCAmelCase_ : Dict = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : List[str] = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : int = 15 lowerCAmelCase_ : Union[str, Any] = 2 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : List[Any] = 15 # dummy input_ids and scores lowerCAmelCase_ : str = ids_tensor((batch_size, sequence_length) ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = input_ids.copy() lowerCAmelCase_ : Optional[int] = self._get_uniform_logits(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = scores.copy() # instantiate all dist processors lowerCAmelCase_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase_ : str = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ ,eos_token_id=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = temp_dist_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = top_k_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Any = top_p_warp(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = min_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = eos_dist_proc(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores # with processor list def run_processor_list(lowerCAmelCase__ : str ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Union[str, Any] ): lowerCAmelCase_ : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase_ : Any = processor(lowerCAmelCase__ ,lowerCAmelCase__ ,cur_len=lowerCAmelCase__ ) return scores lowerCAmelCase_ : Any = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jax.jit(lowerCAmelCase__ ) lowerCAmelCase_ : str = jitted_run_no_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = jitted_run_processor_list(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
683
from __future__ import annotations def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor") elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor") elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor") elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
683
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'AutoTokenizer' UpperCamelCase_ = ['tokenizer'] UpperCamelCase_ = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[Any]=None ) -> Tuple: '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = speaker_embeddings @classmethod def UpperCAmelCase_ ( cls : Any ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict="speaker_embeddings_path.json" ,**lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: lowerCAmelCase_ : Optional[Any] = get_file_from_repo( lowerCAmelCase__ ,lowerCAmelCase__ ,subfolder=kwargs.pop("subfolder" ,lowerCAmelCase__ ) ,cache_dir=kwargs.pop("cache_dir" ,lowerCAmelCase__ ) ,force_download=kwargs.pop("force_download" ,lowerCAmelCase__ ) ,proxies=kwargs.pop("proxies" ,lowerCAmelCase__ ) ,resume_download=kwargs.pop("resume_download" ,lowerCAmelCase__ ) ,local_files_only=kwargs.pop("local_files_only" ,lowerCAmelCase__ ) ,use_auth_token=kwargs.pop("use_auth_token" ,lowerCAmelCase__ ) ,revision=kwargs.pop("revision" ,lowerCAmelCase__ ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowerCAmelCase_ : Dict = None else: with open(lowerCAmelCase__ ) as speaker_embeddings_json: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) return cls(tokenizer=lowerCAmelCase__ ,speaker_embeddings=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Any="speaker_embeddings_path.json" ,lowerCAmelCase__ : Any="speaker_embeddings" ,lowerCAmelCase__ : bool = False ,**lowerCAmelCase__ : Union[str, Any] ,) -> List[Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ,"v2" ) ,exist_ok=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Optional[int] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowerCAmelCase_ : Dict = self._load_voice_preset(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"] ,lowerCAmelCase__ ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = os.path.join(lowerCAmelCase__ ,f'''{prompt_key}_{key}.npy''' ) lowerCAmelCase_ : List[str] = tmp_dict with open(os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ,"w" ) as fp: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) super().save_pretrained(lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str = None ,**lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = self.speaker_embeddings[voice_preset] lowerCAmelCase_ : Optional[Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowerCAmelCase_ : List[str] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("subfolder" ,lowerCAmelCase__ ) ,cache_dir=kwargs.pop("cache_dir" ,lowerCAmelCase__ ) ,force_download=kwargs.pop("force_download" ,lowerCAmelCase__ ) ,proxies=kwargs.pop("proxies" ,lowerCAmelCase__ ) ,resume_download=kwargs.pop("resume_download" ,lowerCAmelCase__ ) ,local_files_only=kwargs.pop("local_files_only" ,lowerCAmelCase__ ) ,use_auth_token=kwargs.pop("use_auth_token" ,lowerCAmelCase__ ) ,revision=kwargs.pop("revision" ,lowerCAmelCase__ ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowerCAmelCase_ : str = np.load(lowerCAmelCase__ ) return voice_preset_dict def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Optional[dict] = None ) -> Tuple: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : Dict ,lowerCAmelCase__ : int=None ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : Union[str, Any]="pt" ,lowerCAmelCase__ : int=2_56 ,lowerCAmelCase__ : str=False ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Optional[Any]=False ,**lowerCAmelCase__ : List[Any] ,) -> Optional[int]: '''simple docstring''' if voice_preset is not None and not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): if ( isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowerCAmelCase_ : List[str] = self._load_voice_preset(lowerCAmelCase__ ) else: if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) and not voice_preset.endswith(".npz" ): lowerCAmelCase_ : List[Any] = voice_preset + ".npz" lowerCAmelCase_ : Dict = np.load(lowerCAmelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase__ ,**lowerCAmelCase__ ) lowerCAmelCase_ : str = BatchFeature(data=lowerCAmelCase__ ,tensor_type=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.tokenizer( lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,padding="max_length" ,max_length=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,return_token_type_ids=lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,**lowerCAmelCase__ ,) if voice_preset is not None: lowerCAmelCase_ : Dict = voice_preset return encoded_text
683
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = HfArgumentParser(snake_case__) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=snake_case__) try: lowerCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowerCAmelCase_ : Tuple = " ".join(str(snake_case__).split(" ")[:-1]) lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : Optional[Any] = eval(str(snake_case__).split(" ")[-1]) lowerCAmelCase_ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(snake_case__) if len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = full_error_msg + begin_error_msg + str(snake_case__) raise ValueError(snake_case__) benchmark.run() if __name__ == "__main__": main()
683
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowercase = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' _lowercase = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' _lowercase = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ) ,id="references" ), } ) ,codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] ,reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] ,) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : List[str]=4 ,lowerCAmelCase__ : List[str]=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = compute_bleu( reference_corpus=lowerCAmelCase__ ,translation_corpus=lowerCAmelCase__ ,max_order=lowerCAmelCase__ ,smooth=lowerCAmelCase__ ) ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
683
_lowercase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCamelCase ( snake_case__): assert type(snake_case__) in (int, float) and decimal == int(snake_case__) lowerCAmelCase_ : Optional[Any] = int(snake_case__) lowerCAmelCase_ : Tuple = "" lowerCAmelCase_ : str = False if decimal < 0: lowerCAmelCase_ : Tuple = True decimal *= -1 while decimal > 0: lowerCAmelCase_ , lowerCAmelCase_ : Any = divmod(snake_case__ , 16) lowerCAmelCase_ : Dict = values[remainder] + hexadecimal lowerCAmelCase_ : List[str] = "0x" + hexadecimal if negative: lowerCAmelCase_ : Optional[Any] = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
683
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowercase = {'''UserAgent''': UserAgent().random} def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = script.contents[0] lowerCAmelCase_ : List[str] = json.loads(data[data.find("{\"config\"") : -1]) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : """simple docstring""" def __init__( self : Dict ,lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[str] = f'''https://www.instagram.com/{username}/''' lowerCAmelCase_ : Dict = self.get_json() def UpperCAmelCase_ ( self : Optional[Any] ) -> dict: '''simple docstring''' lowerCAmelCase_ : Any = requests.get(self.url ,headers=lowerCAmelCase__ ).text lowerCAmelCase_ : Tuple = BeautifulSoup(lowerCAmelCase__ ,"html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Any ) -> str: '''simple docstring''' return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : List[str] ) -> str: '''simple docstring''' return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def UpperCAmelCase_ ( self : List[str] ) -> str: '''simple docstring''' return self.user_data["username"] @property def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' return self.user_data["biography"] @property def UpperCAmelCase_ ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase_ ( self : List[str] ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def UpperCAmelCase_ ( self : Optional[int] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def UpperCamelCase ( snake_case__ = "github"): import os if os.environ.get("CI"): return # test failing on GitHub Actions lowerCAmelCase_ : Union[str, Any] = InstagramUser(snake_case__) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case__) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram.") assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowercase = InstagramUser('''github''') print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
683
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase = ['''text''', '''image''', '''audio'''] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : int = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((5_12, 5_12))) elif input_type == "audio": inputs.append(torch.ones(30_00)) elif isinstance(snake_case__ , snake_case__): inputs.append(create_inputs(snake_case__)) else: raise ValueError(F'''Invalid type requested: {input_type}''') return inputs def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = [] for output in outputs: if isinstance(snake_case__ , (str, AgentText)): output_types.append("text") elif isinstance(snake_case__ , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(snake_case__ , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(F'''Invalid output: {output}''') return output_types @is_tool_test class __snake_case : """simple docstring""" def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"inputs" ) ) self.assertTrue(hasattr(self.tool ,"outputs" ) ) lowerCAmelCase_ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input ,lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase_ : Optional[int] = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) ,self.tool.outputs ) def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' self.assertTrue(hasattr(self.tool ,"description" ) ) self.assertTrue(hasattr(self.tool ,"default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : str = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ ,self.tool.outputs ): lowerCAmelCase_ : Tuple = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = create_inputs(self.tool.inputs ) lowerCAmelCase_ : List[Any] = [] for _input, input_type in zip(lowerCAmelCase__ ,self.tool.inputs ): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase_ : List[Any] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : int = [outputs] self.assertEqual(len(lowerCAmelCase__ ) ,len(self.tool.outputs ) )
683
1
_lowercase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowercase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowercase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
683
import pytest _lowercase = '''__dummy_dataset1__''' _lowercase = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = dataset_loading_script_name lowerCAmelCase_ : List[str] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=snake_case__) lowerCAmelCase_ : List[Any] = script_dir / F'''{script_name}.py''' with open(snake_case__ , "w") as f: f.write(snake_case__) return str(snake_case__)
683
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart _lowercase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } _lowercase = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] UpperCamelCase_ = BartTokenizer def __init__( self : str ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Optional[Any]=None ,lowerCAmelCase__ : Dict="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : Tuple="</s>" ,lowerCAmelCase__ : int="</s>" ,lowerCAmelCase__ : int="<s>" ,lowerCAmelCase__ : Optional[int]="<unk>" ,lowerCAmelCase__ : List[str]="<pad>" ,lowerCAmelCase__ : Dict="<mask>" ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Tuple=True ,**lowerCAmelCase__ : str ,) -> int: '''simple docstring''' super().__init__( lowerCAmelCase__ ,lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,trim_offsets=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : List[Any] = getattr(lowerCAmelCase__ ,pre_tok_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = add_prefix_space lowerCAmelCase_ : List[str] = pre_tok_class(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase_ : int = "post_processor" lowerCAmelCase_ : str = getattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) if tokenizer_component_instance: lowerCAmelCase_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase_ : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase_ : Optional[Any] = tuple(state["cls"] ) lowerCAmelCase_ : Optional[int] = False if state.get("add_prefix_space" ,lowerCAmelCase__ ) != add_prefix_space: lowerCAmelCase_ : Union[str, Any] = add_prefix_space lowerCAmelCase_ : str = True if state.get("trim_offsets" ,lowerCAmelCase__ ) != trim_offsets: lowerCAmelCase_ : Optional[Any] = trim_offsets lowerCAmelCase_ : str = True if changes_to_apply: lowerCAmelCase_ : List[str] = getattr(lowerCAmelCase__ ,state.pop("type" ) ) lowerCAmelCase_ : List[Any] = component_class(**lowerCAmelCase__ ) setattr(self.backend_tokenizer ,lowerCAmelCase__ ,lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else value lowerCAmelCase_ : Optional[Any] = value def UpperCAmelCase_ ( self : str ,*lowerCAmelCase__ : Union[str, Any] ,**lowerCAmelCase__ : List[Any] ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : Dict = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ,*lowerCAmelCase__ : List[Any] ,**lowerCAmelCase__ : Dict ) -> BatchEncoding: '''simple docstring''' lowerCAmelCase_ : Optional[int] = kwargs.get("is_split_into_words" ,lowerCAmelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Tuple = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
683
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = CodeGenTokenizer UpperCamelCase_ = CodeGenTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = {'add_prefix_space': True} UpperCamelCase_ = False def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : int = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : str ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = "lower newer" lowerCAmelCase_ : Tuple = "lower newer" return input_text, output_text def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) lowerCAmelCase_ : Dict = "lower newer" lowerCAmelCase_ : Dict = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = "lower newer" # Testing tokenization lowerCAmelCase_ : Tuple = tokenizer.tokenize(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Any = rust_tokenizer.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : int = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : str = tokenizer.encode(lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) # Testing the unknown token lowerCAmelCase_ : Union[str, Any] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ,*lowerCAmelCase__ : List[str] ,**lowerCAmelCase__ : Optional[Any] ) -> List[str]: '''simple docstring''' pass def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ ,**lowerCAmelCase__ ) # Simple input lowerCAmelCase_ : int = "This is a simple input" lowerCAmelCase_ : Dict = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : str = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[int] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase__ ,tokenizer_r.encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase__ ,tokenizer_r.batch_encode_plus ,lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding="max_length" ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : List[str] = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Any = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[str] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(lowerCAmelCase__ ,padding="max_length" ,max_length=30 ,return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) lowerCAmelCase_ : Any = tokenizer(*lowerCAmelCase__ ,padding="max_length" ,max_length=60 ,return_tensors="np" ) lowerCAmelCase_ : Optional[int] = tokenizer(lowerCAmelCase__ ,padding=lowerCAmelCase__ ,truncate=lowerCAmelCase__ ,return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "$$$" lowerCAmelCase_ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=lowerCAmelCase__ ,add_bos_token=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = "This is a simple input" lowerCAmelCase_ : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : int = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = tokenizer(lowerCAmelCase__ ) self.assertEqual(out_s.input_ids[0] ,lowerCAmelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : List[str] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,lowerCAmelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowerCAmelCase_ : str = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#" lowerCAmelCase_ : int = "\nif len_a > len_b: result = a\nelse: result = b" lowerCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase__ ) lowerCAmelCase_ : str = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"] lowerCAmelCase_ : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ ,truncate_before_pattern=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass
683
1
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __snake_case ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = StableDiffusionPanoramaPipeline UpperCamelCase_ = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : List[str] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") ,up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") ,cross_attention_dim=32 ,) lowerCAmelCase_ : List[str] = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,) torch.manual_seed(0 ) lowerCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) lowerCAmelCase_ : int = CLIPTextModel(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase_ : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Any=0 ) -> Any: '''simple docstring''' lowerCAmelCase_ : str = torch.manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : int = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : List[Any] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : int = sd_pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Optional[int] = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[str] ) -> Dict: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self : Any ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.2_5e-3 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = "french fries" lowerCAmelCase_ : Optional[int] = sd_pipe(**lowerCAmelCase__ ,negative_prompt=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Union[str, Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' lowerCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : int = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = sd_pipe(**lowerCAmelCase__ ,view_batch_size=2 ) lowerCAmelCase_ : Any = output.images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : List[Any] = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Dict = self.get_dummy_components() lowerCAmelCase_ : Optional[int] = EulerAncestralDiscreteScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ) lowerCAmelCase_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : int = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = sd_pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Dict = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : str = PNDMScheduler( beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,skip_prk_steps=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline(**lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = sd_pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Any = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any=0 ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = torch.manual_seed(lowerCAmelCase__ ) lowerCAmelCase_ : str = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : str = "stabilityai/stable-diffusion-2-base" lowerCAmelCase_ : str = DDIMScheduler.from_pretrained(lowerCAmelCase__ ,subfolder="scheduler" ) lowerCAmelCase_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : Optional[int] = self.get_inputs() lowerCAmelCase_ : Any = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCAmelCase_ : Union[str, Any] = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : int ) -> Any: '''simple docstring''' lowerCAmelCase_ : str = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" ,safety_checker=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : Optional[int] = self.get_inputs() lowerCAmelCase_ : Union[str, Any] = pipe(**lowerCAmelCase__ ).images lowerCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCAmelCase_ : Tuple = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = 0 def callback_fn(lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : torch.FloatTensor ) -> None: lowerCAmelCase_ : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase_ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCAmelCase_ : Union[str, Any] = latents[0, -3:, -3:, -1] lowerCAmelCase_ : Dict = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase_ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCAmelCase_ : Tuple = latents[0, -3:, -3:, -1] lowerCAmelCase_ : Optional[int] = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[Any] = "stabilityai/stable-diffusion-2-base" lowerCAmelCase_ : Union[str, Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ ,subfolder="scheduler" ) lowerCAmelCase_ : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : Any = self.get_inputs() pipe(**lowerCAmelCase__ ,callback=lowerCAmelCase__ ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ : int = "stabilityai/stable-diffusion-2-base" lowerCAmelCase_ : List[Any] = DDIMScheduler.from_pretrained(lowerCAmelCase__ ,subfolder="scheduler" ) lowerCAmelCase_ : Any = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase__ ,scheduler=lowerCAmelCase__ ,safety_checker=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ : Any = self.get_inputs() lowerCAmelCase_ : Optional[Any] = pipe(**lowerCAmelCase__ ) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
683
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowercase = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowercase = {f"funnel-transformer/{name}": 512 for name in _model_names} _lowercase = {f"funnel-transformer/{name}": {'''do_lower_case''': True} for name in _model_names} class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ = FunnelTokenizer UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = 2 def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : Optional[int]=None ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : int="<sep>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : List[str]="<cls>" ,lowerCAmelCase__ : Optional[int]="<mask>" ,lowerCAmelCase__ : Union[str, Any]="<s>" ,lowerCAmelCase__ : List[str]="</s>" ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Any=None ,lowerCAmelCase__ : List[Any]="##" ,**lowerCAmelCase__ : int ,) -> List[Any]: '''simple docstring''' super().__init__( lowerCAmelCase__ ,tokenizer_file=lowerCAmelCase__ ,do_lower_case=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,clean_text=lowerCAmelCase__ ,tokenize_chinese_chars=lowerCAmelCase__ ,strip_accents=lowerCAmelCase__ ,wordpieces_prefix=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" ,lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" ,lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" ,lowerCAmelCase__ ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[int] = getattr(lowerCAmelCase__ ,normalizer_state.pop("type" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : List[str] = strip_accents lowerCAmelCase_ : Any = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCAmelCase__ ) lowerCAmelCase_ : int = do_lower_case def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ,lowerCAmelCase__ : str=None ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : str = self._tokenizer.model.save(lowerCAmelCase__ ,name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
683
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} _lowercase = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } _lowercase = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def UpperCamelCase ( snake_case__ , snake_case__): with open(snake_case__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : Dict = json.loads(f.read()) lowerCAmelCase_ : Tuple = collections.OrderedDict() lowerCAmelCase_ : Optional[int] = collections.OrderedDict() lowerCAmelCase_ : List[str] = collections.OrderedDict() with open(snake_case__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : int = f.readlines() lowerCAmelCase_ : List[str] = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = b lowerCAmelCase_ : List[Any] = idx for wd in b: lowerCAmelCase_ : Dict = idx return vocab, raw_vocab, ids_to_tokens, emoji class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : List[str]="<|endoftext|>" ,lowerCAmelCase__ : Optional[Any]="<|endoftext|>" ,lowerCAmelCase__ : List[Any]="<|startoftext|>" ,lowerCAmelCase__ : Optional[Any]="<|endoftext|>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : Union[str, Any] ,) -> List[Any]: '''simple docstring''' super().__init__( unk_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,do_clean_text=lowerCAmelCase__ ,**lowerCAmelCase__ ,) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCAmelCase_ : Optional[int] = do_clean_text lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = load_vocab_and_emoji(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' return self.subword_tokenizer.tokenize(lowerCAmelCase__ ,clean=self.do_clean_text ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(lowerCAmelCase__ ,self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : str = "".join(lowerCAmelCase__ ).strip() return out_string def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : "Conversation" ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ ,add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: lowerCAmelCase_ : str = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 if os.path.isdir(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Optional[int] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCAmelCase_ : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Optional[Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : List[Any] = token_index writer.write(",".join(lowerCAmelCase__ ) + "\n" ) index += 1 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: json.dump(self.emoji ,lowerCAmelCase__ ) return vocab_file, emoji_file class __snake_case ( snake_case__ ): """simple docstring""" def __init__( self : Dict ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = vocab # same as swe lowerCAmelCase_ : List[str] = ids_to_tokens # same as bpe lowerCAmelCase_ : List[str] = emoji lowerCAmelCase_ : Union[str, Any] = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) lowerCAmelCase_ : List[Any] = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCAmelCase_ : List[str] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCAmelCase_ : List[str] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCAmelCase_ : Optional[int] = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : List[str] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : str = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCAmelCase_ : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCAmelCase_ : int = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCAmelCase_ : int = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.content_repattera.sub("<URL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<EMAIL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<TEL>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = self.content_repattera.sub("<DATE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : int = self.content_repattera.sub("<DATE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = self.content_repattera.sub("<PRICE>" ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase_ : Tuple = content.replace("<BLOCK><BLOCK>" ,"<BLOCK>" ) return content def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Union[str, Any]=False ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : int = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : int = text.replace("\r\n" ,"<BR>" ) lowerCAmelCase_ : Union[str, Any] = text.replace("\n" ,"<BR>" ) lowerCAmelCase_ : int = text.replace("\r" ,"<BR>" ) lowerCAmelCase_ : Union[str, Any] = text.replace("\t" ,"<TAB>" ) lowerCAmelCase_ : Optional[Any] = text.replace("—" ,"ー" ) lowerCAmelCase_ : List[Any] = text.replace("−" ,"ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase_ : str = text.replace(lowerCAmelCase__ ,lowerCAmelCase__ ) if clean: lowerCAmelCase_ : Optional[Any] = self.clean_text(lowerCAmelCase__ ) def check_simbol(lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : List[Any] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: lowerCAmelCase_ : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(lowerCAmelCase__ : int ): lowerCAmelCase_ : Optional[int] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: lowerCAmelCase_ : Optional[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = [] while pos < len(lowerCAmelCase__ ): lowerCAmelCase_ : Dict = min(len(lowerCAmelCase__ ) ,pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCAmelCase_ : Optional[int] = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ ,lowerCAmelCase__ ,-1 ): lowerCAmelCase_ : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: lowerCAmelCase_ : List[str] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = sorted(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : x[0] )[0] result.append(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = e else: lowerCAmelCase_ : Union[str, Any] = pos + 1 lowerCAmelCase_ : List[str] = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCAmelCase_ : List[str] = end return result def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple="\n" ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Tuple = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : List[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : Any = "".join(lowerCAmelCase__ ) return text
683
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__): config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested") config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested") config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested") config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment") config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate") config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule") def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__) def UpperCamelCase ( snake_case__): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase_ : int = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase = doctest.register_optionflag('''IGNORE_RESULT''') _lowercase = doctest.OutputChecker class __snake_case ( snake_case__ ): """simple docstring""" def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase = CustomOutputChecker _lowercase = HfDoctestModule _lowercase = HfDocTestParser
683
1
_lowercase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowercase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _lowercase = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): assert len(str(snake_case__)) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase_ : int = year // 1_00 lowerCAmelCase_ : Any = (5 * (century % 4) + 2) % 7 lowerCAmelCase_ : int = year % 1_00 lowerCAmelCase_ : Tuple = centurian % 12 lowerCAmelCase_ : List[str] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase_ : Union[str, Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase_ : str = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
683
from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(snake_case__) lowerCAmelCase_ : Tuple = list(snake_case__) lowerCAmelCase_ : List[str] = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count += 1 lowerCAmelCase_ : Dict = "_" if count > 1: return False else: return "".join(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] while True: lowerCAmelCase_ : Tuple = ["$"] * len(snake_case__) lowerCAmelCase_ : Tuple = [] for i in range(len(snake_case__)): for j in range(i + 1 , len(snake_case__)): lowerCAmelCase_ : Optional[int] = compare_string(binary[i] , binary[j]) if k is False: lowerCAmelCase_ : str = "*" lowerCAmelCase_ : Tuple = "*" temp.append("X") for i in range(len(snake_case__)): if checka[i] == "$": pi.append(binary[i]) if len(snake_case__) == 0: return pi lowerCAmelCase_ : List[Any] = list(set(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = [] for minterm in minterms: lowerCAmelCase_ : Dict = "" for _ in range(snake_case__): lowerCAmelCase_ : Dict = str(minterm % 2) + string minterm //= 2 temp.append(snake_case__) return temp def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = list(snake_case__) lowerCAmelCase_ : Dict = list(snake_case__) lowerCAmelCase_ : Dict = 0 for i in range(len(snake_case__)): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = [0] * len(snake_case__) for i in range(len(chart[0])): lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : int = -1 for j in range(len(snake_case__)): if chart[j][i] == 1: count += 1 lowerCAmelCase_ : Optional[int] = j if count == 1: lowerCAmelCase_ : Union[str, Any] = 1 for i in range(len(snake_case__)): if select[i] == 1: for j in range(len(chart[0])): if chart[i][j] == 1: for k in range(len(snake_case__)): lowerCAmelCase_ : Tuple = 0 temp.append(prime_implicants[i]) while True: lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Dict = -1 lowerCAmelCase_ : Tuple = 0 for i in range(len(snake_case__)): lowerCAmelCase_ : Dict = chart[i].count(1) if count_n > max_n: lowerCAmelCase_ : Optional[int] = count_n lowerCAmelCase_ : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem]) for i in range(len(chart[0])): if chart[rem][i] == 1: for j in range(len(snake_case__)): lowerCAmelCase_ : Any = 0 def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [[0 for x in range(len(snake_case__))] for x in range(len(snake_case__))] for i in range(len(snake_case__)): lowerCAmelCase_ : Optional[Any] = prime_implicants[i].count("_") for j in range(len(snake_case__)): if is_for_table(prime_implicants[i] , binary[j] , snake_case__): lowerCAmelCase_ : Dict = 1 return chart def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = int(input("Enter the no. of variables\n")) lowerCAmelCase_ : Tuple = [ float(snake_case__) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n").split() ] lowerCAmelCase_ : Any = decimal_to_binary(snake_case__ , snake_case__) lowerCAmelCase_ : Dict = check(snake_case__) print("Prime Implicants are:") print(snake_case__) lowerCAmelCase_ : int = prime_implicant_chart(snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = selection(snake_case__ , snake_case__) print("Essential Prime Implicants are:") print(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() main()
683
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowercase = (720, 1280) # Height, Width _lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowercase = 1 / 100 _lowercase = '''''' _lowercase = '''''' _lowercase = '''''' _lowercase = 250 def UpperCamelCase ( ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_dataset(snake_case__ , snake_case__) for index in range(snake_case__): lowerCAmelCase_ : Optional[int] = random.sample(range(len(snake_case__)) , 4) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = update_image_and_anno( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , filter_scale=snake_case__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase_ : Tuple = random_chars(32) lowerCAmelCase_ : int = path.split(os.sep)[-1].rsplit("." , 1)[0] lowerCAmelCase_ : Union[str, Any] = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85]) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''') lowerCAmelCase_ : int = [] for anno in new_annos: lowerCAmelCase_ : Optional[int] = anno[3] - anno[1] lowerCAmelCase_ : Optional[int] = anno[4] - anno[2] lowerCAmelCase_ : Any = anno[1] + width / 2 lowerCAmelCase_ : List[str] = anno[2] + height / 2 lowerCAmelCase_ : str = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(snake_case__) with open(F'''{file_root}.txt''' , "w") as outfile: outfile.write("\n".join(line for line in annos_list)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : str = [] lowerCAmelCase_ : int = [] for label_file in glob.glob(os.path.join(snake_case__ , "*.txt")): lowerCAmelCase_ : Union[str, Any] = label_file.split(os.sep)[-1].rsplit("." , 1)[0] with open(snake_case__) as in_file: lowerCAmelCase_ : int = in_file.readlines() lowerCAmelCase_ : Optional[int] = os.path.join(snake_case__ , F'''{label_name}.jpg''') lowerCAmelCase_ : str = [] for obj_list in obj_lists: lowerCAmelCase_ : str = obj_list.rstrip("\n").split(" ") lowerCAmelCase_ : Union[str, Any] = float(obj[1]) - float(obj[3]) / 2 lowerCAmelCase_ : Any = float(obj[2]) - float(obj[4]) / 2 lowerCAmelCase_ : Tuple = float(obj[1]) + float(obj[3]) / 2 lowerCAmelCase_ : List[str] = float(obj[2]) + float(obj[4]) / 2 boxes.append([int(obj[0]), xmin, ymin, xmax, ymax]) if not boxes: continue img_paths.append(snake_case__) labels.append(snake_case__) return img_paths, labels def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 0.0 , ): lowerCAmelCase_ : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta) lowerCAmelCase_ : List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ : int = int(scale_x * output_size[1]) lowerCAmelCase_ : Optional[Any] = int(scale_y * output_size[0]) lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[Any] = [] for i, index in enumerate(snake_case__): lowerCAmelCase_ : Optional[int] = all_img_list[index] path_list.append(snake_case__) lowerCAmelCase_ : str = all_annos[index] lowerCAmelCase_ : List[str] = cva.imread(snake_case__) if i == 0: # top-left lowerCAmelCase_ : List[str] = cva.resize(snake_case__ , (divid_point_x, divid_point_y)) lowerCAmelCase_ : Optional[int] = img for bbox in img_annos: lowerCAmelCase_ : Optional[Any] = bbox[1] * scale_x lowerCAmelCase_ : List[Any] = bbox[2] * scale_y lowerCAmelCase_ : Optional[int] = bbox[3] * scale_x lowerCAmelCase_ : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 1: # top-right lowerCAmelCase_ : Union[str, Any] = cva.resize(snake_case__ , (output_size[1] - divid_point_x, divid_point_y)) lowerCAmelCase_ : Any = img for bbox in img_annos: lowerCAmelCase_ : int = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ : Tuple = bbox[2] * scale_y lowerCAmelCase_ : str = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 2: # bottom-left lowerCAmelCase_ : Union[str, Any] = cva.resize(snake_case__ , (divid_point_x, output_size[0] - divid_point_y)) lowerCAmelCase_ : List[str] = img for bbox in img_annos: lowerCAmelCase_ : Union[str, Any] = bbox[1] * scale_x lowerCAmelCase_ : Any = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ : List[Any] = bbox[3] * scale_x lowerCAmelCase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) else: # bottom-right lowerCAmelCase_ : List[str] = cva.resize( snake_case__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y)) lowerCAmelCase_ : str = img for bbox in img_annos: lowerCAmelCase_ : Dict = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ : Any = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ : Tuple = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase_ : str = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCamelCase ( snake_case__): assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase_ : Optional[int] = ascii_lowercase + digits return "".join(random.choice(snake_case__) for _ in range(snake_case__)) if __name__ == "__main__": main() print('''DONE ✅''')
683
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): lowerCAmelCase_ : List[Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed.") if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed.") lowerCAmelCase_ : List[str] = [] # custom device map if isinstance(snake_case__ , snake_case__) and len(device_map.keys()) > 1: lowerCAmelCase_ : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Union[str, Any] = get_keys_to_not_convert(snake_case__) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case__) lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case__) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : List[str] = load_in_abit lowerCAmelCase_ : Optional[int] = get_parameter_device(snake_case__) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager.") lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) # convert param to the right dtype lowerCAmelCase_ : Any = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[int] = name.replace(".weight" , "").replace(".bias" , "") lowerCAmelCase_ : Optional[int] = getattr(snake_case__ , snake_case__ , snake_case__) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(snake_case__): param.to(snake_case__) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' "We move the model to cuda.") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): lowerCAmelCase_ : str = replace_with_bnb_layers( snake_case__ , snake_case__ , modules_to_not_convert=snake_case__) lowerCAmelCase_ : Optional[int] = get_quantized_model_device_map( snake_case__ , snake_case__ , snake_case__ , max_memory=snake_case__ , no_split_module_classes=snake_case__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[int] = any(x in list(device_map.values()) for x in ["cpu", "disk"]) load_checkpoint_in_model( snake_case__ , snake_case__ , snake_case__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case__ , offload_state_dict=snake_case__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case__ , device_map=snake_case__ , offload_dir=snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None): if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization.") logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`.") if isinstance(snake_case__ , snake_case__): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'.") lowerCAmelCase_ : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : Union[str, Any] = special_dtypes lowerCAmelCase_ : Union[str, Any] = no_split_module_classes lowerCAmelCase_ : Any = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Tuple = get_balanced_memory( snake_case__ , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case__ , **snake_case__ , ) lowerCAmelCase_ : Tuple = max_memory lowerCAmelCase_ : Optional[Any] = infer_auto_device_map(snake_case__ , **snake_case__) if isinstance(snake_case__ , snake_case__): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : List[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ") else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit") del device_map_without_some_modules return device_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): if modules_to_not_convert is None: lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ , lowerCAmelCase_ : Tuple = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug.") return model def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , ): lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : Optional[int] = [] current_key_name.append(snake_case__) if isinstance(snake_case__ , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = ".".join(snake_case__) lowerCAmelCase_ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Dict = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False") lowerCAmelCase_ : List[str] = module.weight.data if module.bias is not None: lowerCAmelCase_ : Any = module.bias.data bnb_module.requires_grad_(snake_case__) setattr(snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = True if len(list(module.children())) > 0: lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = _replace_with_bnb_layers( snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def UpperCamelCase ( snake_case__): # Create a copy of the model with init_empty_weights(): lowerCAmelCase_ : List[Any] = deepcopy(snake_case__) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Dict = find_tied_parameters(snake_case__) # For compatibility with Accelerate < 0.18 if isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : List[str] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: lowerCAmelCase_ : Optional[Any] = sum(snake_case__ , []) lowerCAmelCase_ : List[Any] = len(snake_case__) > 0 # Check if it is a base model lowerCAmelCase_ : List[str] = False if hasattr(snake_case__ , "base_model_prefix"): lowerCAmelCase_ : Tuple = not hasattr(snake_case__ , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Union[str, Any] = list(model.named_children()) lowerCAmelCase_ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Any = set(snake_case__) - set(snake_case__) lowerCAmelCase_ : Tuple = list(set(snake_case__)) + list(snake_case__) # remove ".weight" from the keys lowerCAmelCase_ : List[str] = [".weight", ".bias"] lowerCAmelCase_ : Tuple = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : str = name.replace(snake_case__ , "") filtered_module_names.append(snake_case__) return filtered_module_names def UpperCamelCase ( snake_case__): for m in model.modules(): if isinstance(snake_case__ , bnb.nn.Linearabit): return True return False def UpperCamelCase ( snake_case__): return next(parameter.parameters()).device def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(snake_case__ , snake_case__ , 0 , dtype=snake_case__ , value=snake_case__) lowerCAmelCase_ : str = param_name lowerCAmelCase_ : Tuple = model if "." in tensor_name: lowerCAmelCase_ : Dict = tensor_name.split(".") for split in splits[:-1]: lowerCAmelCase_ : Any = getattr(snake_case__ , snake_case__) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') lowerCAmelCase_ : Union[str, Any] = new_module lowerCAmelCase_ : Any = splits[-1] # offload weights lowerCAmelCase_ : List[Any] = False offload_weight(module._parameters[tensor_name] , snake_case__ , snake_case__ , index=snake_case__) if hasattr(module._parameters[tensor_name] , "SCB"): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__ , ) else: offload_weight(snake_case__ , snake_case__ , snake_case__ , index=snake_case__) offload_weight(snake_case__ , param_name.replace("weight" , "SCB") , snake_case__ , index=snake_case__) set_module_tensor_to_device(snake_case__ , snake_case__ , "meta" , dtype=snake_case__ , value=torch.empty(*param.size()))
683
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Dict=7 ,lowerCAmelCase__ : Union[str, Any]=3 ,lowerCAmelCase__ : Any=30 ,lowerCAmelCase__ : str=4_00 ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : List[Any]=True ,lowerCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] ,lowerCAmelCase__ : List[str]=True ,lowerCAmelCase__ : Optional[Any]=1 / 2_55 ,lowerCAmelCase__ : Dict=True ,) -> List[str]: '''simple docstring''' lowerCAmelCase_ : str = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} lowerCAmelCase_ : str = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : Any = min_resolution lowerCAmelCase_ : List[str] = max_resolution lowerCAmelCase_ : str = do_resize lowerCAmelCase_ : List[str] = size lowerCAmelCase_ : int = do_normalize lowerCAmelCase_ : List[Any] = image_mean lowerCAmelCase_ : Dict = image_std lowerCAmelCase_ : Tuple = do_rescale lowerCAmelCase_ : List[str] = rescale_factor lowerCAmelCase_ : Tuple = do_pad def UpperCAmelCase_ ( self : Dict ) -> int: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : int=False ) -> int: '''simple docstring''' if not batched: lowerCAmelCase_ : Union[str, Any] = image_inputs[0] if isinstance(lowerCAmelCase__ ,Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = image.size else: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ : Union[str, Any] = int(self.size["shortest_edge"] * h / w ) lowerCAmelCase_ : str = self.size["shortest_edge"] elif w > h: lowerCAmelCase_ : Optional[Any] = self.size["shortest_edge"] lowerCAmelCase_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: lowerCAmelCase_ : Dict = self.size["shortest_edge"] lowerCAmelCase_ : Union[str, Any] = self.size["shortest_edge"] else: lowerCAmelCase_ : str = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ : str = max(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : item[0] )[0] lowerCAmelCase_ : Optional[int] = max(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DeformableDetrImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = DeformableDetrImageProcessingTester(self ) @property def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_mean" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"image_std" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_rescale" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"do_pad" ) ) self.assertTrue(hasattr(lowerCAmelCase__ ,"size" ) ) def UpperCAmelCase_ ( self : int ) -> int: '''simple docstring''' lowerCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad ,lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size ,{"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad ,lowerCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,Image.Image ) # Test not batched input lowerCAmelCase_ : Dict = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ,batched=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,np.ndarray ) # Test not batched input lowerCAmelCase_ : int = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase_ : Any = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ,batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowerCAmelCase__ ,torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) # Test not batched input lowerCAmelCase_ : Optional[int] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowerCAmelCase_ : str = image_processing(lowerCAmelCase__ ,return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ,batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" ,"r" ) as f: lowerCAmelCase_ : Optional[int] = json.loads(f.read() ) lowerCAmelCase_ : Tuple = {"image_id": 3_97_69, "annotations": target} # encode them lowerCAmelCase_ : int = DeformableDetrImageProcessor() lowerCAmelCase_ : str = image_processing(images=lowerCAmelCase__ ,annotations=lowerCAmelCase__ ,return_tensors="pt" ) # verify pixel values lowerCAmelCase_ : Tuple = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape ,lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) ) # verify area lowerCAmelCase_ : Optional[Any] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] ,lowerCAmelCase__ ) ) # verify boxes lowerCAmelCase_ : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape ,lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] ,lowerCAmelCase__ ,atol=1e-3 ) ) # verify image_id lowerCAmelCase_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] ,lowerCAmelCase__ ) ) # verify is_crowd lowerCAmelCase_ : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] ,lowerCAmelCase__ ) ) # verify class_labels lowerCAmelCase_ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] ,lowerCAmelCase__ ) ) # verify orig_size lowerCAmelCase_ : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] ,lowerCAmelCase__ ) ) # verify size lowerCAmelCase_ : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] ,lowerCAmelCase__ ) ) @slow def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" ,"r" ) as f: lowerCAmelCase_ : str = json.loads(f.read() ) lowerCAmelCase_ : List[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} lowerCAmelCase_ : Union[str, Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCAmelCase_ : Tuple = DeformableDetrImageProcessor(format="coco_panoptic" ) lowerCAmelCase_ : Dict = image_processing(images=lowerCAmelCase__ ,annotations=lowerCAmelCase__ ,masks_path=lowerCAmelCase__ ,return_tensors="pt" ) # verify pixel values lowerCAmelCase_ : Optional[int] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] ,lowerCAmelCase__ ,atol=1e-4 ) ) # verify area lowerCAmelCase_ : Optional[Any] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] ,lowerCAmelCase__ ) ) # verify boxes lowerCAmelCase_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape ,lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] ,lowerCAmelCase__ ,atol=1e-3 ) ) # verify image_id lowerCAmelCase_ : Dict = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] ,lowerCAmelCase__ ) ) # verify is_crowd lowerCAmelCase_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] ,lowerCAmelCase__ ) ) # verify class_labels lowerCAmelCase_ : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] ,lowerCAmelCase__ ) ) # verify masks lowerCAmelCase_ : Optional[int] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() ,lowerCAmelCase__ ) # verify orig_size lowerCAmelCase_ : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] ,lowerCAmelCase__ ) ) # verify size lowerCAmelCase_ : Optional[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] ,lowerCAmelCase__ ) )
683
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features', 'is_longer'] def __init__( self : Optional[int] ,lowerCAmelCase__ : List[Any]=64 ,lowerCAmelCase__ : Any=4_80_00 ,lowerCAmelCase__ : Optional[Any]=4_80 ,lowerCAmelCase__ : List[str]=10 ,lowerCAmelCase__ : List[Any]=10_24 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : float = 0 ,lowerCAmelCase__ : float = 1_40_00 ,lowerCAmelCase__ : int = None ,lowerCAmelCase__ : str = "fusion" ,lowerCAmelCase__ : str = "repeatpad" ,**lowerCAmelCase__ : Union[str, Any] ,) -> Union[str, Any]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : Optional[Any] = top_db lowerCAmelCase_ : str = truncation lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : str = fft_window_size lowerCAmelCase_ : Dict = (fft_window_size >> 1) + 1 lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : Any = max_length_s lowerCAmelCase_ : int = max_length_s * sampling_rate lowerCAmelCase_ : Optional[int] = sampling_rate lowerCAmelCase_ : int = frequency_min lowerCAmelCase_ : Optional[Any] = frequency_max lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm=lowerCAmelCase__ ,mel_scale="htk" ,) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=lowerCAmelCase__ ,min_frequency=lowerCAmelCase__ ,max_frequency=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = spectrogram( lowerCAmelCase__ ,window_function(self.fft_window_size ,"hann" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=lowerCAmelCase__ ,log_mel="dB" ,) return log_mel_spectrogram.T def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase_ : List[Any] = [0] # randomly choose index for each part lowerCAmelCase_ : str = np.random.choice(ranges[0] ) lowerCAmelCase_ : Optional[Any] = np.random.choice(ranges[1] ) lowerCAmelCase_ : Any = np.random.choice(ranges[2] ) lowerCAmelCase_ : str = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase_ : Dict = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase_ : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase_ : List[str] = torch.tensor(mel[None, None, :] ) lowerCAmelCase_ : List[Any] = torch.nn.functional.interpolate( lowerCAmelCase__ ,size=[chunk_frames, 64] ,mode="bilinear" ,align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = mel_shrink[0][0].numpy() lowerCAmelCase_ : str = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : np.array ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : int ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase_ : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase_ : str = len(lowerCAmelCase__ ) - max_length lowerCAmelCase_ : Any = np.random.randint(0 ,overflow + 1 ) lowerCAmelCase_ : Dict = waveform[idx : idx + max_length] lowerCAmelCase_ : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase_ : Tuple = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase_ : List[str] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase_ : Dict = np.stack([mel, mel, mel, mel] ,axis=0 ) lowerCAmelCase_ : int = False else: lowerCAmelCase_ : str = self._random_mel_fusion(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Any = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase_ : Dict = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase_ : List[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : int = np.stack(np.tile(lowerCAmelCase__ ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase_ : Optional[Any] = int(max_length / len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = np.stack(np.tile(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCAmelCase_ : List[Any] = np.pad(lowerCAmelCase__ ,(0, max_length - waveform.shape[0]) ,mode="constant" ,constant_values=0 ) if truncation == "fusion": lowerCAmelCase_ : int = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters ) lowerCAmelCase_ : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: lowerCAmelCase_ : str = self._np_extract_fbank_features(lowerCAmelCase__ ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : str = None ,lowerCAmelCase__ : Optional[str] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,**lowerCAmelCase__ : List[Any] ,) -> BatchFeature: '''simple docstring''' lowerCAmelCase_ : List[str] = truncation if truncation is not None else self.truncation lowerCAmelCase_ : List[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Dict = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Dict = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : Tuple = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase_ : Optional[Any] = [ self._get_input_mel(lowerCAmelCase__ ,max_length if max_length else self.nb_max_samples ,lowerCAmelCase__ ,lowerCAmelCase__ ) for waveform in raw_speech ] lowerCAmelCase_ : str = [] lowerCAmelCase_ : str = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase_ : Any = np.random.randint(0 ,len(lowerCAmelCase__ ) ) lowerCAmelCase_ : Dict = True if isinstance(input_mel[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase_ : List[Any] = [[longer] for longer in is_longer] lowerCAmelCase_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} lowerCAmelCase_ : Dict = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: lowerCAmelCase_ : List[str] = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
683
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __snake_case : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *lowerCAmelCase__ : int ,**lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase_ : str = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = vqa_pipeline(lowerCAmelCase__ ,top_k=1 ) self.assertEqual( lowerCAmelCase__ ,[ [{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}], [{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}], ] ,) @require_torch def UpperCAmelCase_ ( self : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = pipeline("visual-question-answering" ,model="hf-internal-testing/tiny-vilt-random-vqa" ) lowerCAmelCase_ : Any = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Optional[Any] = "How many cats are there?" lowerCAmelCase_ : Dict = vqa_pipeline(image=lowerCAmelCase__ ,question="How many cats are there?" ,top_k=2 ) self.assertEqual( lowerCAmelCase__ ,[{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}] ) lowerCAmelCase_ : Optional[Any] = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( lowerCAmelCase__ ,[{"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ )}] ) @slow @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = pipeline("visual-question-answering" ,model="dandelin/vilt-b32-finetuned-vqa" ) lowerCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" lowerCAmelCase_ : Dict = "How many cats are there?" lowerCAmelCase_ : Optional[Any] = vqa_pipeline(image=lowerCAmelCase__ ,question=lowerCAmelCase__ ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase_ : int = vqa_pipeline({"image": image, "question": question} ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) lowerCAmelCase_ : List[str] = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] ,top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ,decimals=4 ) ,[[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 ,) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass
683
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowercase = Lock() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase_ : Any = min(snake_case__ , snake_case__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase_ : str = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase_ : Tuple = Pipe() lowerCAmelCase_ : Optional[int] = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) lowerCAmelCase_ : int = temp_rs lowerCAmelCase_ : List[Any] = temp_rr for i in range(1 , len(snake_case__) - 1): lowerCAmelCase_ : Dict = Pipe() lowerCAmelCase_ : List[str] = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) lowerCAmelCase_ : Dict = temp_rs lowerCAmelCase_ : Optional[Any] = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__) - 1, arr[len(snake_case__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__)): lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1)) print("Initial List") print(*snake_case__) lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__) print("Sorted List\n") print(*snake_case__) if __name__ == "__main__": main()
683
1
_lowercase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_00_00] number //= 10_00_00 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase = [None] * 10000000 _lowercase = True _lowercase = False def UpperCamelCase ( snake_case__): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase_ : Dict = chain(next_number(snake_case__)) lowerCAmelCase_ : Optional[Any] = number_chain while number < 10_00_00_00: lowerCAmelCase_ : List[Any] = number_chain number *= 10 return number_chain def UpperCamelCase ( snake_case__ = 10_00_00_00): for i in range(1 , snake_case__): if CHAINS[i] is None: chain(i + 1) return CHAINS[:number].count(snake_case__) if __name__ == "__main__": import doctest doctest.testmod() print(f"{solution() = }")
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['image_processor', 'tokenizer'] UpperCamelCase_ = 'CLIPImageProcessor' UpperCamelCase_ = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : str ,lowerCAmelCase__ : Union[str, Any]=None ,lowerCAmelCase__ : Union[str, Any]=None ,**lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." ,lowerCAmelCase__ ,) lowerCAmelCase_ : str = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase__ ,lowerCAmelCase__ ) def __call__( self : int ,lowerCAmelCase__ : Tuple=None ,lowerCAmelCase__ : List[Any]=None ,lowerCAmelCase__ : Optional[Any]=None ,**lowerCAmelCase__ : int ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase_ : int = self.tokenizer(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if images is not None: lowerCAmelCase_ : Any = self.image_processor(lowerCAmelCase__ ,return_tensors=lowerCAmelCase__ ,**lowerCAmelCase__ ) if text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) ,tensor_type=lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Tuple ,**lowerCAmelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : int ,*lowerCAmelCase__ : Dict ,**lowerCAmelCase__ : List[Any] ) -> Any: '''simple docstring''' return self.tokenizer.decode(*lowerCAmelCase__ ,**lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = self.tokenizer.model_input_names lowerCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
683
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'microsoft/speecht5_tts' UpperCamelCase_ = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) UpperCamelCase_ = 'text_reader' UpperCamelCase_ = SpeechTaProcessor UpperCamelCase_ = SpeechTaForTextToSpeech UpperCamelCase_ = SpeechTaHifiGan UpperCamelCase_ = ['text'] UpperCamelCase_ = ['audio'] def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' if self.post_processor is None: lowerCAmelCase_ : Any = "microsoft/speecht5_hifigan" super().setup() def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[int]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = self.pre_processor(text=lowerCAmelCase__ ,return_tensors="pt" ,truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowerCAmelCase_ : str = load_dataset("Matthijs/cmu-arctic-xvectors" ,split="validation" ) lowerCAmelCase_ : List[Any] = torch.tensor(embeddings_dataset[73_05]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : str ) -> Any: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
683
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
683
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'timesformer' def __init__( self : Optional[int] ,lowerCAmelCase__ : Union[str, Any]=2_24 ,lowerCAmelCase__ : Any=16 ,lowerCAmelCase__ : Tuple=3 ,lowerCAmelCase__ : List[str]=8 ,lowerCAmelCase__ : List[Any]=7_68 ,lowerCAmelCase__ : Optional[Any]=12 ,lowerCAmelCase__ : Optional[int]=12 ,lowerCAmelCase__ : Tuple=30_72 ,lowerCAmelCase__ : List[str]="gelu" ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : List[Any]=0.0 ,lowerCAmelCase__ : List[Any]=0.02 ,lowerCAmelCase__ : Optional[Any]=1e-6 ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : Optional[int]="divided_space_time" ,lowerCAmelCase__ : List[Any]=0 ,**lowerCAmelCase__ : str ,) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : str = patch_size lowerCAmelCase_ : Optional[Any] = num_channels lowerCAmelCase_ : List[str] = num_frames lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : Tuple = qkv_bias lowerCAmelCase_ : str = attention_type lowerCAmelCase_ : Any = drop_path_rate
683
from math import sqrt def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , int(sqrt(snake_case__) + 1)): if n % i == 0 and i != sqrt(snake_case__): total += i + n // i elif i == sqrt(snake_case__): total += i return total - n def UpperCamelCase ( snake_case__ = 1_00_00): lowerCAmelCase_ : int = sum( i for i in range(1 , snake_case__) if sum_of_divisors(sum_of_divisors(snake_case__)) == i and sum_of_divisors(snake_case__) != i) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
683
1
import argparse import collections import json import os import re import string import sys import numpy as np _lowercase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowercase = None def UpperCamelCase ( ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0.") parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file.") parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions.") parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout).") parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer.") parser.add_argument( "--na-prob-thresh" , "-t" , type=snake_case__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=snake_case__ , help="Save precision-recall curves to directory.") parser.add_argument("--verbose" , "-v" , action="store_true") if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def UpperCamelCase ( snake_case__): lowerCAmelCase_ : str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : Dict = bool(qa["answers"]["text"]) return qid_to_has_ans def UpperCamelCase ( snake_case__): def remove_articles(snake_case__): return ARTICLES_REGEX.sub(" " , snake_case__) def white_space_fix(snake_case__): return " ".join(text.split()) def remove_punc(snake_case__): lowerCAmelCase_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(snake_case__): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__)))) def UpperCamelCase ( snake_case__): if not s: return [] return normalize_answer(snake_case__).split() def UpperCamelCase ( snake_case__ , snake_case__): return int(normalize_answer(snake_case__) == normalize_answer(snake_case__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = get_tokens(snake_case__) lowerCAmelCase_ : Union[str, Any] = get_tokens(snake_case__) lowerCAmelCase_ : Any = collections.Counter(snake_case__) & collections.Counter(snake_case__) lowerCAmelCase_ : Dict = sum(common.values()) if len(snake_case__) == 0 or len(snake_case__) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 lowerCAmelCase_ : List[Any] = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : int = 1.0 * num_same / len(snake_case__) lowerCAmelCase_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = {} lowerCAmelCase_ : int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ : int = qa["id"] lowerCAmelCase_ : Any = [t for t in qa["answers"]["text"] if normalize_answer(snake_case__)] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ : Any = [""] if qid not in preds: print(F'''Missing prediction for {qid}''') continue lowerCAmelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCAmelCase_ : Any = max(compute_exact(snake_case__ , snake_case__) for a in gold_answers) lowerCAmelCase_ : Optional[Any] = max(compute_fa(snake_case__ , snake_case__) for a in gold_answers) return exact_scores, fa_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = {} for qid, s in scores.items(): lowerCAmelCase_ : List[Any] = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ : List[str] = float(not qid_to_has_ans[qid]) else: lowerCAmelCase_ : Union[str, Any] = s return new_scores def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): if not qid_list: lowerCAmelCase_ : Any = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(fa_scores.values()) / total), ("total", total), ]) else: lowerCAmelCase_ : Tuple = len(snake_case__) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list) / total), ("total", total), ]) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): for k in new_eval: lowerCAmelCase_ : Union[str, Any] = new_eval[k] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): plt.step(snake_case__ , snake_case__ , color="b" , alpha=0.2 , where="post") plt.fill_between(snake_case__ , snake_case__ , step="post" , alpha=0.2 , color="b") plt.xlabel("Recall") plt.ylabel("Precision") plt.xlim([0.0, 1.05]) plt.ylim([0.0, 1.05]) plt.title(snake_case__) plt.savefig(snake_case__) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None): lowerCAmelCase_ : List[Any] = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) lowerCAmelCase_ : Dict = 0.0 lowerCAmelCase_ : int = 1.0 lowerCAmelCase_ : List[str] = 0.0 lowerCAmelCase_ : Tuple = [1.0] lowerCAmelCase_ : Tuple = [0.0] lowerCAmelCase_ : Dict = 0.0 for i, qid in enumerate(snake_case__): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ : str = true_pos / float(i + 1) lowerCAmelCase_ : Union[str, Any] = true_pos / float(snake_case__) if i == len(snake_case__) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(snake_case__) recalls.append(snake_case__) if out_image: plot_pr_curve(snake_case__ , snake_case__ , snake_case__ , snake_case__) return {"ap": 100.0 * avg_prec} def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): if out_image_dir and not os.path.exists(snake_case__): os.makedirs(snake_case__) lowerCAmelCase_ : Any = sum(1 for v in qid_to_has_ans.values() if v) if num_true_pos == 0: return lowerCAmelCase_ : Any = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_exact.png") , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ : Dict = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_f1.png") , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ : Dict = {k: float(snake_case__) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ : str = make_precision_recall_eval( snake_case__ , snake_case__ , snake_case__ , snake_case__ , out_image=os.path.join(snake_case__ , "pr_oracle.png") , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(snake_case__ , snake_case__ , "pr_exact") merge_eval(snake_case__ , snake_case__ , "pr_f1") merge_eval(snake_case__ , snake_case__ , "pr_oracle") def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): if not qid_list: return lowerCAmelCase_ : Optional[Any] = [na_probs[k] for k in qid_list] lowerCAmelCase_ : Dict = np.ones_like(snake_case__) / float(len(snake_case__)) plt.hist(snake_case__ , weights=snake_case__ , bins=20 , range=(0.0, 1.0)) plt.xlabel("Model probability of no-answer") plt.ylabel("Proportion of dataset") plt.title(F'''Histogram of no-answer probability: {name}''') plt.savefig(os.path.join(snake_case__ , F'''na_prob_hist_{name}.png''')) plt.clf() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) lowerCAmelCase_ : str = num_no_ans lowerCAmelCase_ : List[str] = cur_score lowerCAmelCase_ : List[Any] = 0.0 lowerCAmelCase_ : str = sorted(snake_case__ , key=lambda snake_case__: na_probs[k]) for i, qid in enumerate(snake_case__): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ : Union[str, Any] = scores[qid] else: if preds[qid]: lowerCAmelCase_ : List[Any] = -1 else: lowerCAmelCase_ : List[str] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ : Optional[Any] = cur_score lowerCAmelCase_ : Optional[int] = na_probs[qid] return 100.0 * best_score / len(snake_case__), best_thresh def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Dict = find_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__) lowerCAmelCase_ : List[str] = best_exact lowerCAmelCase_ : List[str] = exact_thresh lowerCAmelCase_ : Any = best_fa lowerCAmelCase_ : List[str] = fa_thresh def UpperCamelCase ( ): with open(OPTS.data_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) lowerCAmelCase_ : List[Any] = dataset_json["data"] with open(OPTS.pred_file) as f: lowerCAmelCase_ : int = json.load(snake_case__) if OPTS.na_prob_file: with open(OPTS.na_prob_file) as f: lowerCAmelCase_ : Optional[int] = json.load(snake_case__) else: lowerCAmelCase_ : List[Any] = {k: 0.0 for k in preds} lowerCAmelCase_ : Tuple = make_qid_to_has_ans(snake_case__) # maps qid to True/False lowerCAmelCase_ : Any = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ : List[str] = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_raw_scores(snake_case__ , snake_case__) lowerCAmelCase_ : str = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Dict = apply_no_ans_threshold(snake_case__ , snake_case__ , snake_case__ , OPTS.na_prob_thresh) lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__) if has_ans_qids: lowerCAmelCase_ : str = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "HasAns") if no_ans_qids: lowerCAmelCase_ : Union[str, Any] = make_eval_dict(snake_case__ , snake_case__ , qid_list=snake_case__) merge_eval(snake_case__ , snake_case__ , "NoAns") if OPTS.na_prob_file: find_all_best_thresh(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , OPTS.out_image_dir) histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "hasAns") histogram_na_prob(snake_case__ , snake_case__ , OPTS.out_image_dir , "noAns") if OPTS.out_file: with open(OPTS.out_file , "w") as f: json.dump(snake_case__ , snake_case__) else: print(json.dumps(snake_case__ , indent=2)) if __name__ == "__main__": _lowercase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
683
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
683
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase = logging.get_logger(__name__) class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = ['input_features'] def __init__( self : Union[str, Any] ,lowerCAmelCase__ : List[str]=80 ,lowerCAmelCase__ : Dict=1_60_00 ,lowerCAmelCase__ : Any=1_60 ,lowerCAmelCase__ : Union[str, Any]=30 ,lowerCAmelCase__ : Optional[int]=4_00 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : int=False ,**lowerCAmelCase__ : Union[str, Any] ,) -> Any: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,) lowerCAmelCase_ : List[str] = n_fft lowerCAmelCase_ : Union[str, Any] = hop_length lowerCAmelCase_ : int = chunk_length lowerCAmelCase_ : List[Any] = chunk_length * sampling_rate lowerCAmelCase_ : Dict = self.n_samples // hop_length lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=lowerCAmelCase__ ,min_frequency=0.0 ,max_frequency=8_000.0 ,sampling_rate=lowerCAmelCase__ ,norm="slaney" ,mel_scale="slaney" ,) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : np.array ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : str = spectrogram( lowerCAmelCase__ ,window_function(self.n_fft ,"hann" ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel="log10" ,) lowerCAmelCase_ : Dict = log_spec[:, :-1] lowerCAmelCase_ : Optional[Any] = np.maximum(lowerCAmelCase__ ,log_spec.max() - 8.0 ) lowerCAmelCase_ : Optional[int] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase_ ( lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : float = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCAmelCase_ : int = np.array(lowerCAmelCase__ ,np.intaa ) lowerCAmelCase_ : Any = [] for vector, length in zip(lowerCAmelCase__ ,attention_mask.sum(-1 ) ): lowerCAmelCase_ : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Tuple = padding_value normed_input_values.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : bool = True ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[str] = "max_length" ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Any = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : List[Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ): lowerCAmelCase_ : List[str] = np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : Any = [np.asarray([raw_speech] ).T] lowerCAmelCase_ : int = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ : Tuple = self.pad( lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=max_length if max_length else self.n_samples ,truncation=lowerCAmelCase__ ,pad_to_multiple_of=lowerCAmelCase__ ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] ,attention_mask=padded_inputs["attention_mask"] ,padding_value=self.padding_value ,) lowerCAmelCase_ : Tuple = np.stack(padded_inputs["input_features"] ,axis=0 ) # make sure list is in array format lowerCAmelCase_ : int = padded_inputs.get("input_features" ).transpose(2 ,0 ,1 ) lowerCAmelCase_ : str = [self._np_extract_fbank_features(lowerCAmelCase__ ) for waveform in input_features[0]] if isinstance(input_features[0] ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ : str = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ : Any = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs def UpperCAmelCase_ ( self : List[Any] ) -> Dict[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
683
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCamelCase ( ): lowerCAmelCase_ : str = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowerCAmelCase_ : Tuple = bs[:] lowerCAmelCase_ : Dict = 0 for b in range(2**8): if b not in bs: bs.append(snake_case__) cs.append(2**8 + n) n += 1 lowerCAmelCase_ : Union[str, Any] = [chr(snake_case__) for n in cs] return dict(zip(snake_case__ , snake_case__)) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Optional[Any] = set() lowerCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Union[str, Any] = char return pairs class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : str ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any]="replace" ,lowerCAmelCase__ : Dict="<s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : str="</s>" ,lowerCAmelCase__ : Optional[Any]="<s>" ,lowerCAmelCase__ : List[Any]="<unk>" ,lowerCAmelCase__ : Union[str, Any]="<pad>" ,lowerCAmelCase__ : int="<mask>" ,lowerCAmelCase__ : Any=False ,**lowerCAmelCase__ : int ,) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token lowerCAmelCase_ : Dict = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token lowerCAmelCase_ : List[str] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[Any] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,) with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ : List[Any] = json.load(lowerCAmelCase__ ) lowerCAmelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : List[Any] = errors # how to handle errors in decoding lowerCAmelCase_ : Optional[Any] = bytes_to_unicode() lowerCAmelCase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowerCAmelCase_ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase_ : Dict = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) lowerCAmelCase_ : Any = {} lowerCAmelCase_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase_ : Optional[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Any: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowerCAmelCase_ : Dict = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : Dict = bigram lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Any = 0 while i < len(lowerCAmelCase__ ): try: lowerCAmelCase_ : Optional[int] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Optional[Any] = tuple(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = new_word if len(lowerCAmelCase__ ) == 1: break else: lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = " ".join(lowerCAmelCase__ ) lowerCAmelCase_ : Any = word return word def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = [] for token in re.findall(self.pat ,lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = "".join(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors ) return text def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : Tuple = os.path.join( lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" ) lowerCAmelCase_ : Tuple = 0 with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowerCAmelCase_ : Optional[Any] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[str] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = kwargs.pop("add_prefix_space" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): lowerCAmelCase_ : Union[str, Any] = " " + text return (text, kwargs)
683
1